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On certain classes of positive definite quadratic forms
by
R. BrAUER (Cambridge, Mass.)

To L. J. Mordell on his 75th birthday

In the theory of representations of finite groups, positive definite
quadratic forms
,,.

1) Q(r) = Z%ﬂﬂiwy‘
1,5=1
with integral coefficients ¢;; play a role which satisfy the following con-
dition
(I) The form @ can be represented by the unit form in m > n variables.

In other words, we require that there exists an (mXn)-matrix D with
integral coefficients such that

@) 0=DD
where the prime indicates the transposed matrix.

We are interested in obtaining estimates for integers represented
by ©. We show

THEOREM 1. Let A be the largest elementary divisor of C. Let ¢ be a fimed
row of D. Then ¢ = AtC™* is a row ¢ = (@1y ...y 02) with integral coeffi-
cients and

3) ‘ Qr) < 4%

Proof. Consider the set M of all columns f of length m with coeffi-
cients in the ring Z of integers which satisfy the equation

D't =0.

Then M is a Z-module. Since ¢ was non-gingular, the rank of D is
n and M has dimension m—n. Form an mx (m— n)-matrix T whose
columns form a Z-basis of M and set

4) W =TT,
(5) A =DC'D', B=TW-7T.
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It follows from (2), (4) and D'T = 0 that

AD=D, AT'=0, BD=0, BI=T1T,
Hence

(A+B)(D’ I)=(D,T)

and since (D, 7') is & non-singular (m X m)-matrix, this implies that 4 +B
is the unit matrix I,, of degree m. If v is the 4th row of D and $ the ith
row of 7, we have
(6) 07 WIS =1,
Since A4 is the largest elementary divisor of O, the matrix 40~! has inte-
gral coefficients. It follows that the row ¢ = ArC~* has integral coeffi-
cients. By (6)

= A0 L A,

Since Ar = g0, we have At' = Oy',
10’ < 4%

This proves the statement.

THROREM 2. Let @ be o quadratic form which satlisfies condition (I)
and let A be the largest elementary divisor of Q. There exists a form Q* equi-
valent to Q@ such that the coefficients gy of the matriz (gy) of Q* satisfy the
conditions

" gl < (2,

The proof can be obtained in a fairly obvious manner from Theorem 1.
Choosing 7 linearly independent rows of D, we obtain = linearly inde-
pendent TOWS Iy, Iy, ...9 In With coefficients in Z such that

(8) QL) < 4*  for

Let N be the Z-module of all rows of length » with coefficients in
Z. We claim that we can find a Z-basis 9;,9s,...,9, of N such that

1=1,2,...,n.

9) L= 2 a; (A <i<n)
i<t

with coefficients a;e<Z which satisfy
(10) lay] < day;  for

We take a9, = r; where a,; >0 is the greatest common divisor
of the n coefficients of r;. Then Y, can be taken as the first element of
a basis of . Suppose that we have already found 7 — 1 elements Diyeeey Dacy
of a basis B of ¥ such that (9) and (10) hold for i < k. If h < m, let the
coordinates of 1, with regard to the basis B be given by (&1, &,y ...y &n)

Jj<it.
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Then &y &ntry -y &n cannot all vanish. Let az, > 0 denote the greatest
common divisor of these n—h+-1 integers. For j < &, determine g
as the absolute least residue of the division of & by au,

& =ap (mod arn);  an] < $laml.

1 7
O = o (Qh - Z O 1);)

i<h

Then

belongs to N. Moreover, the greatest common divisor of the last n—#a-+1
coordinates with regard to the basis B is 1. Hence 9, ..., 9; form part
of a Z-bagis of N. Clearly, (9) and (10) hold for ¢ = k.

Applying this for h=2,3,...,n, we obtain a Z-basis 9;,...,9,
with the required properties.

On solving (9) for y;, we have formulas

(11) 9= Z bals

k<t

1 <i<n)
with rational coefficients by,. Here

1 3 i—k—1
[biz| < E(_) for k<.

‘ 1
(12) by = <1, 2

Indeed, it follows from (9) and (11) that
Qs = Li— Zaiy‘ 2 byl
= ki

Hence by = az' and, for &k < 4
o
by, = — Z @by
7

with j ranging over &, k41, ..., 2—1. Since |ay| < %a;; by (10), we obtain
the second inequality (12) easily by induction.

Let Q(r,3) denote the bilinear form belonging to @, r, 3¢N. Then
(8) implies

Qs 1) < 4.
It now follows from (11) that
Q) < 3 Ibygbul 47 = 42 ( oy’
7t i<t
and now (12) yields
Qv:) < F)¥0.
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Then "
1Q9:, 9] < (@(0)Q (o)) < A2\
Since 9y, ..., 9, Was & basis of N, the theorem is proved.
We can apply the same method to the quadratic form Q* whose maitrix

is the inverse matrix ¢~%. If t,,...,1, are n linearly independent rows
of D, then (6) shows that

Q*(t) <1

In fact, if 8; is the row of T corresponding to the row t; of D and if

(i=1,2,...,n).

