

COLLOQUIUM MATHEMATICUM

VOL. XI

1964

FASC. 2

ON THE COEFFICIENTS OF UNIVALENT FUNCTIONS IN THE UNIT CIRCLE

ΒY

J. GÓRSKI (CRACOW)

Let

(1)
$$w = f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

be an analytic univalent function in the unit circle $K\colon |z|<1$ and let Δ be the image if K by (1). We denote by D the image of Δ under the transformation $\zeta=1/w$. D is an unbounded simple connected domain which contains the point $\zeta=\infty$. The complementary set of D to the whole plane is a bounded continuum E whose capacity d(E) is equal to 1.

Let $\eta^{(n)} = \{\eta_1, \eta_2, \dots, \eta_n\}$ be an *n*-th extremal system of points on E, i. e. a system of n points of E such that

$$\prod_{1\leqslant j< k\leqslant n}|\eta_j-\eta_k|\geqslant \prod_{1\leqslant j< k\leqslant n}|\zeta_j-\zeta_k|$$

for every system of n points $\zeta_1,\,\zeta_2,\,\ldots,\,\zeta_n$ of E. It has been proved in [1] that

1° the limits

$$\lim_{n o\infty}rac{\eta_1^k+\eta_2^k+\ldots+\eta_n^k}{n}=s_k, \quad k=1\,,2\,,\ldots,$$

exist,

 2^{o} the coefficients b_k of the inverse function $f^{-1}(w)$ are given by the formulas

$$b_{k+1} = \frac{1}{k} (s_k + b_2 s_{k-1} + \ldots + b_k s_1), \quad k = 1, 2, \ldots,$$

3° the coefficients a_2 , a_3 , a_4 and a_5 of function (1) are given by

$$a_2 = -s_1, \quad a_3 = \frac{3s_1^2 - s_2}{2}, \quad a_4 = \frac{-8s_1^3 + 6s_1s_2 - s_3}{3},$$
 $a_5 = \frac{-6s_4 + 40s_1s_3 - 150s_1^2s_2 + 125s_1^4 + 15s_2^2}{24},$

Further coefficients a_k can be easily calculated from the identity

$$z \equiv (z + a_2 z^2 + ...) + b_2 (z + a_2 z^2 + ...)^2 + b_3 (z + a_2 z^2 + ...)^3 + ...$$

Löwner [2] has proved that

$$|b_{k+1}| \leqslant \frac{1 \cdot 3 \cdot 5 \dots (2k+1)}{1 \cdot 2 \cdot 3 \dots (k+2)} \cdot 2^{k+1}, \quad k = 1, 2, \dots,$$

the equality holds for Kebe's function.

We want to prove a number of sharp inequalities and estimations for some expressions containing the coefficients and limits s_k .

1. Observe that $|b_2| = \max$ implies $|a_2| = \max$ and conversely from $|a_2| = \max$ follows $|b_2| = \max$. The maximum is achieved only for Keebe's function.

Indeed, $b_2 = s_1$ and $a_2 = -s_1$. Therefore $\max |b_2| = \max |a_2|$ and it is known that if $|a_2|=2$, then $|a_n|=n$, n=2,3,...

2. $|s_2| \leq 6$, the equality holds only for Keebe's function.

Indeed, according to the area principle we have $|a_2-a_3| \leq 1$, and the equality holds only for Keebe's function. On the other hand,

$$s_2 = s_1^2 + s_2(S),$$

where $s_2(S)$ is the value of the second limit s_2 when the coordinate origin is situated at the center of gravity S of the natural mass-distributional on E. Therefore

$$|a_2^2 - a_3| = \left|s_1^2 - \frac{3s_1^2 - s_1^2 - s_2(S)}{2}\right| = \frac{|s_2(S)|}{2} \leqslant 1.$$

From the last sharp inequality it follows that $|s_2^{\tilde{s}}(S)| \leq 2$ and $|s_2|$ $\leq |s_1^2| + |s_2(S)| \leq 6$. Observe that

$$|b_3| \leqslant |s_1^2| + \frac{|s_2(S)|}{2} \leqslant 5,$$

with equality only for Keebe's function. If $|b_3| = 5$, then $s_1 = 2e^{ia}$, $s_2(S) = 2e^{2i\alpha}, (s_2 = 6e^{2i\alpha}).$

3. By elementary calculation we obtain

(*)
$$s_n = s_n(S) + ns_{n-1}(S) \cdot s_1 + \binom{n}{2} s_{n-2}(S) \cdot s_1^2 + \ldots + s_1^n,$$

where $s_n(S)$ is defined analogically as $s_n(S)$.

We shall prove that

$$|s_3 - s_3(S)| \leqslant 20,$$

with equality only for Keebe's function.

Indeed, from (*) it follows that

$$|s_3 - s_3(S)| = |3s_2(S) \cdot s_1 + s_1^3| \le 3 \cdot 2 \cdot 2 + 2^3 = 20$$

with equality holding only for $|s_1| = 2$, i. e. for Koebe's function. Observe that for Keebe's function we have $s_3(S) = 0$ and $s_3 = 20$.

4. The limit $s_3(S)$ satisfies the sharp inequality $|s_3(S)| \leq 2$. This result follows from the inequality obtained by Garabedian and Schif-

$$\frac{|s_3(S)|}{3} = |-a_4 + 2a_2a_3 - a_2^3| \leqslant \frac{2}{3}.$$

5. $|a_3 + b_3| \le 8$ and $|a_3 - b_3| \le 2$, with equalities only for Kebe's function.

