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PREDICTION OF STRICTLY STATIONARY SEQUENCES
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Let P be a probability measure defined on a o-field # of subsets of
a space {2 consisting of elementary events w. Let &(2,.%,P) be the
space of all random variables x defined on £, i. e. the space of all #-
measurable real-valued functions z(w) defined on £2. Throughout this
paper we identify random variables which are equal P-almost everywhere.
The space ©(2, %, P) is a linear space under usual addition and multipli-
cation by real numbers. Moreover, it becomes a complete metric space
under the Fréchet norm

@ (w)|

———— P(dw).
) Tty = o

|| =

It should be noted that this norm is non-homogeneous. It is clear
that the convergence in Fréchet norm is equivalent to the convergence in
probability P. The random variables which we consider in this paper are
supposed to be defined on the same space 2 of elementary events.

A sequence {z,} (n = 0, =1, +2,...) of random variables is called
strictly  stationary, or — shortly — stationary, if for every system
My Ny, Ngy ...y Ny, Of integers the multivariate distribution of the ran-
dom variables Tnyvmy Lpgrmy ++o3 Lnyym 18 independent of m. To each sta-
tionary sequence {z,} there corresponds a shift transformation T, = ®,,,
(n =0, +1, +2,...), which can be extended to an invertible isome-
try T in the space &(2, #,, P), where #, is the smallest o-field with re-
spect to which all random variables z, are measurable (see [2], Chapter
X, § 1). Moreover, the isometry 7' is an extension of a P-measure-pre-
serving set transformation. Consequently, it preserves the independence
of random variables and constant random variables are invariant under
the transformation 7.

Given a sequence {y,} (n =0, +1, +2,...), by [y,] and [y,:
n < k] we shall denote the closed linear subspaces of ©(2,#, P) span-
ned by all random variables y, and by random variables ¥, with n <k
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respectively. It is clear that the subspace [x,] generated by a stationary
sequence {z,} is invariant under the shift transformation corresponding
to {x,}.

We say that a stationary sequence {x,} admits a prediction, if there
exists a continuous linear operator 4, from [x,] onto [x,: n < 0] such
that

(i) Aqx = @ whenever xe[x,: n < 0],

(i) if for every ye[x,:n < 0] the random variables = and y are in-
dependent, then A,x =0,

(iii)y for every xe[z,] and ye[x,: n < 0] the random variables
x— A,x and y are independent.

The random variable 4,z can be regarded as a linear prediction
of = based on the full past of the sequence {x,} up to the time n = 0.
An optimality criterion is given by (iii). In what follows the operator
A, will be called a predictor based on the past of the sequence {z,} up
to time n = 0. The conditions (i), (ii) and (iii) determine the predictor
A, uniquely. Indeed, if an operator A, satisfies these conditions, then
for all ze[x,] and ye[x,: n < 0] the random variables rx— Agr and y
are independent. Thus, by (ii), 4,2— 4,42 = 0. Since Agxe[z,: n < 0],
we have, by (i), 4,4,z = Az, which together with the last equation
implies A, = A z.

It should be noted that Gaussian stationary sequences with zero
mean always admit a prediction. This follows from the fact that in this
case the concepts of independence and orthogonality are equivalent and,
moreover, the square-mean convergence and the convergence in proba-
bility are equivalent. Therefore the predictor A, is simply the best linear
least squares predictor, i.e. the orthogonal projector from [z,] onto
[z,:n < 0] (see [2], Chapter XII, § 1).

Since our stationary sequences need not have a finite variance,
the problem of prediction discussed in this paper is not contained in
the Wiener-Kolmogorov theory of the best linear least squares predic-
tion for wide sense stationary sequences.

Let {x,} be a stationary sequence admitting a prediction. The pre-
dictor 4, and the shift 7' induced by {r,} determine the predictor A,
based on the full past of {x,} up to the time n = k. Namely, setting

(1) Ay = TRAUTI § (=10, +1, +2;...);,

and taking into account that 7' preserves the independence, we obtain
a continuous linear operator from [x,] onto [r,: n < k] satisfying the
conditions

(2) Apx =a whenever relr,: n < k],
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(3) if for every ye[x,: n < k] the random variables x and y are
independent, then A,r = 0,

(4)  for every xe[x,] and ye[x,: n < k] the random variables z— A,
and y are independent.

