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The next stage of the reduction is analogous except that we have
1o local conditions to trouble us. It enables us to write

fo =52+ Fs(@y ooy mn), g =b; £ G5 (T y ---y @11)

with & = @5+ cs62+...; and if g; is the restriction of g to x5 = 0 then
f5, g6 ave non-singular and no form of the pencil generated by them hag
rank less than 3. Moreover we may assume that b; # 0; for otherwise
we cal obtain a rational selution of f = ¢ = 0 by putting w; =1, & =
L=, =0, =0 =..=0.

Now let %' be the finite set of these primes p such that by & -4 b, &4
-+ by £ does not represent zero over the p-adic numbers. We have arran-
ged that %' contains no prime of ., and we can therefore apply the result
of Lemma 4 to the forms f; and by b,b, g5 for each pes’. For each of them
we obtain a p-adic point P, on f; = 0 such that b, byb; g, (P,) i8 not
a p-adic square. Let P; be a rational point on f; = 0 o near to each P,
that it has the same properties; by a further change of variables we may
take it to be (1, 0,0, 0, 0). Let b, = g;(P;) = 0 and consider the linear
subspace given by

By = By = Ty = Wy = Wy = By = y; = 0.

On this we have f=0 identically; and since &, &, &, #; are an acecept-
able system of homogeneous coordinates we can write the restriction
of g in the form

by E1-F by £+ b5 &5+ by af

But this is an indefinite quadratic form which represents zero in every
p-adic field. (The only difficulty is with the pe%’, for which we appeal
to the theorem that a quaternary quadratic form which does not repre-
iqent zero in a p-adic field must have determinant a p-adie square.) Hence
it represents zero over the rationals; and this representation extends
in an obvious way to a rational solution of f = ¢ = 0. This completes
the proof of the theorem.

References
[1] B. J. Bireh, D. J. Lewis and T. G. Murphy, A J. M
oo, 16145, > phy, Amer. J. Math. 84 (1062),
[2] V. B. Demyanov, Izv. Akad. Nauk. SSSR 20 (1956), pp. 307-32
f . . N . 307.324.
(3] L. J. Mordell, Hamb. Abh. 23 (1959), pp. 126-14&&) o

[4] C. V. H. Rao, Proc. Lond. Math. Sec. 17 (1019 272
» . . , . 272.305.
[5] C. Segre, Math. Ann. 24 (1884), pp. 313-444. PP '

TRINITY COLLEGE, CAMBRIDGE

Regu par la Rédaction le 20. 12. 1963

icm®

ACTA ARITHMETICA
IX (1964)

Simultaneous representation by adjoint quadratic forms
by
G. PaLL (Baton Rouge, La)

Dedicated to Professor L. J. Mordell

1. Introduction. Consider an n-ary quadratic form ¢ with real coef-
ficients, and its adjoint form ¢'. Denote their matrices by A = (ay) and
A' = (aj;), so that ag i the cofactor of the element @ in the determi-
nant of A. Two real numbers m and m’ are said to be simultaneously rep-
resented by ¢ and ¢’ if there exist integers @;,2; (! =1,...,n) such that

n n
v 1ot ’
2, %Rty 0= Zwizi.

=1 i=1

n
(1) m = 2 @y, m o=
ig=1

The pair of column vectors z = (x;) and & = (2;) is called a simultaneous
representation. The representation is termed primitive if each vector is
primitive, that is the n components of each vector are relatively prime.

The notion of simultaneous representation was first introduced by
. Bisenstein [1], as part of an expression for his invariant system for
a genus of ternary quadratic forms. The extension of Eisenstein’s idea
to m-ary quadratic forms, due to H. J. S. Smith [2] and H. Minkowski
[3], involved the sequence of leading minor determinants in the matrix
of A. It is interesting that the definition we have given above allows
a quantitative development, which is the main purpose of this article.
An algorithm will be given which produces all the simultaneous repre-
sentations of given m and m’' by ¢ and ¢', each sef of primitive represen-
tations (a set being an aggregate Wz, W'z’, W running over the unimo-
dular automorphs of @) being associated with a unique class of quadratic
forms in n—2 variables and a certain set of solutions of certain quadratic
congruences modulo m and m’. A formula similar to those of Smith, Min-
kowski, and Siegel [4] for the weighted number of simultaneous represen-
tations by a genus, exists for the weighted number of simultaneous re-
presentations by the system of classes of a genus and the adjoint genus.

