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Now the application of Lemma 3 gives

_ilz_M §-+a
|do(w, D)| < bis(lg@) for @>D" .

Since M can be chosen as an arbitrary positive number, we have thus
proved our theorem.
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On n-dimensional additive moduli and Diophantine
approximations
by

A. M. OsTROWSEI (Basel)

Introduction. By the famous Kronecker’s Theorem, if ay,...,a,
are linearly independent, any point in the n-dimensional unity cube

C 0o, <1) (»r=1,..,n)
can be approximated by a point

(poy—p) (=1,...,n)

for a positive integer p and integers p,. The question arises, how large
p must be taken if we want to be able to approximate any point of ¢
with the precision ¢. The answer depends on the ‘“degree of independence’
of the a,, defined as the function #(e) given for any ¢ 0 <<e<<1, by

7(s) = Inf |myay+ ...+ Moon-+ml,
where the integers mg, My, ..., m, satisfy the inequality

0 <Vmit.. . +md <1l

The first estimate of a bound for p was given by Landau [3]. A much
better estimate was announced (1925) by Thomas [4], whose bound has
the order of 6 "[7n(8); he gave also explicit numerical constants.

However, Thomas’ paper written up with unusual carelessness is
practically unreadable, as in particular its geometric part contains not
only considerable gaps in the argumentation but also evidently erroneous
statements ().

As I needed a corresponding result in another investigation I lost
some time trying to prove Thomas’ statements in his way and finally de-
cided to take up the geometric investigation of n-dimensional lattices ab

(1) In particular the formula on page 892: OP?_ = 0P+ o 0, P2 . which
appears out of the blue and is used in an essential way to obtain the final estimates,
is certainly only true in exceptional cases.
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ovo in order to clarify the geometric background of the whole situation.
This study of metric relations in an n-dimensional lattice turned out to
be quite rewarding — this is @ more or less new chapter in the affine ge-
ometry. The results of my diseussion, which could certainly be com-
pleted in several respects, are presented in the first sections §§1-6. In
§7 I apply this to derive a result corresponding to that of Thomas in
which however I make use of the Euclidean length in the n-dimensional
space instead of a different vector nmorm used by Thomas,

In this way, the numerical constants could be rather kept down.
What numerical constants come out if Thomas’ formulation and line
of proof is completely carried out, that I do not know and, in my opinion,
it must be left to Mr. Thomas to find this out.

The reader desiring to compare this paper with Mr. Thomas’ article
will easily see to what extent I made use of the ideas and lineas of argu-
mentation contained or hidden implicitly or explicitly in Mr. Thomas’
paper.

It may be finally observed that only a part of our results concerning
lattices is really essential for the proof of the Theorem 8 in § 7. As a mat-
ter of fact, only the Lemma 1 and the content of §§ 5, 6 need be studied
in order to get together the geometric results necessary for the §7.

§1. Two lemmata on matrices.

1. LeMmMA 1. COonsider am (nX n)matric A = (a,) with a, =0
(v > u) (a left triangular matriz with zeros along the diagonal). Then we
can find two matrices @ = (g,,), B = (g,) with integers g,, and g, =0

(v = u), with

(11) —i<en<}t (<up
and g, =0 (v > u), so that

(1.2) I+A = (I+6)(I-+B),

and the e, and g, are here uniquely determined.

2. Proof. For » =1 the assertion is obvious. We can therefore
agsume that the asserfion has been already proved for matrices of the
order < n.

Denote the matrices formed by the first n—1 rows and columns
of 4, @ and B by A", @™V, E™Y. then we have from (1.2)

(L3) IT+407) = (I4+@D)(1+8"Y)

and by our assumption g, and s,, from "~V and E®™ Y can be chosen

in & unique way conformally to the assertion of the Lemma, so that (1.3)
holds.
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3. Since the elements of the last column in (1.2) come out automati-

cally right, we have only to show, that the elements of the last row in
G and E:

In1 Gnz -o-

En1 Ena

Inn—1y

(1.4)

- Enn—1
can be uniquely chosen so, that we have

(1.5) Gy == Gyt Eny T+ 2 InoEar

ro<N

(»=n—1,n—2,...,1).

Now, for » = n—1 we have the condition
App—1 = Gnn—1+ Enp-1
and the integer g,, . can obviously be chosen so that
=} < o1 —Gnp-1 = Eapo1 < 3
4. Assume now that we have already dealt with (1.5) for » =n—1,
n—2,...,54+1 and obtained already in a unique way

gﬁ,n—ly “ry gn,k+1 3 En,n—l LIRS a'n,k-(—l'

Consider the equation (1.5) for » == k. Then the expression

8= 2 InoEok

k<ac<n

can be considered as already known and our equation is reduced to
a’nk—S = gnk+ Enky

from which g,; and &, can be uniquely determined corresponding to our
conditions. We see that all unknown (1.4) can be found in a unique way
and the Lemma 1 is proved.

It need hardly be mentioned that a result completely corresponding to
Lemma 1 is also correct in which we replace the left triangular matrices of
this Lemma by the right triangular ones, and the proof is essentially the
same. From this it follows immediately that the statement of the Lemma 1
remains true if we interchange the right-hand factors in the decomposi-
tion (1.2). Of course, the matrices &, ¥ are then in the general case dif-
ferent from those in the Lemma 1.

5. The second Lemma will be formulated and proved for general

matrices, while the special result about triangular matrices needed in
the following will be stated in the Corollary to the Lemma 2.
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We remind the reader that for a general (m X m)-matrix 4 (
its Frobenius norm, F(A), is defined as

(1.6) F(4) = I/%I“MV

a’/‘") ?

and has the property that if the product AB of two matrices A, B exists,
then

(.7 F(AB) < F(A)F(B).

We will consider a (7a>< (k4 m))«matrix B (b,). For such a matrix
the square root of the sum of the squares of the moduli of all minors of
B of order k will be denoted by |B]|.

