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On the equation ¥ = f(2)
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W. J. LEVEQUE (Ann Arbor, Michigan and Boulder, Colo.)*

1. Introduction. Let % be an algebraic number field, with 0O, its
ring of integers, and suppose that f(x)e0,[]. The relationship between
the set of solutions of the diophantine equation

1 U =fl2), x,ye0,

and the nature of the polynomial f({x) has been studied by many authors;
we cite a few of the results.

(i) When % = Q, the field of rational numbers, the solvability in
Z =0y of y" =f(z), for every wx<Z, implies that f(x)= (g ()™
for some polynomial g. This result has been published as a problem at
least three times, and several quite different solutions have been given (see
[2], [3] and [4] for literature). The proofs are all fairly elementary, and
led the authors to statements of varying degrees of precision and gener-
ality.

(ii) C. L. Siegel [7] showed by very deep methods that (1), and
indeed any polynomial equation f(x,y) = 0 over k, has infinitely many
integral solutions in k only if the curve represented by the equation is
a special type of curve of genus 0. He had earlier [6] given a much sim-
pler proof of the following special case: if m = 2 and f(z) has at least three
distinet zeros, then (1) has only finitely many solutions. This latter proof
used the Thue-Siegel theorem, as well as the finiteness of the class num-
ber and the rank of the group of units in %.

(iti) H. Davenport, D. J. Lewis and A. Schinzel [1] showed, among
other things, that if k¥ = O and if in every arithmetic progresgion there
is an 2 satisfying (1), then f — g™ for some ge<Z[2]. Their proof depended
on a density theorem from the theory of algebraic numbers.

Thus it is apparent that the simplicity of proof of results concern-
ing (1) depends rather strongly on the kind of assumption made about
the set of solutions. It is the object of the present note to apply Siegel’s
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(1926) method to give a complete description of the circumstances under
which (1) has infinitely many solutions, and, under those circumstances,
an asymptotic estimate for the frequency of solutions.

We suppose throughout that f(z) has the representations

flz) = aa¥ +...+ay = a | [ (@—a),
q==l

with @, # 0, and ¢; # a; for i 4. Let Ky =lk(ay, ..., @), and let K
be any finite extension of .

2. Necessary conditions for solvability. Siegel has pointed out that
while the determination of the circumstances under which & diophantine
equation f(z,y) = 0 has infinitely many integral solutions in a fixed
algebraic number field K is a very delicate problem, much of the delicacy
disappears if one requires only that there be infinitely many solutions
x,yeK such that all the numbers 7u, 9y be integers, for some fixed
integer 7 7= 0 of K. In light of this observation, we introduce (as Siegel
did) the notion of a quasi-integral set G = Gg < K, this being any infi-
nite et such that 7@ is a set of integers in K for some fixed integer » 7 0
in K. (For finite sety this notion would be trivial, since there is then
always such an 7.)

We first show that unless f(z) is of very special form, there is no
infinite set of solutions in any fixed algebraic number field for which
the z-components form a quasi-integral set.

TasorREM 1. In the notation ntroduced earlier, put

m

8 = ———
t ('m””)’

i=1,2,...,n.

Then the equation (1) has no infinite set of solutions in any algebraic num-
ber field for which X, the set of m-values, is quasi-integral, unless {81y ves Su}
is a permutation of one of the n-tuples

(@ {5,1,1,...,1}, s=1,

() {2,2,1,...,1}.

Suppose that there is a set of solutions in some algebraic number
field X with X quasi-integral; with no loss in generality we may suppose
that K, < K. In this section we abbreviate Ox to 0. Choose <O in such
fashion that bay, ..., ba,, ¥ ja, and all the numbers bz, for z¢X , belong
t0 0. Put ¥ /a, = a and ba; = f; for s =1, ..., n. Then (1) can be writ-
ten in the form

@) a™ = [] (b~ gy,
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From this it is seen that for all zeX, the number ay is an integer,
so that, by increasing & if necessary, it can be supposed that yeO.
Using brackets to indicate integral principal ideals in O, we have

3) lalyI"* = [ ] ba— BT
Now for i 5% j and breO, =
[ba— p;, br— Bi1 | [Bai— B;1s

so that the g.c.d. of any two factors on the right hand side of (3) is
a divisor of the fixed ideal
[] B—a1".