Ag an example, the number of simultaneous, primitive solutions of
(2) m=wi+aoytay, w = B+vtyE, 0= oY+ Yt B,

where m and m’ are coprime positive integers, is 24gg’, where g and g’
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denote the numbers of solutions ¢ and #' of the respective congruences
= —m (modm), 7= —m (modm’).

As a second example, if m and m’ are coprime positive odd integers,
then the number of simultaneous and primitive solutions of

m =g+ oo+ 3a;, m' =3yi+3ui+ 34y, 0 =ay 4. oy,
if m' =1 (mod3), and of
m = @+ o} -+ 205+ 2wy, 205, ' = ByT43ya- 205 — 2y, w248,
With 0 = 2,9+ @Yy -+ T3 Y5+ 2%, if m == 2 (mod8), is equal to
12, i m=m'=1;

24h, if mm' =1mod4 and mm' >1;

48h, I mm'=3mod8 and (—1|m)==(m'|3);
16k, if mm' =3 mod8 and (—1|m)= —(m'|3);
96%, if mm' = Tmod8 and (—1|m) = (m'|3);

0, if mm'=Tmod8 and (—1]m)=—(m'|3).

Here 7 = h(mm') denotes the number of properly primitive classes of
positive binary quadratic forms of determinant mm/'.

A third example: if m and m’ are coprime positive integers, then
the number of solutions, with (4,...,2) =1 = (y5,...,9,) =1, of

m=ait+ot+aital,  m =i+l

0 = @91+ Do Ys + B3 Yy -+ 1,9,
is equal to

48, if mm’ =1; 967, if mm' =1 or 2 mod4, mm' >1;

64k, if mm' =3 modS8; 0, if mm =0, 4, or 7 mod8.

I. Ternary quadratic forms

2. The algorithm for ternaries. This section, the special case 7 = 3
of Part IT, will serve to illuminate what follows and has noteworthy fea-
tures of its own.

TeEOREM 1. Leét @ = (2;) and 2z = (2}) be primitive column vectors, with
three components, such that x72' = 0 (1. Then there emists a wnimodular

() Notations. The superscxipt T marks the transpose of a matrix. A wnimod-
wlar matrix iy one which is integral and has determinant +1. The term .Adjoint
(with a capital A) indicates the matrix of cofactors, not transposed; thus adj?
is the transpose of AdjT. It should be recalled that if B — TTAT, then AdjB
= (AdJT)T (Adj4) (AdjT); and that Adj(TX) = (AdjT) (Adj X), Parentheses sur-
rounding matrices may, for convenience of typing and printing, be sufficiently
indicated as shown in (3).
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matriw T such that % is the first column of T and 2 is the third column of the
Adjoint matriz 1", If T is one such matriz, then every matriz with these prop-
erties is given by TX, where

@ank
(3) X=01%Ww
00 1),

with by k, and b’ arbitrary integers. Thi§ means, if T and T' are indicated
colummnwise by

(4) T=(xye2, I'=(@@y ),

that y can be replaced by y+ha, and y' by y'— h'z’, with h and b’ arbitrary
integers; and that, if y and y' are fived, then z is uniquely determined wup
to an added integral multiple of », or alternatively, o' is uniquely determined
up to an added integral multiple of 2'.

Proof. See the more general Theorem 4.

Our idea is to apply the transformation 7' to ¢, and to see what re-
mains invariant when 7' is replaced by the gemeral matrix TX. We
have m = 27 Az and m’' =2'TA'%, and assume that d = [4] £ 0, and
that mm’ # 0. If B = I'TAT, then the Adjoint of B is T'TA'T", and we
can write

(m t s (-
(b) L=t gr B =.q t
s r k), L tom'),

where the dots indicate parts of the matrix for which names are not
needed. If y and y' are replaced by y+ he and y'-+h'z’, then ¢ and ¢ be-
come t-+hm and ¢+ h'm’. Thus there are associated with the primitive
representations x and 2’ two uniquely determined real numbers ¢ and ¢
such that

(6) —iml <i<iiml,  —Fm] <t < Em].

If we so fix ¢ and #', then veplacing 2 by 2--k, 2 will replace s by s+ k,m.
Hence there is also associated a real number s such that

(69 —3m] < s < }|ml.