Lemma 2. Consider the (kx (k- m))-matriz of the form
Gyy eve G Uyy oo Ugm
(1.8) B=| ...... . ... ... = (4, U)
Opy  een Qpgg Upy oo Upy

where the (kX k)-matric A (a,;) has o determinant |A|£0 and U (u,;) is
a (kX m)-matriz. Then we have

]
1.9 F(B i
(19) (B) < FA).

6. Proof. Denote by § the inverse of A. Then, passing from B to
8B, all minors of the order % of B are multiplied by |S|, so that

(1.10) 1SBI| = |8[-]B]|.
On the other hand, put
(1.11) BU=V={(v,) (e=1,..,k pu=1,...,m).
Then we have
10 ... 0 vy Vym
(112) SB=|..... ... .......
0 0 ... 1 g oo Vg
‘We need only to compute some of the minors of the matrix (1.12).
For the combination of the column indices K = (1,2, ..., %) the corre-
sponding minor iz = 1. If we delete in the combmatlon (1 2,...,k)an
index x» and add at the end the index k-, the correspondmg mmor be-
comes (—1)**,,. We have therefore

14 D0t = 1+ P(V) < [SBIf = ”i“:.

On n-dimensional additive moduli 395

On the other hand, we have from (1.11) U = AV and therefore
F(BY = F(A)+F (U} < F(AP(1+F(V))
and (1.9) follows immediately.
7. We specialize now the matrix B in (1.12) to the matrix

/a,1 @y oer Oy Uyy oeee Uim )
0 ay, ... Gop Us ... Uy,
(1.13) B, __\ ;
|

\ 0 0 ap,  Ury Um |

where the a, and a,, satisfy the relations

(114) |a]>1 (e=1,...,k); |oal <klad (x=1,...,k; A=x+1,...,k).

In this case F(A) is

N —1 . E—2 2
< 1a,11-(1+——-) + |a2|-(1+ —‘1—-)+..‘+ |axl

<3 o< ’“Z .

x=1

{1.9) becomes now

[anl"‘
P(B,) < k=——| B[’
@y .ol
and using (1.14) we obtain now
(1.15) F(By) <E|B.

It follows the

COROLLARY TO THE LEMMA 2. If the matriz B of the Lemma 2 is in
particular o matriz B, in (1.13) satisfying (1.14), we have (1.15).

§2. Additive vector moduli M. DG},

8, We consider in what follows a set M of points (or vectors) in
the n-dimensional real space R", for which the difference of two elements
of M belongs again to M. Such a set will be called a k-dimensional addi-
tive vector modulus if it contains % and not more than % linearly inde-
pendent vectors.

The length of a vector P, that is the distance of the point P from the
origin, will be generally denoted by |P|. The distance of a point P from
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a set § will be denoted by the symbols |P, 8] = |§, P| and correspondingly
the distance of two sets of points, 8y, 8,, by 18;,S,|.

If L is the symbol of a linear manifold in " we consider I also ag
the symbol of an operator reducing » point or a set to its orthogonal projec-
tion on L. A linear manifold in R™ spanned by points of M will be called
rational in M.

9. If Py, ..
of vectors

.y Py are k linearly independent vectors in R™ the set ¢

(2‘1) .(jL—Pl'I_"'—]—gIDPIu

where g, ..., g run through all integers, is a special k-dimensional addi-
tive veector modulus, which is called a k-dimensional lattice. Bach k-di-
mensional additive vector modulus contains k-dimensional lattices.

If the lattice @ in (2.1) is formed by the independent vectors Py ..., Py,
they are called a base of this lattice; the parallelepipedon O, formed by
the vectors Py, ..., Py, is a cell of @. Adding to ¢, all vectors from G we
obtain the set of parallelepipeda which form the complete net of cells of @,
corresponding to the choice of the bage P,,..., P;. These cells have no
inferior points in common and cover completely the whole %-dimensio-
nal manifold spanned by Py, ..., Py. The length of the greatest diagonal
of 0y, that is its diameter, is called the diameter of the base Py, P
The volume of (, is an. invariant of the lattice; it is called the determinant
of @ and we will denote it by 4(&). From now on, let M be an n-dimen-
stonal additive vector modulus.

10. For ¥ =0,1,...,n—1 we put(?)

(2.2) Dl = Sup|M—1%, I¥| = Sup _Tnf |P, I,

L) pear—z(%)

where 1:,(’“) runs through all k-dimensional linear manifolds (for % = 0:
points) in R*, rational in M. We write in particular

(2.3) Dy = DY

and call Dy the free radius of M.

) () In the following formula and in what follows the difference 4B, where
B is a set GOlnSiStiIlg of more than one point, is to be understood in the aat-t’heoretia
sengse. A—B is obtained from 4 by suppressing all points which algo belong to B.
On the contrary, if @ is a point, the difference A—@Q is to be understood in the uecto-.

rial sense. A—Q is obtained fr I :
veotor Q. Q om A by subtracting from every point of 4 the

icm°®
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Clearly there exists for each ¥ = 0,1, ..., n—1 a sequence of points
P® of M and of linear k-dimensional manifolds I, of R" rational in M,
80 that

(2.4) POy I, DY =Ilim |P?, L.

11. Let @& be an k-dimensional lattice contained in M, € a cell of G
and D, its diameter. Then, without changing the values of |P®, I,| in
(2.4), we can assume that the foot of the perpendicular from P® on I,
in (2.4) lies in ¢ and that therefore P® lies in the sphere around a point
of ¢ with the radius 2D,. We can therefore assume further that in (2.4),

(24) PPy, L, Ly,
where L, is a k-dimensional linear manifold having points in C.

It follows in particular that all D2 are finite.

12. It DY) is positive, M is called discrete, otherwise dense. If M is
dense, then every point of M is an accumulation point of this set. We
are going to show, that if M is discrete, then M dis a lattice ().