A stationary sequence {r,} admitting a prediction is called deter-
ministic, if A,z = x for every xe[x,]. Further, a stationary sequence
x, admitting a prediction is called completely non-deterministic, if
lim A,z = 0 for every xe[z,].

k—s—00

The aim of this paper is to prove that any stationary sequence admit-
ting a prediction can be decomposed into a deterministic and a comple-
tely non-deterministic components. Moreover, we shall give a represen-
tation of completely non-deterministic sequences by moving averages.
These theorems are an analogue of the well-known Wold’s decompo-
sition and representation theorems in the linear least squares prediction
theory (see [2], Chapter XII and [4]).

It should be noted that in general, for a given ze¢[x,], the prediction
Arx does not furnish the best approximation of # in the Fréchet norm
| || by elements from the subspace [z,: n < k], i.e. in general inf {|z— y||:
yelr,: n < k]} is not equal to ||lz— A,x|. But it will be shown that there
exists an equivalent norm || ||, in [«,] such that

lo— Ayalle = inf{lle—yllo: ye[z,: n < k]}

for every we[x,] and k =0, +1, +2,...

We begin by proving some Lemmas from which we deduce the
decomposition and the representation theorems.

LeMMA 1. For k < r the predictors satisfy the equation A; = A A, =
= A4y,

Proof. Let 4, and A, (k < r) be the predictors for a stationary se-
quence {z,}. Since A,ze[x,: n <r] for every ze[2,], we have, by (2),
the relation A,4;x = A,x, which implies 4,4, = A,. Further, by (4),
for every we[w,] and ye[a,: n < k] the random variables x— A, and
y are independent. Hence, by (3), 4d,#— A4, = 0, which implies the
equation 4; = A, 4,.

LEMMA 2. 0 ds the only constant random variable belonging to the sub-
space [x,] spanned by a stationary sequence {x,} admitting a prediction.

Proof. Let ¢ be a constant random variable belonging to [z,]. For

e
every positive number ¢ there exists a linear combination Z a; %, With
real coefficients such that =
m

le— 2‘ o, || < &.

i=1
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Setting ¢ = max(n,, ny,...,n,) and taking into account that ¢
is invariant under the shift transformation 7 induced by the sequence
{x,}, we have the inequality

m e
— Rl _ | Il 1l
HT qc—-z a; T q;rﬂjli = “C— E Uy _q| < €.
F=1 =1

™

Since )] @;p;_qe[®y:in < 0] and & was arbitrarily chosen, the rela-
i=1

tion ce[z,: n < 0] is established. Thus, by (i), 4o¢ = ¢. On the other
hand, for any ye[x,: n < 0] the random variables ¢ and y are indepen-
dent and, consequently, by (ii), A,¢ = 0. Thus ¢ = 0, which comple-
tes the proof.

Let {y;} (k =1,2,...) be a sequence of random variables. If there

are constants a,, a,, ... such that > (y,.— a;) converges with probability 1,
k=1

oo
the series > y; will be said to converge with probability 1 when centered
k=1

and a,, a,, ... will be called centering constants ([2], Chapter IIT, § 2).
Lemya 3. Let {y,} (k = 1, 2, ...) be a sequence of independent random
variables such that 0 is the only constant random variable belonging to [y;].

If the series S' ¥ converges with probability 1 when centered, then it con-
verges with ;;(;babilﬂy 1, regardless of the order of summation.

Proof. By Theorem 2.6 in [2] (p. 112) we can find a sequence
@y, @y, ... of centering constants such that the series ;\S‘: (Y — @) is con-

vergent with probability 1, regardless of the order of summation. Con-
sequently, to prove the Lemma it suffices to prove that the numerical

oo

oo
series ) a; is absolutely convergent or, in other words, that >'a; con-
k=1 k=1

verges for any ordering of the terms. Further, since the conditions of the
Lemma do not depend upon an ordering of terms y;, it is sufficient to

show that the series > a; is convergent. Contrary to this let us suppose
k=1

that there are indices p, and ¢, such that p, < ¢,, p, — oo and the se-
In .
quence b, = }'a, converges to a finite or infinite limit different from 0
' k=pp
as m — oco. From the equation

