icm

ACTA ARITHMETICA
IX (1964)

Difference sets
by
R. A. RANKIN (Glasgow)

1. Let v, k, A be positive integers, with k < v. A set D(v,k) of k
distinet residues d,, d,, ..., d;, modulo v is called a (v, k, 1) difference set,
if every residue m == 0(modv) can be expressed in exactly 1 different
ways in the form

m = d,—d,(modv).
Then k(k—1) = A(v—1) and we put » =k—1, so that
= n+ v,

With each difference set .D(v, k) there is associated a complemen-
tary difference set D (v, v—¥k), whose members are the complementary
set of residues modulo »; D(v, v—Fk) is a (v*, k¥, 1*) difference set with
the parameters

=0, F=v—Fk NMF=0—2k+1, a*=F-—21"=n.

It follows that we may, if we wish, suppose that 0 <k < /2.
With the difference set D(v, %) we associate the polynomial

k
6(z) = Zmd”,
y=1

where we may suppose that 0 < d, < v, and we then have the fundamen-
tal identity

(1.1) 6(x) 8(1/w) == n-4+4(1+z+a’+...+2" ") (mod (s"—1)).

Our object is to find criteria that are necessary for the existence
of difference sets, and these are given in Theorems 1-4 and are applied
to certain unsettled cases given by Marshall Hall [1]. For this purpose
we consider factorization into ideal factors in a suitable cyclotomie field
K (N) generated by w = exp(2ni[N), where N is a divisor of v. We write,
for any integer s,

k N-1
g =0(0") = Yo% = } a0”,
v=1 q=0
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where «, is the number of different d, congruent to ¢ modulo N. It fol-
lows that

(1.2) 0<a, <V =0o/N (0<q<UN),
and, by (1.1),
(1.3) Eb=n (0 <s<N), &=rt.

If a is any algebraic integer in K (N), we denote by [«] the principal
ideal that it gemerates.

2. In this seetion D(v, k) is a given (v, k, ) difference set and N
is a fixed divisor of v. We put n = nyn,, where (n,, n;) = 1 and cvery
rational prime p dividing n, is such that

(2.1) p'= —1(modXN)
for some integer ¢, while n, contains no such primes p.

TEEOREM 1. n, = m’ for some positive integer m and & = 0(modm)
if 0<s<N. )

Proof. That n, is a perfeet square iy known; see [2], Theorem 3,
for example.

Suppose that 0 < s < N; since && = myn,, by (1.3), it follows that
[59] =N, Ny,
where the ideals ny, n, are prime to each other and

My = [R], WAy = [n].

Now (ny, N) = 1, so that every rational prime p dividing n, splits up
into & number of distinet prime ideal factors p. If p® denotes the con-
jugate ideal under the isomorphism o —+ w’, where (v, N) = 1, then
p*) = p whenever » is congruent to a power of p modulo N. Tn parti-
cular, by (2.1), ’

p=p"" =y,
and this holds for every prime ideal factor of Ny, %0 that w, = n,, and
therefore

[n] = n.

Since the prime ideal factors of each rational prime divisor of n, are di-

stinet, it follows that n, = m?, for some positive integer m. Alson, = [m],
8o that & = 0(modm).

Since (N, n,)=1, it follows that the congruence
Na = k(modm)

has a unique solution e satisfying 0 <a < m.

icm

Difference sets 163

Our next theorem gives some information about the number m and
the coefficients a,.

THEOREM 2. (i) @, =a(modm) (0 <g < N). (i) a< V. (i) & >
Na+Vn. (iv) m(k—Na) < AV+n+a(Na—2k).

We deduce immediately the

COROLLARY. If N =w, then m =1; i.e. n has no prime divisors p
satisfying (2.1). A similar conclusion holds if v =2N and k < N.

TFor then a = 0, by (iil), and (iv) gives m < 1. The first part of the
corollary is a particular case of Theorem 3 of [2].

Proof of Theorem 2. By Theorem 1, we have for 0 <qg< W,

N-1

Na, = Z Eo P =§) = k(modm),
8§=0

g0 that (i) follows and therefore a < a, < V, by (1.2). However, if a = V,
then a, = a for all ¢, and so » = 0 and k = v, which is false; thus (ii)
holds. . )
Write @, = a-+md, (0 <¢<N), so that A, is a non-negative
integer and
N-1

2.2 m A, =k—Na.
(2.2) 02 .