Let Py, ..., P, be n linearly independent vectors from M. Then every
vector P from M can be written in the form P = , P,+...4+x,P, and
the vectors in the cell ¢ formed by P, ..., P, have the coordinates
@y, ..., %, between 0 and 1. From DY} > 0 follows that the number of
vectors from M in C is finite. Since the coordinates z, can be arbitrarily
varied modulo 1 without P getting out of M, all », must be rational, as
otherwise, taking the multiples of a point of M with an irrational coor-
dinate and reducing modulo 1, we would obtain an infinite number of
different vectors of M in €. The common denominator of the coordina-
tes of the vectors of M in C, N, is then the common denominator of all
coordinates of points of M.

13. Let now a; be the smallest positive value of the coordinate
corresponding to the points of M and P; a point of M with this coordinate.
Then all x,, corresponding to the points of M are multiples of a,. This
proves already, in the case n = 1, our assertion. We can therefore assume
that this assertion is already proved for all smaller values of #.

Every vector of M can be now written in the form yP;+P', with
an integer y and a P’ from M, the first coordinate of which vanishes and
all other coordinates are multiples of 1/N. These P’ form therefore an
additive (n— 1)-dimensional modulus (in the E"~* defined by 2, = 0)
which is discrete and for which our assertion can be assumed ag proved.
All these P’ can be therefore represented as linear forms with integer

(3) This result is known. See Cassels, [1], pp. 78-80.
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coefficients in n— 1 of them, and we obtain for the general vector from M
the corresponding representation, as asserted.

For a lattice formed by the » independent vectors Py, ...,.P, every
D% is positive and at least equal to the maximal height of a cell C, since,
if this height corresponds to the (n—1)-dimensional face of 0, we can take
I® lying in the (n— 1)-dimensional linear manifold through this face.

§ 3. The structure of dense moduli.

14. Assume now that M is dense. For a given ¢ > 0 let ¢, be the
greatest number with the property that there exist in M ¢, independent
vectors Py, ..., Py, with [P,| <& (% = 1,..., ¢,). Denote by L, the linear
manifold spanned by Py, ..., P, . L, obviously depends only on ¢ and
not on the choice of the vectors Py, ..., Py,. If & > ¢ > 0, then obviously
L, c L, ¢ < g, With £ 0, the ¢, tend to an integer ¢ >1 and are,
from an e = g, on, all equal to ¢, while Z, for ¢ < ¢, is a constant ¢-dimen-
gional manifold Z,. Denote the set of the points of M in L, by M*. Then
M* is a g-dimensional additive vector modulus and, since there exist in
M, to any &> 0, q independent vectors Py, ..., P, with [P,]+...+-|P,] <e,
the lattice formed by these vectors has cells of diameter < e. It follows
that M* is everywhere dense in L,. The number ¢, the dimension of M*,
will be called the density dimension of M.

Two vectors of B" the difference of which belongs to M™* will be called
congruent modulo M*.

The g-dimensional linear manifold spanned by the points of M™*
will be called R*. The (n— g)-dimensional linear manifold through the
origin orthogonal on E* will be called E. The orthogonal projection of
a point P or a set § of points from R" upon R will be denoted resp. by
P, 5. The projection. of M upon R, M, is again an additive vector mod-
ulus (in R).

15. Introduce an orthogonal system of coordinates, u,...,®, in
R" so that the manifolds R* and R are resp.
By= .. =0 =0, @y gy=..=0,=0.
‘We prove now:

a) M is (n— gq)-dimensional. Otherwise all points of H would satisfy
an equation of the form
. n—gq

a,z, =0
v=1
and the same equation would hold for all points of M, while M is n-di-
mensional.

b) I is discrete. Otherwise there would exist in M , for every ¢ > 0
a vector P 50 with the coordinates #(® (» =1,...,n—g) such that

icm
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2" <& (v =1,...,m—gq). The coordinates of a corresponding vector
P from M may be o,..., a0 o &y gi1y..., @, Since M* is everywhere
dense in R* there exists in M a vector P’ =P (mod M*) with coordi-
nates o, ..., a0 ; 20401, ..., 2 such that all |z are < c. As P’ les
outside of R*, the density dimension of M would be > g.

Let now Py, ..., P,_; be a base of # and P, ..., P,_, a set of points
from M congruent to the P, (mod 3*). Then the points P, (v =1,...,
n—¢) have the property that every point P of M is congruent mod M* to
a linear combination of these points:

n—q
Al
Z oP,
v=1
with integer coefficients o, which are uniquely determined by P, as soon
as the P, (» =1,...,2—¢) are chosen. We have therefore

n—q
P= _2 oP,+P*

where the integers o, and the element P* of M* are uniquely determined
by P as soon as the P, (v =1,...,n—¢q) are chosen. Such a system of
n—q points P, from M ig called a base of M relative to M™.

16. We are now going to prove the

Levmwma 3. We have in the notations of the section 10, if ¢ is the density
dimension of M,

DH =0 (k=0,1,...,¢—1), D@ = DY,

(f =q+1,...,n—1).

(3.1) G s
DY > D

Proof. Let L be a k-dimensional linear manifold from R", rational
in M, and @, a point of M from L.

Subtracting , from all points of L we obtain a manifold I’ containing
the origin. Since this operation does not change M, we will only, in the
discussion of DY), consider the manifolds I containing the origin.

Now, if L does not contain the whole M*, any neighborhood of the
origin contains points of M* not on L, and we see that |L, M —L|
< |L, M*—L| = 0. This proves in particular that D¥ =0 (¢ =0,1,...,
e q—1).

17. Assume now that L contains M*, and therefore R*. If k¥ =g,
obviously L = R*, We have therefore

D@ = Inf

PelM - M*

P, B*I.
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Projecting here P and B* upon R, we have |P, R*| = |P, 0| = |P|,
and therefore -
D@ = Int |P|.
PeM— M*

On the other hand, if P runs ‘uhxl)ugh M —M*, P runs through M,

excluding the origin. But then Inf|P| = D(;?)’ and we gee that indeed
0

DY = DY, o

18. From now on we assume that & >¢-1. A general point P of
J—I may be the projection of a point P of M. If P were e L, then P
would be « L. Therefore we would have Pe M —L. The foot of the perpen-
dicular from P upon L may be denoted by F. Then the projection of
the segment FP upon L is the segment FP, so that

0 < |FP| < |FP| = P, L} < DY
On the other hand |FP| > |P, L|, so that

\P,L| < DY, |M-L,L|<DY

and therefore

D& = sup |M-L, L) < Dy
I

(8.1) is completely proved.
§ 4. Bases of sublattices.