If » and 2’ are replaced by Wa and W'z, where W is any unimodular
automorph of ¢ and W' is Adj W, then T' and 7" can be replaced by W71
and W'Z'. Hence the same matrices B and B’, consequently the same

Acta Arithmetica IX.3 18
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real numbers f,t,s are agsociated with the set of representations
W and W'2’, where W ranges over the unimodular antomorphs
of ¢.

There are thus associated with every set of simultaneous and prim-
itive representations of m and m’ by ¢ and ¢’ three real numbers ¢, #,
s satisfying (6) and (6'). Conversely, to every triple ¢, ', s satisfying (6)
and (67) correspond a unique set of simultaneous and primitive represen-
tations of m and m' by certain forms, but not necessarily by ¢ and ¢'.
Indeed, for given ¢, 7', s we can find real numbers ¢, ¢', r, and % such that
(0 mg—C=m', m¢—t*=md, st—mr=1, mhk-&=¢,
and form from these the matrix B in (5). If then the matrices A and B
are not equivalent(?), then no representations of m and m’ are associated
with ¢,¢,s. But if 4 and B are equivalent, let 7' be one unimodular
transformation of A into B. Then the most general such transformation
is WT', where W is any unimodular automorph of A. Then the first columns
of WT with the third columns of W’'I" constitute a set of simultaneous,
primitive representations of m and m’ by ¢ and ¢', associated with , #/,
and s.

TuporeM 2. The number of sels of simultaneous and primitive repre-
sentations of m and m' by a ternary form ¢ and its adjoint ¢’ equals the num-
ber of complexes t, ', s satisfying (6) and (8') for which B constructed by (7)
is equivalent to the matriw of ¢.

The possible triples ¢, #, s are considerably restricted if A is integral.
Then m and m’ must be integers, as also the elements of B and B’, whence
t, %', s are solutions of the congruences

(8) #=—m (modm), —3}|m|<t< }ml;
(9) ? = —md(modm'), —3}m|<t <}m'|;
(10)  st=t(modm), & =—g (modm), —3}m|<s<}ml;

with ¢ defined by m'q' = t*+ dm.

If m and m’ are coprime integers the number of golutions t, 1,8
of (8)-(10) is equal to the number of solutions ¢, ¢ of (8)-(9). For then.
(¢, m) =1, and the unique solution s of st = ¢ modm satisfies s4+q
= (s*m +g'm") [m' = (t*— 8’4 dm)/m’ = 0 modm.

It is easily seen for any solution of (8)-(10) that B constructed as
in (5) has determinant d. The index of B is fixed by the signs of m, m’, d.

() Equivalence is used in the Gtauss sense, that 4 — UTBU for some unimo-
dular U.
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Hence all the solutions of (8)-(10) are associated with simultaneous re-
presentations of m and m’ by forms f and f' with f of determinant d and
index determined by the signs of m, m’,d. To obtain the number of sets
of simultaneous primitive representations by the system of classes of
a genus and its adjoint, it is only necessary to prescribe conditions to
assure that B is in that genus. Thus m and m’ may be so restricted that
their values fix the generic characters, and then all solutions will refer
to a specific genus with its adjoint.

Since there is only one class of positive integral ternaries of deter-
minant 1, it follows that the number of sets of solutions of (2) is gg’, if
m and m' are positive coprime integers. Since a1+ #2--#? has 24 unimo-
dular automorphs, each set consists of 24 distinet representations, in
view of the following theorem:

THEOREM 3. If @ and &' are simultaneous primitive representations of
nonzero numbers m, m’ by ¢ and o', then as W ranges over the unimodular
automorphs of ¢, the vectors Wa and W'2' never repeat their pair of values
for different Ws.

Proof. Since the W’s form a group it suffices to show that Wz = x
and W's' =2’ imply that W is the identity I. Our previous discussion
showed that the matrix 7' such that » is the first column of 7' and 2’ is
the third column of 7" is wniquely determined by the condition that (6)
and (6’) are satisfied by

(m t s (. .

TTAT =1 and  TTAT = .,

s L) . tom').

H T =(xy 2 and T'=(z' y' 2') are the unique matrices with the
specified properties, then WT = (# . .) and W'T’ = (. . 2') have the
same properties. Hence WI =1 and W = 1I.