Tn an
bt e =b" Y (e—a)+1

k=py k=py
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In
it follows that b,' 3 v tends to 1 with probability 1 as n — co. Conse-
=Pn
quently, 1e[y;], which contradicts the hypothesis. The Lemma is thus
proved. '

LeMMA 4. Let Ay (=0, +1, +2,...) be predictors for a stationary
sequence {x,}. There exists a continuous linear operator A__, on [z,] commut-
ing with the shift induced by {x,} and such that for every x<[x,]

limA_ ;2= 4

k—oo

@.

— 00

Proof. Given an element xe¢[2,] we put
h=o—A_x, y=A4, ;0—A ;& (j=2,3,...).
Since, by Lemma 1,
Yy =4, ;2—A_jA, ;2 (j=2,3,...),

we infer that, according to (4), for j =1,2,... and ze[z,:n < —j]
the random variables y; and 2 are independent. Moreover, we have the
relation y;e[2,: » <1—j] (j = 2,3,...). Thus for every system a;, a;,,,
.evy 0z, Of real nmumbers the random variables o;y; and «;.,9;.,+
+aj Yot oo +apyr+ar, 1 A_rx are independent. Consequently,

.
Bexp|i Q;‘a,y,ﬂ'awa_km)

Kv
= Bexp(iay) Bexpli D ay,+ia.A_ra),

r=7-+1

where F denotes the expectation. Hence we get the equation

:I: A-
Bexp(i ¥ a,y,+ ior,A_y2) = Bexp(iag,4_2) [ [ Bexp(ia,y,).
r=1 r=]1

Thus the multivariate characteristic function of the random varia-
bles i, Y¥sy .-y Yp; A_rx is equal to the product of the characteristic
functions of ¥, %5, ..., ¥, and A_,x respectively. Hence it follows that
the random variables ¥,, ¥y, ..., ¥z, A_r2 are independent. Since

k
(5) e=Dyt+d o (k=1,2,..),
j=1

the series ' y; converges with probability 1 when centered (see [2], The-
j=1

orem 2.8, p. 119). Since, by Lemma 2, 0 is the only constant random va-
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riable belonging to [z,] and, consequently, to [y;], the series }'y;, accord-
i=1

ing to Lemma 3, converges with probability 1. Hence and from (5) it fol-
lows that the limit
A_ x=1mA_;x
Fe—ro0

exists with probability 1. It is clear that the operator A__ defined by
the lagt formula is linear. Moreover, by Banach theorem ([1], Theorem
4, p. 23) it is also continuous. Let T' be the shift induced by the sequence
{®,}. From (1) we get the equation A_,;T = TA_;, ,, which implies
A_ T =TA . The Lemma is thus proved.

We say that two sequences {z,} and {,} of random variables are
independent, if the random variables y’ and y'" are independent when-
ever y'e[z,] and y" e[x,].

TaEOREM 1. Fach stationary sequence admitting a prediction is the sum
of two independent stationary sequences admitting a prediction, one deter-
ministic and the other completely non-deterministic. Moreover, if x, = z,+ x,
is such a decomposition, then [x,] is a direct swm of subspaces [x,] and
[, ]

Proof. Let {z,)| be a stationary sequence admitting a prediction
and let 4, (k =0, -1, +2,...) be its predictors. The limit operator
A__ defined by Lemma 4 satisfies, in view of Lemma 1, the equation

(6) AkA—oc}:A—ooAk:A-—m (k:O, :i:l} :{:2,...).
Hence, in particular, it follows that

(7) Ay =A_,

and, consequently,

(8) (I—A_ ) =I—-4_,

where I is the unit operator. Setting
(9} .T.:,_:A_mﬂ?n, x:':z(I_A—w)mn (n=0! +1, +2,...),

we have the relation

(10) z, = xp+a;, .