(13) u= Min (3,W8)

T=1,2,.,.,0
then

Q*(t[) Ql——,u, (’L‘=1,2,...7‘)’b)‘

We now have

THEOREM 3. If Q* is the quadraiic form whose mairic is the inverse
of the matriz C of @ in Theorem 2, then Q* is equivalent to a form whose
matriz g5 satisfies the conditions

(14) T
If w is defined by (13), we may replace (14) by
lghl < (L —m) ()

Let 8 be the quadratic form with the matrix W in (4). Then § is
determined by D up to equivalence. As shown by (4), S satisfies again
our condition (I); the number of variables in § is m—n. In order to have
complete symrmetry between @ and 8, we impose on D a further con-
dition o

(XI) The n-th determinant divisor of D is 1. This means that Q s re-
presented properly by the wnit form in m variables.

This condition is satisfied for the quadratic forms occurring in group
theory.

It follows from the manner in which 7 was congtructed that the
(m—n)-th determinant divisor of 7' is 1. Hence S always satisfies the con-
dition analogous to (IT). If D satisfies (IT), the columns of D form a basis
for the Z-module of columns with integral coefficients which are ortho-
gonal to the columns of 7. Hence the relationship between the classes
of @ and of § is reciprocal. We sghall speak of dual classes. We show:

THEOREM 4. If the conditions (I) and (II) are satisfied, the form  and
a form 8 in the dual class have the same elementary divisors different from 1.

(14
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Proof. Let p be a fixed prime and let R, denote the ring of local
integers for p. If we replace Z by R,, the elementary divisors of, say, ¢
are simply the powers of p which divide the elementary divisors of C in
the original sense. It will therefore suffice to prove the theorem in the
case that Z is replaced by R,.

If the rows of .D are taken in suitable order, it follows from (II) that
there exists an (nXn)-matrix V of determinant 1 with coefficients in R,

guch that
T
DY = ( ”)
A

where I,, denotes the unit matrix of degree n and where 4 is an (m—n) X n-
matrix. In R,, @ is equivalent to the form with the matrix

(15) 0, = V'OV = (DV) (DV) = I, +A'A.

On the other hand, if we work in R,, we may take

—4’
T = .
(Im—n)
Then (4) yields
(16) W= 7n—n+A-A,-

Let s be a positive integer. The number % of elementary divisors
of C, in R, which are divisible by p° can be interpreted as the maximal
number of columns i, ..., & With coefficients in R, which are linearly
independent modp and which satisfy

an Oyt; =0 (mod %)

(1=1,2,..., k). Set y; = Ar;. On account of (15), (17) can be written
a8 5;+A'y; =0 (mod p®). f we multiply with 4 and use (16), we find

(18) Wy; =0 (mod p°).
Suppose that we have a congruence
D) a9 =0 (mod p)
7
with coefficients a;eR,. Multiply with 4’. Since s > 1, it follows from
(15) and (17) that
Ay = A'Ay; = (0,—In)t; =—{; (mod p)

and we obtain Y a;; =0 (mod p). Now, t,...,1; were linearly inde-
pendent (mod p). It follows that all ¢; are divisible by p. Hence 9;,...,0%
are linearly independent (mod p). Now (18) shows that W has at least
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% elementary divisors in R, which are divisible by p°. By reasons of symme-
try, ¢, and W have the same number of elementary divisors which are
divisible by p°. Since this holds for every s > 0, the theorem now is evi-
dent.

We discuss briefly the application to the group theoretical case.
Let @ be a finite group, p & given prime and consider a p-block of given
defect d. Since the following results are trivial for defect 0, we agsume
d > 0. Let D be the matrix of decomposition numbers of B and let ¢
be the Cartan matrix. Then our. assumptions (I) and (II) are satistied and
(2) holds. We suppose here that an arbitrary basic set gz for the block B
is used (ef. [1]). Actually, the greatest elementary divisor 4 of ¢ is p?
and it appears only once, [2]. The number n of rows of ¢ is the number
of irreducible modular characters in B and then

(19)
cf. [3].

In [1], we noted that there exists a number y(p?) depending only
on p and ¢ and not on @ with the following property. If a suitable bagic
set pp for the block B is chosen, the coefficients of ¢ lie below y(p?) in
absolute value. As a consequence of Theorem 2 and (19), we have

COROLLARY 1. The function y(p%) for finite groups can be chosen as

y@%) = G p*.

The principal p-block B, is of special interest, i.e. the block which
containg the principal character y, == 1. The defect ¢ here is the expo-
nent of the maximal power of p which divides the group order. It is natu-
ral t0 subject the basic set pp in the case B = B, to the condition that
lepp. We have noted in [1] that there exists an expression y,(p?) de-
pending only on p and @ with the following property. There exists a basic
set with 1epp for which the Cartan invariants are at most equal to y,(p%).
‘We can use Corollary 1 to discuss y,(p®), but it is perhaps- easier to apply
Theorem 3.