As a second example consider the two positive classes of determi-
nant 3, containing f, = i+ a3+ 3% and f, = 20*+ 22,2, + 22f +of with
the adjoints fi = 3yi+3y3+y; and f; = 23— 2y 9.+ 2034+ 33, We
assume . and m’ positive, (m,m') =1, (m’,3) = 1. Then the repre-
sentations are by f, and f; if m’ =1mod3, and by f, and f, if m’ =2
mod3. The number of primitive representations in each case is equal to
w times the number of solutions of

Iz

== —m/ (modm), ¢ == —3m (modm’),

w (the number of unimodular automorphs) being 8 for f,, 12 for f, ([5]).
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II. n-ary quadratic forms

3. A theorem on integral matrices. We shall prove

THEOREM 4. Let © and 2’ be primitive column vectors with n compo-
nents, #72' = 0. There exists a unimodular mairis T such that x is the first
column of T and 2' is the last column of T' = AdjT. If T is one such matric
the most general is TX, where

(L ol t
0oU B
00 1)

1) X =

here U is any unimodular matriz of order n—2,a" and f are row and column
vectors with n—2 integer components, t is an integer, and the 0's are zero
matrices.

To prove that T exists we first choose a unimodular matrix ¢ such
that Qx = e,, with ¢, the first column of the identity I. Then if @' = Adj@,
27Q7Q’2 = 0, whence the first element of @'z’ is 0. Choose a unimodu-
lar matrix R, with first row and column the same ag those of I, to satis-
fy R'Q'2" = ¢,, where ¢, is the last column of I. Then, if P = RQ, Pz
= ¢, and P'?' = ¢,. Hence the first column of 7' = P-! iy « and the last
column of T" is #'.

Since X'XT =1, the Adjoint of X is

€0 o0
X'=1y VO
w 6T 1),

where V=U", y = —Va, 6 = —V78, and u--t = 7 Va; hence 7TX
and 7"X’ have the desired properties with 7' and 7'. To prove that 7'.X
is the most general such matrix it will suffice to show that if § and T
are two such, then 78 has the form of X. We can partition § and 7,
8’ and 1", as follows,

T=@7Yz2, T=@ Y4z,

(12)

S=(x Y, 2), 8 =@ ¥, 7)),

the Y’s being integral matrices with # rows and n—2 columns. Since
T"T=I=48"78, we have ¢'To =1, ¥ Ty =0, 2Te =0, 7Y, = 0,
#'Tz; = 1, and hence

(z T ot
(13) T8 = ¥’ =0U B
) (@ Y, %) 00 1)

icm

Simultaneous representation by adjoint quadratic forms 277

where a, fi,t, and U are integral matrices defined by this equation. Ob-
viously U is unimodular with 7'8.

4. The class of (n—2)-ary forms associated with Wz and W',
If T and 7" have z and 2’ as first and last columns respectively, and
m=wo Az and m’' = 2TA'?, then B=TTAT and B' = T'TA'T" can
be given the notations

I (« . .
(14) B= =« B A B= .0 u
1T ), W),

where B, and C, are symmetric matrices of order n—2; », 4, and x have
n—2 components; s and I are numbers. We investigate what remaing in-<
variant in (14) when 7' is replaced by the “most general” matrix TX,
and hence B is replaced by

(m #T U+ ma’ 142" B+-mt
(15) X"BX = UTx+t+ma maa' +UTxd +axT U+UTB, U .
1+pT =+ mt . . )s
and B’ by
‘. . )
(16) XTB'X =. VICV+ou V+VTusT+m'66T Viut+m's

uWTVEm'sT m’ )
THEOREM 5. In the notation of (14), set
(17) G = mBy—xx',

If T is replaced by TX, @ and F are replaced by the equivalent matrices UTQU
and VTRV respectively, where V. = U’. Also,

F =m'Cy—up®.

1FI —_ m7n/714—3dﬂ,—2’

Adj@ = m"*F|d,
where d = |A| and I, is the identity matriz of order n—2.