19. TuvmA 4. Let M be an n-dimensional lattice and A a sublattice
of M of dimension k. For a certain constant K (M) depending only on M
there ewists a base of A, P%, ..., PE, satisfying the inequality
(1) VIPIP+ .+ [PEP < E(M) 4(4).
Proof. Let P, (u =1,...,n) be a base of M. Introducing an ortho-
gonal system of coordinates in R", let generally the coordinates of the
point P, be Z,, ..., B The (n X n)-matrix (z,) may be denoted by X.

For each fixed k =1,...,n we consider all minors of the order k
from the inverse matrix X-* of X and form the square root of the sum of
their squares. This is T%.

In particular, T;' is the modulus of the determinant of X. Ty is
also, as is well known, the volume of the parallelepipedon formed by
Py, ..., P,, 80 that T, = A(M)~".

20. A base P%, ..., P; of A can be expressed linearly with integer
coefficients in terms of P,,...,P,. This base can be transformed by

icm°
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2 well known procedure in such a way that we have, interchanging if
necessary the order of the P,,

k n
Pl =alt D' aPt D a.P,

(4.2) (r=1,..,k)
v=x+1 v=k+1
with the matrix B,:
/ ay Gy Ay Ay k1 A1n \
[0 a, Qa: Qg er1 Qo |
(4.3) B, = o .
\ ................. }
100 G Okgir oo On /

The @, are here positive integers,
particular the relations

(4.4)

the a,, are integers satisfying in

!a’ml < %a’k

To obtain a convenient inequality for |B,| we use the (k-dimen-
sional) volume A4(A) of a cell of A.

(» <» <k).

21. Indeed, we obtain the volume of the parallelepipedon formed
by the P} in the following way:
Denote by K the general combination

(4.5) o= (py ey i)y < po < oo < pimy

of & among the n elements (1, 2,...,n) and denote by Bx the determi-
nant formed by the corresponding columns of the matrix B,.

The minor of the order k¥ of the matrix X corresponding to the rows
with the indices of the combination K (4.3) and the columns with the in-
dices' of the combination K’ (v, < v, < ... <) Inay be denoted by
XKK,Z

PR .

—.‘..-...‘.

Ty |

Xgx
By o+

Denote the coordinates of the vector P} in (4.2) bY ¥, ... Yxn and
by Yx the minor of the matrix ¥ = (y,,), corresponding to (4.5):

Yy -

Yy,
Yi
¢ ’ykl‘l e yk“k
Then A(A)is V3 Y.
K

Acta Arithmetica IX.4 2%
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22, The set of combinations (4.5) may be denoted in an. arbitrary
but fixed ovder by Ky, ..., K oy Then. we have

()

(4.6) YK” = ZXKHKvBKv (p = 1,..., (72));
p=1

where the X KK, form the k-th compound X ® of the matrix X. This com-
pound matrix i non-singular, since the determinant of X is 0.
Solving (4.6) with respect to the Bg we obtain
(%)
By, = Z Uk, Y,
H==1

where the matrix ( "K‘K,) of the order ( ') is the kth compound of the ma-
trix X-1. But then we have from (4.7)

(&

Sk, <( 3 v

r=1 v, p=1

(4.7) =1, ()

(n

)37

Here the last factor is 4 (4)? while the first right-hand factor is the
square of the expression T introduced in the section 19.
Thus we obtain
(%)
< TRA(4),

p=1

or, observing that the left-hand sum is, in the notation of the section
5, |1Bdl*

(4.8) 1Boll < T5d(4).

But in our case the matrix B, in (4.3) has the form of B, in (1.13)
if we identify the w,, with the a,;,, and use (4.4). Applying (1.15) we
have

(4.9) F(B,) < kT 4(4).

Further, the left-hand expression in (4.1) is F(Y) and since ¥ = B, X,
we have from (4.9)

(4.10) F(Y) < F(X)F(B,) < kT3 F(X) 4(A)

and this is (4.1) with K(M) = kT, F(X). The Lemma 4 is proved.
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23, LumMA 5. For an n-dimensional lattice M and o k-dimensional
linear manifold L, rational in M, assume that we have for all points P of
M—L

(4.11) P,L|>D (PeM—I).

Then if @, s a point of M in L, the intersection of M and T can be writien
in the form

(4.12) ML = Qy+4

where A is a k-dimensional lattice and has a base P%, ..., Py such that,
for a constant ¢(M) depending only on M, we have
(M)
Dn -k *

24. Proof. Without loss of generality we can assume that Q, = 0,
a8 we can replace L by L—@,. We have to derive an estimate of A(4)
in order to be able to use the Lemma 4. Consider a base V,..., ¥V of
A and the cell ¢ formed by these % vectors. Then ¢ has one vertex in the
origin and the opposite vertex is W = V,+...+Vy. All 2% vertices of
( lie on the boundary of ¢ (the boundary with respect to L), while there
are no points of M in the interior of ¢. Consider now the “doubled cell”
0* obtained from C by (2: 1)-dilatation from the origin. C* is a k-dimen-
sional parallelepipedon formed by the vectors 2V,,..., 2V:. It has in
its interior from the lattice M only the point W, while all other points
of M belonging to C* lie on the boundary of C*

25. Translating now ¢* by —W we obtain the parallelepipedon 0*—W
which has the origin in its interior and is symmetric with respect to the
origin, but does not contain any other points of M in its interior. Applying
therefore a dilatation from the origin in the ration (1—e): 1 we obtain
a k-dimensional parallelepipedon

F=(1—e)(0*—W),

(4.13) VIPIP 4.+ PP <

which is symmetric with respect to the origin and does not contain any
points of M save the origin. For its k-dimensional volume [F| we have

(4.14) |F| = (1—e)f2%4(A).