Ii<ign
Thus there is a finite set #, of ideals in O such that for every pair @, ¥ <0
satisfying (3), and for every ¢, with 1 <4 <n, there is a de#, such
that
(4) [be— BT = bc™

for some ideal ¢ in O depending on z and <. Let p be a prime ideal divid-
ing ¢ and such that Np > max,s No. Then if p* || ¢™, ¢ must be a mul-
tiple of m and of r; and hence of their l.c.m. 7;8;, so that we can
write

(®) = e,

where ¢, is divisible only by powers of prime ideals p with
Np < maxys Nd. The ideal ¢, in turn, can be written as a produch
% -¢,, where ¢, is such that every prime power factor has exponent
less than 7;s;; there are only finitely many such ideals ¢,. Hence we
have from (4),

[bw— ;1% = b(cy5)%%c,
or :
(6) [bo— BT = e,

where ¢; is one of a finite set &, of ideals in 0. It follows from (6) that
¢ is an r;-th power, so that

(M [bo— ;] = cfie,

where ¢, is a finitely many valued function of x and 1.

Now let ¢ run over a fixed system of representatives of the various

ideal classes in O; the number of ¢’s is finite. Each ¢, occurring in (7)
is equivalent to some g, so that there are y and ¢ in O such that

®) [yles = [6]a;
we shall show that y can be chosen from a finite subset of O.
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Let [y, 6] =mn, [y]=nf, [6] =g Then from (8),
(9) nfc; = ngq,

whence f | ¢, so that { is one of a finite set &, of ideals of 0. As is wele
known, there is a positive constant ¢, depending only on K, such thal
there is an b in O with N§ < ¢ for which fo = [{] is principal. Henct
from (9),

bfe, = baa, [L1es = (hg)a.

Sinee ¢, ~ qy it follows from this that [{]~Dg, so for suitable &<0,
bg = [£] and [£]¢; = [£]1q. This shows that y in equation (8) can be
chosen to be one of the finitely many different integers { required to gen-
erate the various ideals fb.

Returning to (7), we obtain from (8) the relation

[bo— B[y I = ¢ [yTicst = ¢ [8T%",
50 that ¢,q% is a principal ideal, say c;4% = [0]. Thus for some unit ee0,
7% (bs— ) = €00,

and 0 is an elément of a fixed finite set %, = 0. By Dirichlet’s theorem
on units, & can be written in the form

e z Elel/s,i7
in which & is one of a fixed finite set & of units in 0. Thus finally we
see that for every x,y in K satisfying (1) and such that bx<O,

(10) bo—f; = x;(@) 8%1(@),

where x; is an element of a finite set %#; in K.

Now since there are infinitely many @ of the required sort, there is
a particular set of values of x,(%),..., #,(), say A,..., 4, which is
associated with infinitely many distinet solutions #,y, and it is obvious
from the equation

(11) by — f; = A; 074 (®)

that A; is not zero and that distinct values of # determine distinet values
of &;(x).

If {sy, ..., 8} is of meither of the forms (a) and (b) of the theorem,
it must be that with suitable ordering either s, = s, =8, = 2 or §; =3
and ¢, > 2. In the first case, m must be a multiple of 2 and f(x) must
have at least three distinet zeros; this case is covered by Siegel’s the-
orem ([6]; or see [5], p. 155). On the other hand, if s, > 3 and s, > 2,
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we see from (11) that the equation
(12) W&t = dyw’+(Ba— 1)

must have a quasi-integral set of solutions z = 6,(x), w = & (z) in K;
moreover, the polynomial g(w) = Lw%2+4 (f,—f,) has distinet zeros.
In other words, (12) is the special case of (1) in which m =8 >3, n
=N=s,, and ; =1 for ¢ = 1,...,n. Repeating the entire argument
in this special case, we arrive at the following analogue of (12):

(13) w8 — Yt = d.

