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Remark concerning integer sequences
by
K. F. Rore (London)

It seems highly plausible that there are various limitations to the
extent to which a sequence of natural numbers can be well-distributed
simultaneously among and within all congruence classes; unless the
sequence is in some sense “nearly” the sequence of all natural numbers
or the empty sequence. Many conjectures of this type appear to be very
intractable, particularly those closely related to the well-known conjec-
ture that every sequence of positive upper asymptotic density contains
arbitrarily long arithmetic progressions. The object of this note is to remark
that, on the other hand, a very simple argument yields at least some

information concerning irregularities of distribution of an arbitrary se-

quence with respeet to congruence classes. The theorem below is repre-
sentative of the type of result that can be proved in this way.

THEOREM. Let N be a natural number and let N be a set of distinct
natural numbers not exceeding N. For any natural number m < N and any
congruence class b modulo g, we denote by Pgz(AN'; m) the number of ele-
menis of A which do not exceed m and lic in the eongruence class; and we
denote by D% (A5 m) the corresponding “expectation”, namely

Pgu (A5 m) = qPyp(F5 m)
where £ is the set {1,2,..., N} and

N
) g =N Y1,
net”

For each m, and every natural number q, we define

i
@) Volm) = Y {@pu(W5 m)—@pp (A5 m)}.
h=1

Then, for all natural numbers @,

Q N 0 .
(3) N S Vam) 40 3 V) > nl—n)eN,
g=1

g=1 m=1
where the implicit constant is absolute.
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In particular, on choosing @ = [N 1, we obtuin the existence of a pai

Mgy Qos With go < N, such that

4) G Vg, (me) > n{1—n) N

(learly, this theorem exhibits a limitation to the possible accuracy
of approximations of the type

Bl A5 m) = 5g ' m+A(g, m)

if these are to be valid for all congruence classes of modulus ¢ < ¢, and

for all m < N.
Proof of the theorem. The inequality (3) holds trivially when

Q =1 (although this case is of no significance). We suppose throughout
that @ > 2, and write

(8) ¢ = [$Q].

For all integers n, we denote by x{n) the characteristic function
of # and by «*(n) the corresponding “expectation”; so that
(i) #{n) = 1 if ne.# and »(n) = 0 otherwise,
({) »w¥(n) =9 if 1 <n <N and =*(n) =0 otherwise.
For any integers ¢, %, u,v satisfying ¢ > 1 and » < v, we write
2

2 (se(n)— 5% (n)) .

fomey;
n=h(modq)

(6) —Dq,h(uvfu) =

We note that (2) may now be written in the form

) Valm) = > {Dyn(l, m)}P.
h=1
We use a,§ to denote real numbers and e(a) to denote ™ Let
N
(8) 8(a) = Y'(x(n)—x*(n) e(na),
Q-1
Q) F(B) = ) e(ip),
1=0

where the natural number @, is defined by (5). We shall prove (3) by
comparing upper and lower estimates for the expression

1@
(10) E= [ Y |P(ga)8(a)]da.
0 g=1

Remark concerning integer sequences
To obtain a lower estimate for B, we use the fact that

Q

2 2

an D =(2q),
g=1

for all «. This fact is established by noting that if 3| < Q! (so that

0.8 < %), we have

Py =g, Tl | |

| 7@:f || sinep |

2
= —Q;

B

sjmd that corresponding to every real a, there exists an integer ¢, satisfy-
ing 1<¢<¢, and an integer h, such that |ga—h| < Q.
On substituting (11) in (10) and noting that

1 N

J 18(a)?da = E(x(n)——-x*(n)jz = n(1—9)¥N,

0 n=1
we obtain the estimate
(12) . E> n(1—9Q°N.

Now
N+e(Q1-1)
(13) F(ga)S(a) = v(a)e(aa),
where -
(14) (@) = Dygla—q(@:—1), af.
Accordingly,
Q
(15) E= )E, whee E,= D).
a=1 a

Interpreting D,;(u,v) to be zero when « > », we have

1’z‘:;(a) = {Dygall, a)—Dy,(1,a— QQI)}Z
< Z{Dq,u(l 3 a)}2+ 2 {Dq,a (1,a— QQI)}2 .

But
N4g(Q1—1) N+g(@Q1—-1)
D Duall e = Y (Dua(l, NP <@V (),
a=N+1 8=N41
and hence

N
By <4 ) {Dgull, a)f +2Q,V,(N).
=1
Thus, since
'DQ,a (1,a) = Dq,a(ly a‘l‘]) for

Jj=0,1,...,¢—1,
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we have

q q—1
Bp<dd 3 07 Dl a4 2070

<Ag Y Vo(m)+(20:+4) V(N)

Mm=1
N

<q! 2 Va(m)+QV,(N).

M=1

In view of (15) we see that this estimate in conjunction with (12)
yields (3).
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Rational zeros of two quadratic forms
by

H. P. F. SWINNERTON-DYER (Cambridge)

1. Let f, g be homogeneous quadratic forms in 13 variables, de-
fined over the rationals. Mordell [3] has shown that f and g have a com-
mon non-trivial rational zero, provided that they satisfy certain condi-
tions of a non-number-theoretic nature. In this paper I prove the cor-
responding result for forms in 11 variables:

TuEOREM. Let f, g be homogeneous guadratic forms in 11 variables,
defined over the rationals; and suppose that for all real 2, u not both zero
the form Af+ ug is indefinite. Then f and g have a non-trivial common ra-
tional zero.

We shall see in § 2 that the condition of the theorem is the natu-
ral one. Henceforth, in discussing functions homogeneous in a get of
variables, we shall implicitly assume that the variables are not all zero;
in fact it will be convenient to state part of the argument in the lan-
guage of projective geometry.

The idea of Mordell’s proof is as follows. We arrange that f is non-
singular and has signature between —3 and 3 inclusive; then by a change
of variables it can be written in the form

5
(1) f= Z*Eimi% +fi(@n, B2y Byg) -
iz
By putting x; = 0 for 6 <4 <13 we ensure that f = 0 and we reduce
¢ to a form ¢,(#,,..., %) in five variables. We can certainly find a ra-
tional zero of g, — and thereby a common rational zero of f and g — if
¢, is indefinite. But the possibility of making g, indefinite depends only
on real and not on rational conditions; for if we have any real trans-
formation of variables which takes f into the form (1) then we can find
a rational transformation as close as we like to it which also takes f into
the form (1).
If we apply the analogous argument to a pair of forms in 11 variables,
we arrive at a form g, in only four variables. This may not have a zero
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