26. Through each point P of F we consider the (n-—k)-dimen-
sional linear manifold orthogonal on L, E(P), and consider the points of
E(P) in the distance <D from P.

The set of all these points forms an n-dimensional convex body
F* which lies in the Riemannian product of F and the (n— k)-dimensional
sphere around the origin with the radius D, ®%~M:

F* = Fxogh,
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For the n-dimensional volume |F*| of ¥, we have
(4.15) |F* = || |05 = (1—e)*2*4(4) o D",

where g,_; is a positive constant (*).

27. On the other hand, it follows from (4.11) that F™* does not contain
any points of M save the origin. By Minkowski’s Theorem we have
therefore

|| < 2"A(M),
and, using (4.15), obtain
=t 1 A(M)

A < s
R e Ry =

and finally for =) 0

o ( M) 2n—7c

(4.16) 4(4) < op (M) =

ks - A(M).
! o (M)

Since ¢y (M) has, for a given lattice M, only a finite number of dif-
ferent values, we obtain, introducing (4.16) into (4.1), the estimate (4.13)
and the Lemma 5 is proved.

§ 5. Relations between the D).

28. Levma 6. Let, for a fized & =0,1,...,n—1, L be a k-dimen-
sional linear manifold of B*, rational in M. Then, if M is a lattice, we have
for a convenient point Py of M—1L:

(5.1) D=|M—L,L = Inf |P,L|=|P, L, PyeM—L.
PeM—L
Proof. Since the points of M lying in I form a discrete k-dimen-
gional additive modulus, this modulus is a lattice and I is covered by

the net of congruent parallelepipedic cells of diameter A. By definition,
we have for a sequence of points P, from M —L:

(3.2) D4+1>D,=|P,,L|+D, P,eM—L.

29. Denote by F, the foot of the perpendicular from P, upon L and
assume that F, lies in the cell O, of I:

PF,{\ L, F,eC,.

Denote by 0* a fixed cell of the lattice M. Then we have for each
v & vector V, from M so that F,—V, lies in C*. Denote by U* the set of

() As a matter of fact we have gu_x = 2nC—012/[(n— k) ['((n—T)/2)].
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all points of R" which have from the points of C* a distance not
greater than Max (4, D+1).

30. U* contains obviously only a finite number, say N, of points
of the lattice M. Then the points P,—V, lie in U* and. the same holds for
the set of points C,—V,.

On the other hand, we have obviously, as C, = L,

(8.3) D, =P, F,| =P, (| =|P,—V,,C,—V,].

But here P,—7V, is a point of M lying in U* and belongs therefore
to a finite set of N points.

On the other hand, 0,—7, is a k-dimensional parallelepipedon with
vertices belonging to M and to U*, so that there are only a finite number
of different among these 0,—V,. We see that the D, in (5.3) can only have
a finite number of different values, and it follows now that in (5.2) we have
from a certain » on the equality |P,, L| = D. The Lemma 6 is proved.

31. We can now prove the

THEOREM 1. Let M be an n-dimensional laitice. Then for every k
=1,...,n—1, there exists a point P® and o Uinear k-dimensional mani-
fold L® from R", rational in M, so that

(5.4) DY = p® 1M, PR M—L®,
Proof. We have, for any fixed %, by definition (2.2)

(5.5) i D® — Lim Inf |L,,P|,
v—c0 PeM—L,
where I, runs through certain k-dimensional linear manifolds from R",
rational in M.
Observe that for any @, from M we have

Ly, P| = |L,~Qy; P—Qol, Inf |L,P|=  Tof |L,—Qq,P|.
PeM~L, PeM—(L,~Qg)

We can therefore agsume, without loss of generality, that in (5.5)
all I, contain the origin. Further, since DY) >0, it can be assumed
that for all L,, » =1,2,...,

Inf |L, P|> D =3D§.

PeM—L,
32. But then, by the Lemma 5, the sublattices ML, have each a base
P, P satisfying (4.13). The vectors P:¥ belong to M and as

M is assumed to be a lattice and therefore discrete, there is only a finite
number of possibilities for the vectors Pj.
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We can therefore assume, replacing the sequence L, by a conve-
nient subsequence, that all bases Pi®, ..., Pi®) are the same. But then
the L, must coincide with a fixed linear manifold L, and we have

D = Int
PelM-Ly

12y, P|.
And now the assertion of the Theorem follows immediately from the

Lemma, 6.

33. We are now going to prove

THrOREM 2. We have for any additive n-dimensional vector modulus
M and for any k <n—1:

(5.6) DR <VIDGEY (0 <k < n—2).

Proof. We can assume that D} is positive. Put DG = D, DU+ = D*
and choose an arbitrary positive 6 < D. It ig then sufficient to prove
(8.7) (D*+8)" = (D—6)'— KD+ 6)°

gince for 4] 0 (5.6) follows immediately.

Choose the k-dimensional linear manifold L through the origin so
that

Dz|M—L,Li>D-—$§
and a point P, of M —L so that
Py, L| < |M—L, L|+ 6 < D+ 4.
We can then write for a @ from L and a veetor = orthogonal on L:
P,=a+Q, =mlL, QL.
Then obviously |P;, L| = |=| and therefore
@] < D4+4.

34. Let L, be the (k- 1)-dimensional linear manifold spanned by
L and P,. Then there exists in M —1L, a point P, such that

\Ps, Ly} < D*4-5.

(5.8)

P, can be written, for a point @, of I, a vector n, orthogonal on I
and a scalar ¢ in the form

Py = a,+an+Q,,
For an integer g we have

7 Ly, QL.

Py—gP, = T+ (a—g)n+Q,—gQ.

icm
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Integer g can be chosen so that |a—g| << . Then, putting ¢ =a—y,

Q. = Q1—99:

(5.9) P* =Py—gP = my+em+Qs,
Further, since P, lies in L,

(5.10) |P¥, Ly = |Py, Ly| = || < D*46.