More explicitly, there are nonzero numbers d (the difference between
some two zeros of g(w)), u, and y, in K such that (13) has a quasi-inte-
gral solution set X, ¥ in 0. But it is well known that this is impossible.

3. Case (a) of Theorem 1. We now investigate the nature of the
solutions of (1) in case (a). If m/(m,r)) =s, then (m,r) = m/s and
hence 7, = mit/s, where (t,s) = 1. Thus f(z) factors in K as

hid ’
ay(e— o) [ [ (2 —as)™,
i=2
where 73, ..., 7, are positive integers. If o, is of degree > 2 over k, then
mt/s must be a multiple of m, which is the case if and only if s = 1. In
this case, (1) can be written in the form

y" = wfl(x), fieOu[z], %<k,
Olearly this equation has solutions in a number field K o & if and only
if » is an mth power in K. If we suppose this, then we have the para-
metric solution

(14) y = #""fi(w).

Allowing » to range over a quasi-integral set Gz, we get quasi-integral
sets X and ¥, and it is clear that w must be restricted to such a set.

Now consider the case s > 1. Equation (1) can then be written in the
form

(15)

z=u,

Y =n(o— a)Bft(x), xek, ek, feOx[@].

In order that this equation be solvable in K, it is clearly necessary that
% = A™S for some 4K . If this is the case, z must then be chosen so that
Me—a)t = u°, %e@g. To see that this is possible, we shall use the fol-
lowing

LeMMA. If 5 and t are coprime rational integers and A is an element
of an algebraic number field K, then there are p, uy e K such that

A= pilpse
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To prove this lemma, suppose that in K,

1= [[vf,  weZ.
For each i, there are p; and ¢; such that a; = sp;—1ig;, 50 we can write

(16) g = U

(v~ ¥

where a and b are ideals of K. Now find ¢ such that ac ~1, say ac = [6].
By (16),

1mn b’ ~ 1.

Then if § and k are rational integers satisfying the equation sj+tk =1,
we have
¢ ~bY  and 7 =,

o that ¢ ~ (b~7¢*), or ¢ ~b" for suitable b. Thus -

blcs ~ (bbﬁ)l’
and hence

2
A = ——
(4] Cea
Now by (17),
byt = b(b—:f‘c—k)s = piTechs - (ﬁtcs)k ~1,
8o that 1 = £8°/&', where s is & unit and e, 0, £¢K. Finally, ¢ can be
written. in the form &f[s5, by Dirichlet’s units theorem and the argument
used to obtain (16). We can then choose u; = &0, p = &§&.
Thus if K is a field in which » = ™*, equation (15) can be written
in the form

y" = Mi"’(

f2(s);

‘mifs
T— oy
) fy iy 0y K foe0p[2].

In order that the values of ¥ constitute a quasi-integral set in K, it is
clearly necessary and sufficient that

R, mifs n
=", velg,
[4]

hence that
B = a,-+ 0.
But then 2 ranges over a G if and only if » = «!, where » ranges over

a G, so that in this case the general quasi-integral set of solutions of
(1) in K is given by

(18) o=+ mu’, Y= Mﬂ‘/tfz(‘”),

uelg.
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On the equation y™ = f(x) 213

‘While the numbers g, and u, in the representation » = L are not
unique, it is easily seen that the ratio s, [us corresponding to two such
representations is an sth power in K, so that all quasi-integral sets X, Y
are given by (18) with fized u,, u,, if Gx ranges over all quasi-integral
sets in K.

We now examine the frequency of solutions of (1) in case (a).