Proof. To complete squares relative to m in (15) is to apply the trans-
formation which differs from I only in having the first row

{1 —m Y (xTU+maT) —m™* I+ = f4mi)),

and thus to replace the matrix (15) by the maitrix F whose first row is
(m 0 0)and “middle row” is (0 m~™'U"GU .). Then (16) must be transfor-
med by the Adjoint matrix, differing from I only in having its first co-
lumn the transpose of

(1 m™ (T U+maT) m™ (=" f4mi),

|G = m"*m/, GF = PG = mwm'dl,,

(18)
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and accordingly (16) is replaced by E' (= AdjZ), which differs from
(16) at mosb in its first row and column. Since m’ is the value of the lead-
ing determinant of order n—1 in F, and d**m is the value of the lagt
determinant of order n—1 in ', m' = m|m~'G|, and the first row of 7’
is (m~'d@ 0 0). Next we apply to B’ the transformation which differs from
I omly in having the last row

(0 —m (uTV+m'eT) 1),

and thus (applying the Adjoint to F) replace ¥ and K’ by

(m 0 0 (m=d 0 0
0 wm'UTGU 0 0 m VTRV 0
0 0 m'~h), 0 0 m'y.

Since these have the product @l the theorem follows.

The matrices & and F are best remembered as the matrices obtain-
el by completing squares relative to s and ' respectively, in the
first minor of order n—1 in B, and in the last minor of order n—1 in B’

We need the explicit result of completing squares relative to m in
(14). This replaces B and B’ by

(m 0 0 (m~ 0 0
0 m'@ A~ Ue|me 0 G, p
0 AT—W"jm s—Fm), 0 uom).

Since the product of these matrices is dI, we have in particular

(19)  Gu+(mi—lm =0, uT(mA—1Ix)+ (ms—P)m' = dm.

5. The algorithm, in general. There are thus associated with any
given simultaneous, primitive representations x# and z' of m and m’ by
¢ and ¢, an aggregate of quadruplets

(20) {UTGU, UTutma, Viatm's, 1+ %! B+ mt},

which can be generated (as is evident from Theorem 4, and can be veri-
fied directly) from any particular quadruplet {G; %, 4,1} of the aggre-
gate by use of an arbitrary unimodular T, arbitrary integral vectors
a« and f, and an arbitrary integer ¢. Here V = AdjU and § = — U~'g.
Since the same matrices B and B’ are derived from Wz and W2, as
from « and 2/, the entire set Wu and W'z’ (W ranging over the unimo-
dular automorphs of ¢) is associated with the same aggregate (20).
Conversely, for any given @, », u s 1, we can define I by (18,), B,
and C, by (17), can solve for A from (19,) and for s from (19,). Thus a ma-~
trix B is constructed. If A and B happen to be equivalent, let T denote
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a unimodular transformation of 4 into B; then the first and last co-
lumns of WZ' and W'T' constitute a set of simultaneous and primitive
representations of m and m’ by ¢ and ¢’ associated with the quadruplet
{@, », u, 1}, and with the aggregate (20) which it generates. But if 4 and
B are not equivalent no representation of m and m’ by ¢ and ¢’ is asso-
ciated with {G, 2, u,1}.

Consider (20) with U fixed. We can choose « and § (= —Ud) uni-
quely so that — the inequalities being satisfied by each component —
—tm| < UTrdma < gml, —m'| < VTptm's < kim'|.

For this choice of o, f, 14+ %7+ mt is uniquely determined modulo m.
Thus every aggregate of quadruplets contains one {G, x, u, 1} in which
(componentwise)

(21 —dbml <% <dpml, —3m|<p<Ewl, —tml <1< 3ml
Two quadruplets {@, =, u, 1} and {@, %, 4, [}, with the same @, and
both satisfying (21), will belong to the same aggregate if and only if

there exists a unimodular automorph U of G such that

(22) (q—UTw)[m, (u,—VTp)/m' and (L,—1+#TUS)/m are integral,
4 denoting the quotient (4;— V7Tu)/m’. For a given matrix @, the set of
all triplets {s, u, I} satisfying (21) and (22) for some U, derived from a

given triplet {;, u,, L}, will be called a G-set.

THEOREM 6. Bvery set of simultaneous and primitive representations
of nonzero numbers m and m' by the real nonsingular n-ary quadratic form
@ and its adjoint ¢' is associated with a unique class of matrices G of order
n—2, and if we select a particular matriz G in this class, with o unique
G-set. One such set of representations obtains for every mairic G and accom-
panying G-set for which the matriz B constructed as explained above is
equivalent to the matriz of ¢.

If p has an integral matrix the possible values for &, x, u, [ are greatly
resticted. Then m and m’ are integers, B and B’ are integral, and » and u
are integral solutions of the congruences
(23) wx' = —@G (modm), pu’ = —F (modm’).