Quel, o] <3

35, Let now E be the 2-dimensional manifold spanned by = and =z,
which is orthogonal on L. Applying to (5.9) the operator ¥, that is pro-
jecting on B, we obtain

EP* = Exn,+ceBa-+EQ,
and therefore, as # and =, lie in E, while @, is orthogonal on B:
BP* =z, t-em.
It follows further, since = and =; are orthogonal:

(3.11) |EP*? = |af 4 & |,

But here the right-hand expression is, by (5.8), (5.9) and (5.10)
< (D46 +4(D*+6)*, while |EP*, by (8.11), is >0 and therefore

|EP* = |P*, L| = {M—L, L| >D—3é.
(5.7) and our Theorem is proved.

§ 6. Reduced base of a lattice.

36. It P,,..., P, is a base of an n-dimensional lattice M we can
obtain from this base by the shearing reduction (Erhard Schmidt proce-
dure) a system of m orthogonal vectors =, in the form

1

(6'1) 975”=.P“+2(Ir;wP,, (leﬂ""'n)
y=1

or, introducing the triangular matrix A,(a.), =0 (v = u),

(6.2) (7517--';77:11,),=(I+A0)(P15'-':P'n)”

where the a,, are uniquely defined, as soon as the order of the P, in the
base of M is fixed.

The 7, are a base of R" but not necessarily one of M since the a,,
need not be all integers. However, a base of M which is a kind of ““appro-
ximation” to the base (), can be constructed in the following way.

37. Taking

(6.3) (T4 =I4+4, A= (4,
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where 4 is again a left triangular matrix with zeros along the main di-
agonal, we use the decomposition of the Lemma 1,
(6.4) I+A = (I+@)(I+5).
The inverse of I4@,
I+G = I—-G4+GF —@F 4 ... (— 1)@ !

is again a left triangular matrix G, = (g) with integer elements and zeros
along the main diagonal. From (6.2), (6.3) and (6.4) we have now

(ITHGo)(Pyy ovvy Pu) = (I+B) (71, ..., Wn)
or, putting (Py)’ = (I+Go)(P,)":

=1

(6.5) Pi=Pu+ D g0P,  (p=1,...,n):
y=]
-1
(6.6)  Pl=mt Dewm, ln <P (<p=1,..,n).
w=1

By (6.5) the (P}) form a base of M. We call this base the reduced base
of M and the base (m,) the reduced base of R", corresponding to the base
(Py).

For every k, k =1,...,n—1, denote by

(6.7) Lkz'(OaPU"-:Pk)=(07-P);r"':

%) = (0, Tyy ooy My)
the linear %-dimensional manifold spanned by the k-1 points 0, Py, ..., Py.
As follows from (6.5) and (6.6), ILj is also spanned by the points
0,P%,..., P} and by the points 0, 7y, ..., m.

AS 7y, is orthogonal on Iy we have from (6.5) and (6.6):

(6.8)  [Piyry Ll = |Pryay Lyl = |mweyr, Lnl = |7ep) (B=1,...,n—1).

38. We construct now a base of M in the following way. As P, we
take & point of M for which |P,| = D}, that iz which has of all points
of M, distinet from the origin, the minimal distance from the origin.
L, we define as the line through 0 and P,. As P, we take a point of M —IL,
for which |Py, L,| = {M—Ly, L;|. That such a point exists in M, follows
from the Lemma 6.

As L, we define then the two-dimensional linear manifold through
0,P,, P,. Then P is defined as a point of M —L, for which |Py, L,| is
[M—Ly, L,|. And in the same way we go on, so that I, is defined as
the k-dimensional linear manifold through 0,P,,..., P, and the Pj,,
as & point of M—L; for which |Py,,, I| = | M—1IL,, L,|. The last point
P, is then a point of M —L,_, which has the minimal distance from Lp_s.

icm°
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39. We show first that the points P, form a base of M and more
generally that the points Py, ..., P, form a base for the k-dimensional
lattice MIL;. This is clear for k¥ = 1, since otherwise there would be on
the line through 0 and P, a point of M which is ¢P, with a non-integer 1.
But then the point tPy—[t1P, = (t—[t])P, would belong to M and
would have the distance (t— [¢])|Py| < |P,| from the origin.

Aggume now that our assertion has been already proved for a k& < n.

Then every point P of ML, can be written in the form
(6-9) P = tPlc+1'|“t1»P1+ v 4Py = tPIc+1+Q’

where Qe L. If ¢ were not integer, the point P' = P—[t] Py, would also
belong to MLy,,. On the other hand, we would have

P = (t—[t])Pri1+ @,

which contradicts the definition of Py.;.
We see that £ is an integer so thatb

]P,) Lkl = (t_' [t])IPk+17 Llcl < ]Pk+1, Llr|7

P—iP, = t,Py+ ...+ 1Py

is a point of M and therefore also of ML,. But then the ?, must be inte-
gers and in (6.9) all coefficients are integers so that (Py, ..., Prs1) 18 2 base
of MLk-]-l-

Our assertion is now proved by induction.

40. Torm now by the procedure of section 37 the reduced base (P})
of M and the reduced base (m,) of B*. By definition of the P, we have
\Pri1, Ll <D and from (6.8)

il <DED (b =1,...

sinee for & = 1 this follows directly from the definition of Py = P} = m;.