As usual, we shall mean by [a the maximum of the absolute val-
ues of the conjugates of the algebraic number a. We designate by »(T, K)
the number of integers a of K with [a] < T'; »(T, K) is finite for every
T and K. If G is any quasi-integral set, we designate by vGK(T, K)
the number of elements aeGg for which [af << T'. It is easy to see that
for arbitraryGg,

o (T, K) < (T, K)

for a suitable constant c,, and that if Gx consists of a constant multiple
of all the integers of K, then

”GK(T) K) ~e(T, K)

for suitable ¢;. In view of these remarks, we can formulate the follow-
ing theorem to summarize the results of the present section:

TrmorEM 2. Let f(x) be as in Theorem 1, and suppose that s, = 8,
8 = ... =8, =1, so that

i) #fi*(x), in case 8 =1,
) =

w{— o)™ (%) with (t,8) =1, in case § > 1, -
where fy, foe0p[2] and », ayek. Then (1) is solvable in K if and only if
% = 1™ for some <K . If this condition is satisfied there are py, pseK
such that » = u™|u™, and every quasi-integral set of solutions of (1) is
given by (14) in case s =1, and by (18) in case s > 1, where in each case
the range of u is an arbitrary quasi-integral set Gg. It follows that if X is
the set of ® corresponding to G, then always

vy (T, K) < e (T, K)*,
and that if Gg is suitably chosen,
12 (T, K) > ev(T, ).
Here ¢, and ¢; are suitably chosen positive constants. In particular, if there

are infinitely many tntegral solutions of (1) in K, end X yields the full set
of such solutions, then

vx(T, E) ~ cpp(T, ).


GUEST


216 W. J. LeVeque

By the density of a quasi-integral set § = K, we shall mean the
limit
i (T, K)
Tooo (T, K) ’
if this limit exists.
COROLLARY. In case (a) of Theorem 1, the equation y™ = f(z) has
o quasi-integral set of solutions ®,yeK for which X has positive density
if and only if f(z) =f1 (%), where fie<Ox[x].

4. Case (b) of Theorem 1. Now suppose that s, — s, =2, g, =
..=8,=1. It is easily seen that then

Q@) = (r— ) (3— a) ek [x],
and hence that (1) can be written in the form
(19) Y" =@ @)f (2); 1 0dd, xek; Q,f 0[],

This equation is clearly unsolvable (even if # and y are not required to
be integers) in an extension K of k& unless » = A"* for some icK, so
we shall suppose this. Then by the lemma, 4 = 43/ué for some 4, U,
and we can write (19) in the form

" Am2+Bm+0 mi[2
(20) Y= ("" D‘“‘“‘“‘“) fsl@), A4,B,C,DeOx.

In order that the set ¥ of values of v, corresponding to » in a guasi-inte-
gral set X = K, be quasi-integral in K, it is clearly necessary and suffi-
cient that for some Gx, and all z<X,

Ax'+Ba+-0 = Du?,
This equation can also be written in the form
' (2d2+BY—44Dw* = B> — 440 = 4.

If we put 242+B = u and v = 2w » then as & (or w) runs through a quasi-
integral set, so also does u (or o), and conversely. The Pell equation

(21) w—Bv* = A,

w EGK.

where we have put £ = AD, may or may not be solvable in K. Suppose
that it is 80 solvable. Then we have
(w—VBv) (u+VEBv) = 4,

so that the solution in K corresponds to a factorization of A in I = K (I/E)
into .fa;ctors conjugate over K. Conversely, every such factorization
of 4 in L corresponds to a solution of (21). Moreover, if there is a quasi-

icm®

On the equation y™ = f(x) 217

integral set of solutions of (21) in K, there is an 7eOg such that nu
and v are integers in X, and to each such pair », v corresponds biuniquely
a factorization 4 = 4,4, such that 4, and 4, are conjugate over K
and 54y, 74,¢0r. If we call such factorizations “appropriate”, we see
that we ean count the solutions of (21) in K by counting the correspond-
ing appropriate factorizations of .1 in L.

For fixed 7 there are only finitely many appropriate factorizations

-4 = 4,4, in which no two of the factors 4, are associates in L. On the

other hand, each of these nonassociated factorizations leads to the fur-
ther factorizations s4,-£'4,, where ¢ ranges over the units of I, and
these factorizations are appropriate if and only if  and £ are conjugate
with respect to K. By Dirichlet’s theorem on units, the group &, of units
in L is finitely generated, and since it is easily verified that the set of
units ¢ for whieh ¢ = ¢™' is a subgroup # of &z, also # is finitely gene-
rated. Lebt e, ..., ¢, be a basis for s#. Then all the appropriate factor-
izations of 4 are given by A,4,, in which A; = 4, 4; is one of a finite
set of elements of L, and ee . Moreover, if A, = u—{—l/E'u, then

. B <wl <4,

5o to within a bounded factor we can count the solutions of (20) with
[#] <T by counting the 4’s with 4] < 7. Since 4; has finite range,
it suffices to count the ee¢ s for which fe] <T.