Indeed, $a_2 + b_3 = 2s_1^2$ and $a_3 - b_3 = -s_2(S)$.

6. $|b_4 - s_3(S)/3| \leq 14$, with equality only for Kæbe's function. Indeed, from 2° and (*) follows

$$\left| b_4 - \frac{s_3(S)}{3} \right| = |s_1| \cdot \left| \frac{3s_2(S)}{2} + s_1^2 \right| \leqslant 6 + 8 = 14.$$

7. $|a_4 + b_4| \le 10$ and $|a_4 - b_4 + \frac{2}{3}s_3(S)| \le 18$, with equality only for Kœbe's function.

Indeed, using formulas 2° and (*) we get

$$|a_4+b_4|=\frac{5}{9}|s_1s_2-s_1^3|\leqslant 5|s_2(S)|\leqslant 10$$
,

$$|a_4 - b_4 + \frac{2}{3}s_3(S)| = |s_1| \cdot \left| -2s_1^2 - \frac{s_2(S)}{2} \right| \leqslant 2(8+1) = 18.$$

8. $|a_5 + b_5 - 2s_1s_3(S)| \leq 47$, with equality only for Kebe's function. Indeed,

$$a_5 = -\frac{1}{4}s_4(S) + s_1^4 + \frac{2}{3}s_1s_3(S) - \frac{3}{2}s_2(S)s_1^2 + \frac{5}{8}s_2^2(S)s_1^2 + \frac{5}{8}s_2^2 + \frac{5}{8}s_2^$$

$$b_5 = \frac{1}{4}s_4(S) + s_1^4 + \frac{4}{3}s_1s_3(S) + 3s_2(S)s_1^2 + \frac{1}{8}s_2^2(S)$$

and

$$|a_5 + b_5 - 2s_1 s_3(S)| \leqslant 2 |s_1^4| + \frac{3}{2} |s_1^2| |s_2(S)| + \frac{3}{4} |s_2^2(S)| \leqslant 47.$$

9. If we compare Löwners formulas for the coefficients a_n with s_n we get the following inequalities:

$$\begin{split} s_1 &= 2\int\limits_0^\infty e^{-\tau}k(\tau)d\tau, \quad |s_1| \leqslant 2\,, \\ s_2 &= 4\left(\int\limits_0^\infty e^{-\tau}k(\tau)d\tau\right)^2 + 4\int\limits_0^\infty e^{-2\tau}k^2(\tau)d\tau\,; \quad |s_2| \leqslant 4 + \frac{4}{2} = 6\,, \\ s_2(S) &= 4\int\limits_0^\infty e^{-2\tau}k^2(\tau)d\tau, \quad |s_2(S)| \leqslant 4\frac{1}{2} = 2\,, \\ s_3 &= 8\left(\int\limits_0^\infty e^{-\tau}k(\tau)d\tau\right)^3 + 24\int\limits_0^\infty e^{-\tau}k(\tau)d\tau\int\limits_0^\infty e^{-2s}k^2(s)ds + \\ &\quad + 6\int\limits_0^\infty e^{-3\tau}k^3(\tau)d\tau - 12\int\limits_0^\infty e^{-\tau}k(\tau)\left(\int\limits_\tau^\infty e^{-2s}k^2(s)ds\right)d\tau\,, \\ s_3(S) &= 6\int\limits_0^\infty e^{-3\tau}k^3(\tau)d\tau - 12\int\limits_0^\infty e^{-\tau}k(\tau)\left(\int\limits_0^\infty e^{-2s}k^2(s)ds\right)d\tau\,. \end{split}$$

In particular, one obtains the sharp inequalities:

$$\begin{split} |s_3| &= \Big| \, 8 \, \Big(\int_0^\infty e^{-\tau} k(\tau) \, d\tau \Big)^3 + 12 \, \int_0^\infty e^{-s} k(\tau) \, d\tau \, \int_0^\infty e^{-2s} k^2(s) \, ds + \\ &\quad + 6 \, \int_0^\infty e^{-3\tau} k^3(\tau) \, d\tau + 12 \, \int_0^\infty e^{-\tau} k(\tau) \, \Big(\int_\tau^\infty e^{-2s} k^2(s) \, ds \Big) d\tau | \\ &\leqslant 8 + \frac{12}{2} + \frac{6}{3} + 12 \, \int_0^\infty e^{-\tau} \Big(\frac{e^{-2\tau}}{-2} + \frac{1}{2} \Big) \, d\tau \\ &= 16 + 12 \, \Big[-\frac{1}{6} + \frac{1}{2} \Big] = 20 \, , \\ &|b_4| \leqslant \frac{2 \, |s_3| + 3 \, |s_1| \cdot |s_2| + |s_1^3|}{6} \leqslant \frac{2 \cdot 20 + 3 \cdot 2 \cdot 6 + 8}{6} = 14 \, . \end{split}$$

REFERENCES

[1] F. Leja, Sur les coefficients des fonctions analytiques univalentes dans le cercle et les points extrémaux des ensembles, Annales de la Société Polonaise de Mathématiques 23 (1950), p. 69-78.

[2] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Mathematische Annalen 89 (1923), p. 103-121.

[3] P. R. Garabedian, M. Schiffer, A coefficient inequality for schlicht functions, Annals of Mathematics 61 (1955), p. 116-138.

Reçu par la Rédaction le 15. 3. 1963