On the other hand, using Dy as defined in (2.3), We obtain from
(5.6), DY <y "Dy and therefore

(6.10) o <VE "Dag (w=1,..,m)

41. From (6.6) and (6.10) we have further, putting
w = Vg;

(6.11)

3
5 =15,

for u =1,...,n:

fe—1

-l "

1 1 8—94

<urrl St = w“(af‘+—2~ > 6”) = " (6‘ +5° 773
w=1

p=1

Py
Dy
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n—-1

and, dividing on both sides by #»"™" and using wd = 1:

=4 |7
6.12 e P Ll S ¥ 1 )
( ) wn o7 D]!I = L ] d 20 (/L P l).
We compute now
N
5 - \Nr ‘ 1172
(6.13) ~ ,_2 [1-+(1-28) 8]

and obtain

"
U= 2 [1-R2(1—20) 0" - (1—268) 62
A
1—o" 1 SZM
= 2(1— ~—o B s
n+2( )Ty T2t

The last right-hand term becomes, using 1—-46* =}, (1—26)

-——=4(1~6) and (6.11), 16(1—48)(1—6&"). The second right-hand term
is
1— 4"
2(1——25)(1%-5)—-——6;* — 4 (14 26)(1-— ")
and we obtain
U =n—4(1+28)(1—5")+16(1L—8)(1— &™),

(614) U =nt+f(8"), flo)=—410+28)(1—0)+16(1—)1—2".

42, The polynomial f(x) has its derivative
f'(@) = —82(1—8)a+4(1+28) = —32(1—0) (m—- __*.“_ﬂ),

where the root of f' (),

1+28 14388424
8(1—108)

_ 54338
81—6) 4

>1,

50 that f(z) monotonically increases for z < 1 and we b
ave f(w 1) =
for # < 1. Tt follows now from (6.14) th\a.t T <1

(6.15) U<n (n=1,2,..).
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We have finally from (6.12), using 4(1—68)2 = 7—88 = 1/(7+ 84),

7_ 22— 2
\! <X
2P < gy
_ 214+12V3 (4)"
= 1 g n

U < (T+4V3)w™ *n

4 n
<11 (-3—) W,

n
Z |PA® < (T4 V3)n ()" "Dy < 110()" D3

=1

D%

(6.16)

We obtain now
TarorEM 3. If Dy is the free radius of the n-dimensional lattice M
there emists @ base (Py) of M for which (6.16) holds.

§ 7. A quantitative theorem on simultaneous Diophantine ap-
proximations.

43. THEOREM 4. Assume that the m real numbers ay,...,a, ond two

positive numbers s, n have the property that we have always
(7.1) Mg oy 0] =

, My, satisfy the conditions

_[a\-D2
Q = 2¥n (g) ¥

]/4'n

%, there exists a positive

whenever the integers m, My, ...

Z’m <Q

w=1

< ]/?
£ 4n’

Then for any set of n real numbers &,...,
integer g salisfying the inequality

(7.2) —|m| <

further assume that

(7.3)

7.4 <2
(‘) g 178“

and n integers i, ...y gu, S0 that

(7.5) (@,—ga,— ) < 3 ne’.

[\ﬂ =

fi
bR

e

4. TouvA 7. Assume &, 7 and y as posilive numbers and n real
numbers ay, ..., ay satisfying the condition that always

1m—|— jm,,a,‘ =1

y=1

(7.6)
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whenever the integers m, My, ..., My are such that
L
2 Y 1
—m? < Z m: < g
p=1 y €

Assume further that for a positive integer ¢ and n integers ¢, ..., g,
we have

(7.7)

i 2
q”) - nylp2g2
a,— —] < yiniet.
23] <

nasl

(7.8)

Denote by M the additive vector modulus in the real n-dimensional
space R, formed by the set of points

(7.9) (g%+917 ng‘ “".‘727'”7!/% + n)s

q
if gy G1y --vy Gn Tun through all integers. Then the free radius of M is < ye:
(7.1.0) Dy < ye.

45. Proof. Since all points of M have rational coordinates the
directional cosines of the normals of all (n—1)-dimensional hyperplanes,
rational in M, have rational quotients. As the distance of a point
from a hyperplane I through the origin can be obtained projecting the
corresponding vector upon the normal to I, (7.10) will be proved if we show
that to any set of = integers %,...,%, with

(7.11) E=VE+.. Thi>0

there exists a point (7.9) of M such that we have
(7.12)

46. Put

and dencte by h the greatest common divisor of %, gk, ..., gk,

h = (760, qku veey qkn)
Then we have identically

2q%0’,—%= anq%(a,—%"—)

r=1

icm
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and therefore, by the Cauchy-Schwarz inequality, in virtue of (7.8)

and (7.11)
n n n
gh, ko ( %\’ (qk., PTRY L2
. e e 2 =L o,
(7.13) lghav h \;av 4 ; h yern e
gk 1.
If now " were < —, it would follow from (7.13) that
Ye

n
qkl' k()
Z h a, 7 <1,

r=1

in contradiction to (7.6). We see therefore that

@1

(7.14) 7

47. Choose now the integers ¢, gy,..., g, such that

ghko+ 2'”‘ 9oqk, = h.

y=1

Tor these integers we have from the definition of W in (7.12)

1/ k& - "k
=—|g— k) =—
% (g P =+ ;gv w) qu
and (7.12) follows now from (7.14). Our Lemma is proved.

48. LevmA 8. In the hypotheses of the Lemma 7 to any point
P = (2, ..., %,) of the real n-dimensional space there exists a point I" of
the additive modulus M given by (7.9) such that

(7.15) P, I < Qoye, Qo= 2n (3.

49. Proof. Let (P, ..., P}) be the base of the modulus M, the
existence of which is asserted in the Theorem 3, and for which we

have the relation (6.16).
Since in the Lemma 7 for our modulus M we have (7.10) the rela-

tion (6.16) becomes, using (6.15)
n

(7.16) PR < 11n(z)"e

p=1

Express the point P linearly in terms of the points P;:

P=Zn%PZ‘-

y=1
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s ) K Lore ’ . .
- Wl}i.i/e ea.ch. v, in the form g,-}-g,, where g, is an integer and f, sat-
- - wnlat - 9 ", 3 ] g
Isfies the relation [f,} = 4. Then our representation, of P hecomes
k3 H
. Y U
P= DlgPi4 g0
vmal viul
50. The first sum on the right is a point /" of M. Consider the point
X K3
K, given by the second sum on the right, K == 38,P¥, and denote itg
Wl

»th coordinate by %, and generally, the xth m)(;rflium;a of P
Then we have by the Cauchy-Schwarz inequality

ki3 M (3
= (3l = (3 (S,
™ Py e L

where the first sum on the right is <n [4. Summing thi
% from 1 to u, we have 4

by Dy

§ relation over

L3 n

n O XY
|K|2<Zzzlzoﬁn=;jj_)d|z):%

and therefore, using (7.16)
I-Kiz <3%2(§)7b7}282
and (7.15) follows immediately. The Lemma 8 ig proved.
51. Denote now the points with the coordinates ¢,/q and «, resp.

by P,, 7

717 - (& 9n
( ) Pﬂ“‘(qa-"az): T= (O, erey ).