Here @ is an integral matrix of determinant m" *m’, and it suffices to
take one matrix in each of the finite number of classes (class being defi-

ned under unimodular transformations) of this determinant. The index
of G must be such that the direct sum of the matrices m, m—1¢, m'—id
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hags the index of 4. Also, F = d(AdjG)/m"™* must be integral. And the
genus of G must allow (23) to be golvable.
By (19,), w4 must satisfy the additional congruence

(24) Gy =0 (mod m'),

and for each pair of vectors x» and g, ! must satisfy
(25) I = Gu/m' (mod m);

and 21 is then determined as an integral vector by
(26) A= (le—Gujm")|m.

On substituting this expression for 4 into (19;) we obtain
(27 — T Gufm' + (ms—T)m’ = dm.
Hence x must also satisfy the congruence

(28) wTGufm’ = —md (modm'),

and ! must also satisfy

(29) P= —(dm+p"Gu/m')m’ (mod m).

Then s can be determined from (27) as an integer.

A simple situation occurs if m and m’ are coprime. Then no prime
factor p of m can divide all the elements of @. For else p would divide the
leading deferminant of order n—1 in B (in (14)), and hence p would
divide m’. For such a matrix @ the solutions » of (23) are primitive modulo
m, and (25), being equivalent to

b = — " pfm' (modm),
has the unique solution I= —»Tu/m’ (modm). This satisties (29)
since » g = ulx,
P=uTwuTum?®= —uTGujm* (modm).

For each suitable matrix ¢ we may consider the solutions » and
1 modulo m, and u modulo m’, for which the preceding systems of con-
gruences are satisfied and the associated matrix B is in the clags, genus,
or order in which we desire the representations. It then becomes neces-
sary to arrange the solutions in G-sets, or.at least, if the number of gets
of representations is sought, to find the number of triples in each G-set.
It might be surmised that if ¢ has a finite number % of unimodular auto-
morphs each G-set will contain u triples. This is not true in general, but
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fortunately any diminution in the number of triples in a G-set is com-
pensated by a corresponding reduction in the associated set of represen-
tations, in accordance with the following theorem (see [67]):

THEOREM 7. Let the represeniations & and 2’ be associated in the pre-
ceding algorithm with the quadruplet {&, %, u, I}. Let X, denote the subgroup
of wunimodular automorphs W of ¢ such thatWx = @ and W'z’ = z'. Let
X, denote the subgroup of wnimodular auwtomorphs U of G such that

(30) UTx = x (modm), U'Tp=p (modm),
wT (u—U'Tu)/m'= 0 (modm).

There is a one-one correspondence between the sels X, and X,.

Proof. Notice that in (30), » and x may be considered only module
m and m' respectively, and that it is not necessary to assume (21). For
if u is replaced by px-+m'z, where = denotes an integral vector, then
% (u—VTu)/m' is increased by (x7 —»" V1)~ which is divisible by m since
by (30y), as VUT =1I, »' =2 V' (modm). Hence, if (m,m’) =1,
(305) is a consequence of (30,) and (30,).

Congider Adjoint unimodular transformations T = (z Y 2) and
T = (2" X' #) replacing A and A’ by B and B’ (in (14)). If Wo ==
and W'z’ = z', then WT and W'Z" also have x and 2’ as first and last
columns respectively. By Theorem 4, WT' = TX, and hence X = T'WT
is a unimodular automorph of B, of the type displayed in (11). On forming
XTBX = B and X'TB'X’ = B’, we have (compare (14), (15), and (16))

(Bl) UTQU =6, %= UTut+ma, u=VTpgtm's, =xTUd= —mt.

Hence U. is a unimodular automorph of G satisfying (30).

Conversely, let UTGU = & and let (30) hold. Then we can define
integral vectors « and 8, and an integer ¢, by (31). The resulting integral
matrix X and ity Adjoint X’ replace B and B’ by the matrices in (15)
and (16), so far as they are explicitly shown; and these displayed parts
coincide with the corresponding parts of B and B’. However, the rest
of B is determined by the parts of B and B’ thus given and by the deter-
minant d, since BB’ = dI. Hence X is a unimodular antomorph of B,
and W = TX7T-! ig a unimodular automorph of A such that Wo ==
and W'e' = z2'.