If a row 8 of T was equal to 0, the corresponding irreducible character
z would vanish for all p-singular elements of &. In particular, y(s) = 0
for all elements ¢ # 1 of a p-Sylow group P of @. This implies that the
degree x(1) of y is divisible by the order of P and then x 18 of defect 0.
This case could be excluded. It follows that 4 in (13) is not 0. Then

(20)

n < p%

p=p

We first take gz as the set of modular irreducible characters =1
@2y vy @n il B = B,. If the first row 1, of D corresponds to the princi-
pal character of @, then

t =(1,0,...,0).

icm

Certain classes of positive definite quadratic forms 363

Now Theorem 3 shows that we can find a basis y, = Ty Doy -ey Dy of N
such that

(21) 1@ (96, 91 < (L—p~h) )+ 2.

Let ¥V = (v;) be the matrix whose rows contain the coordinates of
91y ..y 9y with regard to the original basis of N (eorresponding to
@1y P2y -+, Pn). Introduce a basic set p,...,p, of B by setting

n
vo= Dy (i=1,2,..,n).
J=1

Then ¢, = ¢, = 1. If C is the Cartan matrix belonging to this new basic
set, the coefficient in the ith row, jth column of s Q*(%:, v;). Apply-
ing Hadamard’s theorem on determinants and using (14*), we can give
an estimate for the minors of degree n—1 of 01 An easy computation
shows that each coefficient Eif of € is at most equal to

(22) c=(1 __p—d)n-l(;)an(n_1)/2(2)(17,-1)/2det o

in absolute value. Since p® was the largest elementary .divisor of ¢ and
since it occurs only once, we have

(23) det ¢  pAtir—DE-1),

On combining (22), (23), and (19), we obtain explicit values for ye(p%).
For instance, we can say

OOROLLARY 2. The fumction ,(p%) for finite groups cam be chosen
as

(24) P,

7o (p?) = (
We conclude the paper with the following remark.
TEEOREM 5. If the form Q satisfies the assumption (I) and if Q repre-
sents a form @, of determinant 1 in n, variables with 1 < ny < n, then @
i3 equivalent with the wnit form in n, variables. Moreover, n, rows of the
matr'z T vanish.
Proof. If @, has the matrix €y, there exists an (n X n,)-matrix V
with integral coefficients such that V'OV = (,. If we set D, = DV,

we have DD, = (. If d, ranges over the minors of degree n, of D,,
it follows that

(25) 1=det 0= > di.
Consequently, one of the d; is 41 while all others vanish. If we replace

@, by a suitable equivalent form, we may assume that I,, appears as
a submatrix of D,. Then (25) shows that the other m—mn, rows of D,
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vanish. Hence €, = I, . Since the columns of D, are orthogonal to the
columns of 7, it follows that n, rows of T vanish and the proof is complete.

We have already remarked that, in the case of quadratic forms Q
agsociated with p-blocks of positive defect of finite groups, no row of the
matrix 7' can vanish. Hence ¢ cannot represent a form @, of determi-
nant 1. In particular, @ cannot represent the number 1.
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On Epstein’s zeta function
by
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Dedicated to Professor L. J. Mordell
on the occasion of his seventy-fifth birthday

§ 1. Introduction and statement of results. The purpose of this
paper is to give detailed proofs of two theorems on the Epstein zeta func-
tion which were announced without proof by 8. Chowla and A. Selberg
about fifteen years ago [1]. The two results which they announced are
our Theorem 1 and a slightly weaker form of our Theorem 3. Our The-
orem 2 was not stated explicitly by Chowla and Selberg in their paper,
but they did indicate that they were in possession of a result of the same
nature as our Theorem 2, that is, one giving a good approximation to
the Epstein zeta function in the critical strip, particularly on or near
the real line.

Throughout this paper a, b, and ¢ will denote real numbers with
a>0 and d = b*—4ac <0, so that am’+dmn-+cn® is a positive defi-
nite quadratic form. The Epstein zeta function associated with this form
is given by
M Z(s) =14 (am*+bmnt o)~ (Res > 1),

where the stroke on the sign of summation indicates that the summation

i to be extended over all pairs (m,n) of integers other than the pair

(0, 0). It will be convenient to define a positive number % by putting
8 dae—b ¢ ( b )2

T4 4 @ 2a] "

As usual ¢ will denote the Riemann zeta function. We shall also require

the Bessel function defined for arbitrary » and |argz| < =/2 by

%2

() K, (2) = %f eBANT IR gy g fe"“’“h‘e""(lt = f e~*°%M gogh vt d.
0 —00 0

* This work was supported by the U. 8. Office of Naval Research and by
the National Science Foundation.
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