Tt follows that

N1

y;;, = |§| = miz Aq(c)q‘ <k—Na,
q=0
which gives (iii).
Finally,
N-1 N-1
WN-1)+1 = Y& =¥ Y o

8= q=0

=3

N-1

N—
- N{Nmz—i-iamaZlAq—&—m"Z Aﬁ}
=0 ¢=0

Since 4, < 4, (iv) follows from this and (2.2).
Theorem 2 enables us to dispose of the sixth of Hall’s twelve unsettled
cases [1]. Here
p=N =171, k=35, A=1,
Thus, by Theorem 1, m = 2, which contradicts the .COI‘OHaﬂ‘y. No dif-
ference set with these parameters can therefore exist.

n=28, #n=7, mn =4.
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3. In several of Hall’s unsettled cases it turns out that, for a suit-
able choice of N, [&] =[r] (0 <s < N), where r is a positive ratio-
nal integer whose square is n; hence

(3.1) & =1rd(s) (0 <s<XN),
where d(s) is a unit in K(N) of unit modulus, and therefore
8(s) = +

for some integer ! depending on s. We suppose that these conditions are
satisfied for a difference set D (v, k) and deduce some information about
the integer I, which enables us to evaluate the coefficients a,.

Let ¥ = N\N,, where N, is the greatest factor of N that is prime
to 2r. We then have the following theorem.

TrEOREM 3. If 0 <s <N and d = (s, N,), then

(3.2) 8(s) = &(d) ™,

where, for each divisor d of Ny, e(d) = +1 and a(d) is a rational integer
depending only on 4. If v is odd, N, is even and d, and d, are divisors of
N, with dy = 2'd; < N, where d; is odd and ¢ is a positive imteger, then
a(d,) = a(d,) and (d,) may be taken to be 1.

Proof. Let d be any divisor of N, and suppose that d # N. Then,
since &geK (N/d), it is clear that

(3.3) 8(d) = &(d)w™®,

where g(d) = +1 and o(d) is a rational integer.
Let p be a rational prime number that does not divide . Then, for
any s,

N-1 N-1
g = {Z‘ aqw‘”}p = 2 af »"®(mod p)
=0 =0
N-1
= Z‘ a, 0™ (mod p) = £,,(modp).
a=0

Hence, for 0 <s< N and ps # N,

8°(s)r = 6" (s)r™ = 8(ps)r (modp),
so that
(8.4) 8(ps)— 6”(s) = 0(modp).
Now the left-hand side of (3.4) is of the form

+ o0’ (1 o),
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and so is either (a) zero, (b) a unit, (c) divisible by 2 (for 4 ° =1), or
(d) a proper algebraic divisor of one of the rational odd prime factors
of N. If p #2, only (a) can hold and we deduce that

(3.5) d(ps) = 67(s)

whenever (p,2r) =1, 0 <<s< N, ps#N.
Write, for 0 <s < N,

(3.6) f={(s,N)=de, s=Fi,

where d = (s, N,), e = (s, N;). Then, since (e,2r) =1,

3(f) = (@) = e(d) ™D = g(d) o’ ?,

by (3.3) and (3.5). Also, since ¢ = o' generates K (N/f) and (£, Njf) =1,
an application of the isomorphism o — o' to the equation

& = re(d) o™
gives
£ = re(d) o™,

go that (3.2) follows.

Finally, suppose that » is odd, N, is even and that d, and d, are di-
visors of N, with d, = 2%d, < N, where d, is odd and tis a positive inte-
ger. Take p = 2 in (3.4) and apply this congruence ¢ times, giving

8(dy)— 8% (s) = 0(mod2).
Hence

(8.7) &(dy) 0% @~} = 1 (mod 2).

The left-hand side of (3.7) must be £1; i.e.

(3.8) dy{a(dy)—a(dy)} = 0(mod NV [2).
Now, whenever N/d is even, an odd multiple of N/(2d) may be added
to a(d) in (3.2), provided that the sign of £(d) is changed and vice versa.
This shows that we may assume that £(d;,) =1 and we then change
&(d,), if necessary, to make (3.8) hold modulo ¥, so that we may take
a(dy) = a(d,).

This completes the proof of Theorem 3.

For our next theorem we require Ramanujan’s function

N-1

1
e(d, ) = — Z’ o =
1

=0 S|(Ng/d,YN1)
(8,N)=d 2 !

(3.9) Su(Ny[do).
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The notation is as before and ¢ is any rational integer. The number ¢(d, 1)
is a rational integer and is zero when ¢ is not divisible by N;. Also

(3.10) le(d, 1) < e(d, 0) = p(N,/d),

where @(N,/d) is Euler’s function.
THEOREM 4. For 0 <g< N,

(3.11) Nay = k—re(Ny)+rN, Z

dINy

d)o(d, a(d)—q).

if ¢ =a(l),
[Na,—k+re(Ny)—e(1)rNyp(Ny)|

In pariicular,
(3.12) SN N —p(N)}.

Proof. We lhave

N-1
Na, = wa '13~k+r§’és -

N-1
= f}-r E e(d) E a™HUO=1
d|Ny 8=1
(3, Ng)=d

(3.11) follows from this and (3.9), and (3.12) is an immediate deduction
from (3.10) and (3.11).