This establishes the one-one correspondence. We do not need the
property, no doubt also true, that the correspondence is preserved under
multiplication.

The number » of elements in %, may be finite or infinite, but the
index, which we will denote by ¢, of X, within the group of all unimo-
dular automorphs U of @ is finite. Indeed, ¢ is equal to the number of
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incongruent triples- {x, u, 1} to respective moduli m,m', m in a G-get.

If the number # of automorphs U of G is finite, » = ve. If also the num-
ber w of automorphs W of A ig finite, then by Theorem 7,

(32)

1 number of distinet pairs Wz, W'z’ in a set &
v w w

If w is finite, the weight of the representation » and 2’ (by ¢ and ¢') is de-
fined to De 1jw. By (32), the sum of the weights of the representations
in a set (Wa and W'2') is 1/v. Now » ig finite, even though w may be
infinite, provided w is finite. It is consistent and natural to define the
weight of o set of representations (W and W'z') to be 1/v, if v iy finite.
This makes it possible for example to apply the preceding theory quan-
titatively to indefinite forms if the matrices G are definite.

In some cases our algorithm will associate a set of nonequivalent
matrices 4,,..., 4, with a set of nonequivalent matrices Gy,...,&,,
each @; being accompanied by one or more G;-sets. For example, if 4,,...,
...y 4; are representatives (one from each class) of a given determinant
d, then Gy, ..., G; will be certain matrices previously characterized. If
4,5...y A, are representatives of the classes of a genus, then G, ..., G,
will eonsist of the classes of one or more genera. Sometimes, not every tri-
plet of solutions {x, u, 1} of the system of congruences with @ = Gy will
be such that the matrices B constructed therefrom are in the prescribed
genus, and one must specify those solutions.

Let the numbers %; of unimodular automorphs of the G4 be assumed
finite (j =1, ...,5). Denote by A; (m,m’) the sum of the weights of
all sets of simultaneous and primitive representations of m and m’ by 4;
and 4j; and let o(G;) denote the number of incongruent triples x, u
agld U (mod m, m',m), obtained with & = G;, and such that the corres-
ponding matrix B is equivalent to one of 4,,..., 4,. Then, summing
up from (32), we have

8

h
D Aulm, 'y = 3 o(Gy) s

=1 j=1

(33)

If th-e.numbers Wiy ...y Wy, Of unimodular automorphs of A,..., 4,
are finite, then the left member has the form 37 A;[m, m'] Jw;, where
A4;[m,m'] denotes the number of simultaneons and primitive ropresen-
tations by A; and Aj. '

6. An example. Let n =4, d =3, and let -l
I @ denote f; = o} 422
42434 or f, = a,';+: 3+ 2 2 15, + 2%, which ([7]) are folrmszof
the two classes of positive classic quaternaries of determinant 3. Fach
of f,f. may be shown to have 48 wunimodular automorphs. The genera
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of f, and f, ave distinct, since clearly f; = 3y}+ 3%+ 345 +y; represents
no 3k-+2, and f; = 3y;+3y5-4 25— 20, ¥, -+ 25 represents no 3k--1.
We ghall agsume (m',3) =1, whence all gsimultaneous representations
will be by f, and f; if m’ = 1 mod 3, and by 7. and fs if m' =2 mod 3.
‘We also assume that m and m' are positive, odd, and relatively prime.

Let o denote the binary quadratic form of matrix @. The solva-
bility of #xT = —@ (modm) fixes the generic character (y|p) of y for
every odd prime p dividing m. We noticed above that no prime factor
of m may divide the four elements of G. By (18,), F' = 3 Adj &, |G| = mm'.
If m’ and u could have a common prime factor p,p would divide the
last determinant of order n—1 in B’, here equal to 9m. Since, for bina-
ries, @ and Adj G are equivalent, the solvability of uu™ = —F (mod m')
implies that ¢ is primitive also modulo m', and that (¢ |p) = (—3| p)
for every odd prime p in m’. Thus the generic characters of y are comple-
tely determined. It is necessary to see whether these generic characters
are congistent with the conditions for the existence of a binary quadratic
genus.