Then our point I' in (7.15) and (7.9 i /
. -9) can be written as I'= gP,+I'
where g can be reduced mod g and therefore can be agsumed positixqre anlé

< ¢, while all coordi int ; ; .
v;e 31 Ny inates of I are integers. By the triangle inequality

1Py gn+ Iy < |P, 9Py +14 |- 9P, gm| < 12, 9P1+P1|+Q]7‘, Py,
and therefore, by (7.15):

e haI;}m\iA 9. In the hypotheses of the Lemma 8 and in the above nototions

(7.18) [P, gu+TIy| < Qoyetglo, Py,

for a Conve’nie’ﬂtly ChOuS'G’VL 1
pOS’Ltl’DG 'mtege'r g < q and a p()%’bt 1 b 7
= with n ege
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In order to make the expression on the left in (7.18) of the order of
¢, we must now choose P, in such a way as to make gz, P, of this order.

52. LeMMA 10. Take positive &, n, both <1. To any system of
n real numbers a, (v =1, ..., n) there exists a positive integer q¢ and inte-
gers q, (v =1, ..., n) such that, in notation (7.17),

(7.19) lgre, qPy] < &1y |7, Pgl < &1y,
2 (Vn\"

(7.20) 0<g< =) .
M\ &y

Proof. By a Theorem of Dirichlet (see [2], p. 68, Satz 7) there exists
a positive p < &™/n" and integers p, (v =1, ...,n) for which |pa,—p,|
< el/l/')_?, (v =1,...,n) and therefore, if we denote by P, the point
(PP -y DulP),
(7.21) lpm, 9Pyl <&y,  p <Vl

If such a p is =1/, 1/p < n,, we obtain from (7.21), putting
¢g=79,¢=2p, (» =1,...,n) and dividing the first relation (7.21) by
¢, the relations (7.19), (7.20).

53. If however we have for each set of solutions p, p, of the inequa-
lities (7.21) the relation p < 1/7;, the inequalities

(7.22) [p, pPy| < &1, P <1fm

have a solution with a positive integer » and integers p,.

Assume this solution chosen in such a way that p has its greatest
possible value. Putting 8, = (p+1)a, (» =1, ..., n), apply Dirichlet’s
Theorem to the B,. We obtain a positive integer p’ and integers p, so
that

(7.23) P (p+1)m, ' Py | <1y B <Vn'[ef.
Here we have certainly p’(p-+-1) = 1/#, since p is the Maximum for

a solution of (7.22). Putting now ¢ = p'(p+1), ¢, =p, (»=1,...,7n),
we have from (7.23), dividing by ¢, the relations (7.19), while

141/n =
0<g=plptr1) < T2 By

1

so that (7.20) is satisfied and the Lemma 10 is proved.
54, Proof of the Theorem 4. We put in the Lemmata 9 and 10:

n
1 3 —(4\* in n- /dn
7=Q‘7 Q=]/Z—’)%Q0=]/3%(§) 3 &y :5]/3, i =€_? E‘
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dn
From (7.3) we have then & <1, 9, =7 -+

condition (7.8) is satisfied, so that the Lemmata 7, 8 and 9 can be applied,
while

- ntl ﬁ P! e
2 — [4\2\ 1 3 2 ~_/3 3
<—2(i: i = — 1/371/(—) —:‘l/*- =——ﬁl/3-l/_=——n’
neVn ¥ 4 ne 3/ yn ¥V 4 ne 4 ne

9

3
Q<;£7n

@ <1 and by (7.19) the

) 3
(7.24) 0<y < Q<'n‘;ﬁ-

We have therefore in the formula (7.18) of the Lemma 9, by the
first inequality in (7.19),
1 Qo 4n 4~
- L = _— = —:l/
6|P:97T+]1\\Q‘|" 3 /3 y

and (7.5) follows. The Theorem 4 is proved.
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Remarks on two theorems of Siegel
by

8. CrmowwrA (University Park, Pa.)

Dedicated to L. J. Mordell

1. Siegel found that for » >3 the number of solutions of
ar"—by" = ¢

(i) does not exceed 1 if |ab] exceeds a certain limit depending on
¢ and n alone (%),

(ii) does mnot exceed 75 if ¢ =1 (2).

Assuming a certain conjecture (Conjecture C below) we shall reduce
75 to 2 in (ii), provided » > 1 (in fact, even when ¢ 52 1). As for (i) we
obtain the result (i) without the restriction that ‘‘|ab| should exceed
a certain limit depending on ¢ and »” but at the cost of replacing 1 by 2,
and again demand n > 7.

The hypothesis is as follows:

CoNgeCTURE C. The equation (where n is & fized position integer = 3)

Nn—1
Z LX =0
Ma==]
18 impossible in positive integers X,,, unless it is trivially possible (i.6. by
“oancellation”).
Both our results concerning (i) and (ii) are covered by the
THEOREM. Suppose Conjecture C is true. Then

(1) ax® —by" = O

has at most 2 solutions for n = T.

(*) Abh. d. Preuss. Akad. d. Wiss. 1920, 1-70, p. 70.
() According to Erdés, Proc. Boulder No. Theory Conference, 1958, p. 238,
Siegel’s proof was never published.
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