Theorem 4 can be used to dispose of possible difference set parame-
ters by showing that (1.2) is incompatible with (3.11) or (3.12) .

Eight of Hall’s unsettled cases satisfy the conditions of this section,
the relevant parameters being given in the following table: .

Case 1 2 3 4 5 7 8 9

v 45 36 96 64 175 120 | 288 100
k 12 15 20 28 30 35 42 45
A 3 6 4 12 5 10 6 20
n 9 9 16 16 25 25 36 25
N 45 36 96 64 | 175 30 36 25
Ny 5 1 3 1 7 3 1 1
N, 9 36 32 64 25 10 36 25
r 3 3 4 4 5 5 ¢ 5

By applying (3.12) we can show that Cases 1, b and 9 cannot occur.
For example, in Case 1, with ¥ = 45 and ¢ = ¢,

(81 =19°,
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where p = [1—o] and is prime since 3 is a plumtlve root modulo 5. It
follows that [&] = [3] for 0 < s < 45. Since

Na, =k—re(N,y)(modrdN,),
by (3.11), &(N,) = —1 and (3.12) gives, for ¢ = «(1),
|4ba,—105| < 45,
which is impossible for a, =0,1.
Cases 2, 3, 4 and 7 can be ruled out by use of (3.11). For example,

in Cage 7 with N = 30, [5] = p*, where p = [1—¢™/] and is prime,
50 that [£,] = [6]for 0 < s < 30.Thusr = 5 and, by (3.11), for 0 < g <30,

(3.13) a, =1+ ¥ e(d)

dito

C(da a(d)—Q),

where we can take

e(l) =¢(8) =1, «a(2)=u(l), a(10)=a(3),

by Theorem 3. Write
(10,1).

e(t) = c(1, ) +&(2)e(2, 1), o5(t) = c(5, 1)+ (10)¢

Then, for ¢ =10,1,2,...,
of

29, ¢;(f) and £eg(t) are cyclic permutations

200000200000200000200000200000
and
800000200000200000200000200000,

respectively, where 2 stands for —2. This shows that ¢,(t) is periodic
with period 6 and that, for certain pairs of values of ¢ differing by 6, ¢.(t)
takes values differing by 10. Hence, by (3.13), for some g,

Gy g— = 45.
This contradicts the fact that 0 <a, <4 for all ¢.

The criteria given in this paper have therefore disposed of Hall’s
cases 1-7 and 9. In a recent paper [2], Mann has used different methods
to d.lbpose of the ten cases 1-6, 8 and 10-12; I am indebted to him for
sending me an earlier report of his work written for The Boeing Company.
He informs me that eight of his ten cases, together with Case 9, have been
disposed of by R. Turyn. Aceordingly, it is now known that none of
Hall’s twelve cases can give rise to a difference set.
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Note added proof, April 1964. These twelve cases have also been disposed
of by Yamamoto [3] in a recent paper which Professor M. Hall has just drawn to
my attention.
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Waring’s problem for p-adic number fields
by
B. J. Bmror (Manchester)

To L. J. Mordell

1. As is well known, for any power d there is a number g(d) such
that every positive integer is a sum of ¢(d) dth powers. Some time ago,
Siegel ([7], [8]) generalised this to finite algebraic number fields. Let
K be a finite algebraic number field; then the elements of K which are
sums of dth powers of integers of K form a set which we may denote
by J (K, d). Siegel proved that there is a number G (XK, d) such that every
large enough element of J(K, d) is a sum of at most G dth powers. He
conjectured that G should depend only on d and not on K; for instance,
he proved that every large enough element of K which is a sum of squares
is a sum of at most five squares.

In [2], it was shown that the circle method could be applied so long
as the number of variables exceeded a certain bound independent of the
field K; in particular, I proved

THEOREM. Let s > 2%-+1; suppose that M is a large enough totally
positive integer of K, which is a sum of at most s d-th powers in every p-adic
completion of K. Then M is a sum of at most s totally positive d-th powers
of integers of K.

Siegel’s conjecture was thus reduced to a p-adie problem. At the
time, the best p-adic results available were due to Stemmler [9]; in par-
ticular, these were enough to prove the conjecture for prime d. Subse-
quently a result similar to but sharper than the above has been proved
by Kérner [3], and an ‘elementary’ approach has been given by Rieger
[6]; Korner [4] has somewhat improved Mrs Stemmler’s p-adie estimates.
In this note I will prove

TamoREM 1. If K is a p-adic field, then every element of K which
is @ sum of d-th powers of integers of K is a sum of at most dwe?® such
d-th powers.

Combining this with my earlier theorem, we deduce 2 gimilar result
for o finite algebraic number field, and hence also for a number field which


GUEST