These conditions are here as follows. Write mm’' = p19....9, 28
a product of (not necessarily distinct) primes. If y is properly primi-
tive, the condition is that the product of the generic characters (v | p:)
shall equal 1 if mm’ = 3 mod 4, but (—1|y) if mm’'=1mod4. This
merely assigns the value of the generie character (—1 | y) if mm’ =1mod 4,
but in view of the preceding values of (y | p), imposes the condition

(34) (m']|8)=(—1|m), it mm’'=8mod4 and yis p.p.

If y is improperly primitive, the condition is that the product of the
symbols (}y | p;) shall equal 1. This reduces as follows:
if v ig i.p. (hence mm' = 3 mod 4).

(88) (m'|3) = (—1|m){2|mm’),

In particular there are no simultaneous representations of m and
m' by f, and f; if m = 3mod 4 and mm’' = 7 mod 8; and there are no
simultaneous representations of m and m’ by f. and fr if m =1 mod 4
and mm’ = Tmod 8.

Let h, denote the number of classes in the properly primitive genus
of determinant mm’ with the generic characters designated above, if
mm' =1 mod 4 or if (m'|3) = (—1|m); and let h, denote the num-
ber of classes in the similarly designated improperly primitive genus,
if mm’ =3 mod 4 and (m'|3) = (—1|m)(2|mm’). Also let g denote
the number of distinct odd primes dividing m and ¢ the number di-
viding m'.

Tor either of these genera there exists in the class of ¢ a form which
is congruent coefficientwise to —oi—mm'e*(modm’) and to —3t —
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— (man’[3) @ (mod m™). Then if »" and u7 ave given the notations (%, )
and (m, m,), (23) becomes

K=1, Ik =0, I =0(modm),

mi=0, mmy=0, m=9(modm’).

Hence k, hag 2° residues modm, while k, == 0; m, has 2° residues modm/,
while m,; = 0. Both (24) and (28) are seen to be automatically satisfied.

To sum up, there are 48-2°*" b, /u simultaneous and primitive repre-
sentations of m and m' by ¢ and ¢’ if mm’ = 1 mod 4, or if mm’ = 3 mod8
and (m'|3) = (—1|m). There are 48-2°*" (h-h,)/2 such representa-
tions if smm' =T7mod 8 and (m'|3) = (—1|m). There are 48 20+7yx
X hy[u such representations if mm’ = 3 mod 8 and (m’|3) = —(—1 | m).

Now, if & denotes the number of properly primitive classes of posi-
tive binaries of determinant mm’, then it is known that

2%hy it mm' = 1(mod 4),
- lz"““]hl it mm' =3 (mod 4);
and, if mm' == 3 (mod 4),
hy if
(2—(2 | mm))h, it

(36)

mm’ = 3
(37) hy = X
mm' > 3.

Also, % (the number of unimodular automorphs of @) is 6 if w is i.p. and
mm' = 3; 4 if mm’ =1; and otherwise u = 2.
The result stated in the Introduction readily follows.
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On Catalan’s problem
by

K. Inknrr (Turku)

1. Catalan’s well-known conjecture that 8 and 9 are the only two
congsecutive integers larger than 1 which are powers of other integers
would be proved if it could be shown that the Diophantine equation

1) a

—yt =1

has only the obvious solutions (x or ¥ = 0) for all pairs of prime num-
bers p and ¢ except for the pair p = 2, ¢ = 3, for which also # = + 3,
y = 2 are solutions. Up to the present this has been proved only for
certain special pairs p, q. The case p = ¢ is naturally obvious. Lebesgue
[6] has treated the case ¢ = 2 and Nagell [7] the cases p = 3 and ¢ = 3.
On the other hand the case p = 2 still awaits its final clarification,
even though certain strict eonditions have been presented. There is,
ag Oblath [9] has shown, at most one solution. If z, y is the solution,
then [5]

(2) 2 =0 (mod ¢*), y= —1(modg)
and (cf. e.g. [4]), in addition,
(3) 2% == 2 (mod ¢°).

As of the primes not exceeding 200183, [10], only 1093 and 3511 fulfil
(3), equation (1) is seen not to have a golution for a large number of pairs
2, q.

In this paper we limit ourselves to prime exponents p > 3, ¢ > 3,
of which at least one is of the form 4m+3 and present proofs for two
theorems which yield necessary conditions for the existence of a non-
trivial solution of equation (1) that arve similar to congruences (2) and
(3). As an application, we show that equation (1) is not soluble in non-zero
integers for a fairly large number of pairs p, ¢.
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