‘We have

g = all’l 829
for suitable exponents b, ..
conjugates,

(22) log |e®| = b log [¢{|+ ...+ b, log "],

-5 by, s0 that, using superscripts to denote

and |e} <7 (T'>1) if and only if

(23) log | 9| < logT, d=1,...,1,

where | = [L: Q]. In view of (22), the solutions of (23) are those points
of a certain lattice in g-dimensional space which lie in a hypercube of
side 2logT; evidently the number of such lattice points is asymptotic
to elogtT as T — oo, for suitable ¢; > 0. Hence for the corresponding
solutions zeX of (18) we have

vx(T, L) = M;log’T,
where M, (and M, below) iz a quantity depending on L, y,Q(x) and

T, such that if I, y and @ are fixed, M, remains bounded away from 0
and oo as 7 — oco.
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Using an integral basis for I, we see by the same reasoning that

W(T, L) ~ e, T, 6o >0,
and henee that

vx(T, L) = M,log%(T, L).

k4

if L= XK, so suppose that [L: K] = 2. Suppose further that K has 7
real and 27, nonreal conjugate fields over Q, the corresponding numbers
for L being 7 and 2r,. If [K: Q] = n, then

There remains the question of when g is positive. Obviously g = 0

0 =1+ 2,
2 = 7y 4+ 2ry,
and the numbers of generators of infinite order of &x and & are
P o=r4r—1,
r = rry—1,

respectively. Now the relative norm mapping Nzix is a homomorphism
from &z to &x with kernel 5, and the kernel contains at least r'—r
infinite generators.

It r,> 0, then since 7, <7 +1,

=1t rn—1=2—7—1322n—1—2

5o that »¥' >n—1=r+4r,>r and +'—r > 0.

I 7,=0 and also 7, =0, then +'—r =¢#j—r, = n > 0.

If on the other hand », = 0 and r;, >0, so that K is totally real
and T is a nonreal quadratic extension of X, then the equation w?—Ert=1
has only finitely many solutions in % 'Og, for each 7. For let K; = K,
Ky, ..., K, be the fields conjugate to K, and let subscripts denote con-
jugates. Then u?—]f_],w,? =1for j=1,...,n, and since the w, and v
are all real, while Y% is pure imaginary, the numbers w4V T are com-
plex-conjugate for each j, and therefore [uj—H/Evj! = |uj—1/ji'-’v,| =1
for j=1,...,n. Hence if # and v could range over quasi-integral se-
quences in K and retain the property u'—Bv® =1, we should have
a quagi-integral sequence {u—\—l@v} in L such that !u+1~’ﬁv| =1, and
this iy elearly impossible.

Collecting the results of this section, we have the following theorem:

TEEOREM 3. In case (b) of Theorem 1, the equation (19) s solvable
m K ok only if » = A™?, AeK. If this condition is satisfied, then (19)
oan be wrilten in the form (20), and it 4is solvable in K if and only if the rela-
tive Pell equation w'—ADv' = B*— 440 s solvable in K. If (19) ds solo-
able in K, it has a quasi-integral set of solutions in K if and only if the
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group # of units ¢ of L = K(V AD) for which Nyge =1 is infinite. If
K =L, or if K is totally real and AD < 0, then H# is finite; in all other
cases A is infinite.

When 32 is infinite, let o be the number of generators of # which are
of infindte order. Then if (19) is solvable in K, there is a quasi-integral set
of solutions x,ye<K for which

(24) enlogh (T, K) < vx(T, K) < o3,log (T, K)

for some pogitive constants ¢,y and ¢i,. For every quasi-integral set X, the
second inequality of (24) holds for suitable cy,.
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