Moreover, by (7) and (8),
(11) [22] = A_o[@n],  [20] = (I—A_g)[@al,
(12)

[2h: n <O0]=A_o[x,:0<0], [2p:n<0]=T—A_,)[®:n<0],

and
(13) A_ vy =v', (I—A_.)y" =y" whenever y ¢[x,] and y" e[z, ].
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Since, by Lemma 4, the operator A _ commutes with the shift 7
induced by the sequence {z,}, we infer that

T @y =T "A_ 2= A_ T"0, = A__x, = .
and, according to (10),
TN ' r rr
T2y = T"(e— ) = Xp— X, = @}, .

Thus both sequences {w,} and {z,} are stationary.

Let y'e[2,] and y" e[, ]. By (2) and (4) for every integer k the ran-
dom variables A;y" and (I—A;)y"” are independent, whence the inde-
pendence of A_,y" and (I—A__)y" follows. Hence and from (13) we
obtain the independence of y’ and y”. In other words, the sequences
{#;,} and {a}/| are independent.

Now we shall prove that 4, restricted to [x,] and [z, ] is a predictor
of {z,} and {z;/|| respectively based on the past up to the time n — 0.
First of all we note that, by (6), (11) and (12), the operator 4, maps
[#,] onto [a,: » < 0] and [a,] onto [x,: n < 0]. Consider the space
[¢,]. By (6) and (13) we conclude that 4, = I on [z,]. Thus the con-
ditions (i) and (iii) are obvious. Since [z,: n < 0] = [z,], the only ran-
dom variables 2’ such that z* and y’ are independent for all y’ e[z; n < 0]
are constant ones. Thus, by Lemma 2, 2 = 0, which shows that con-
dition (ii) is also satisfied. Consequently, the sequence {x,} is determi-
nigstic.

Now let us turn to the space [z,]. By (12) we have the inclusion
[#n: n < 0] < [@,: » < 0]. Hence it follows that the operator A4, ful-
fils conditions (i) and (iii) on [x,]. To prove condition (ii) on [z ] it suf-
fices to show that the independence for all ye[z,: n < 0] of random va-
riables (I—A_.,)y and «"', where z'’¢[z,], implies the independence
of ¥ and #"”. But this implication is a direct consequence of the inde-
pendence of sequences {z,} and {,}. Indeed, for every pair a,, a, of
real numbers the random variables a;@''+ay(I—A4_ )y and a,4__y
are independent. Moreover, the random variables a,(I—A__)y and
a,A_,y are also independent. Thus

Eexp (ia, 2" +iayy) = Bexplia, @’ +iay(I—A_)y) Eexp (iayd_,y)
and
Eexp(ia,a") Eexp(iay(I—A_,)y)Eexp (iay A_.Yy)
= Fexp(ia,z") Eexp (iayy),

which implies the independence of #'' and y. Thus condition (ii) is also
fulfilled. Finally, from (6) and (13) we obtain the relation

lim 4_,y" =:£2 A_p(I—4A_o)y" = gim (A_x—4_&)y" =0

k—-rm



122 K. URBANIK

for all y"”e[x,]. Consequently, the sequence {z,} is completely non-
deterministic. '

It remains to prove that [x,] is the direct sum .of [x,] and
[«,]. Since the sequence {x,} and {z,} are independent and 0 is the only
constant random variable belonging to [z,] (see Lemma 2), we have the
relation [#,]~[,] = {0}. Further, from (10) it follows that the direct
sum [z,]@[x,] contains the space [x,]. On the other hand, by (11),
[#n]®[2,] = [®,], which implies [z,]@®[x,] = [7,]. The Theorem is
thus proved..

Before proving the representation theorem we shall prove two Lem-
mas concerning some properties of subspaces spanned by sequences of
random variables.

LemMA 5. Let {v,} (n =0, 1, +2,...) be a sequence of indepen-
dent random variables such that 0 is the only constant random variable belong-

ing to [v,]. For every xe[v,) there exists then a sequence {a,} of real numbers
such that

(=]

]
2= 3 aytm

n=—00

where the series converges with probability 1, regardless of the order of sum-
mation.

Proof. Without loss of generality we may assume that
(14) v, =0 (n=0,4+1, +£2...).

Given xe[v,], there exists a sequence of linear combinations

k
Y af)v, tending to x in probability as k — co. Let ¢ (1), ¢,(f) and (1)

n=—k

be the characteristic functions of the random variables », v, and
k

> a,— aPv, respectively. Suppose that there exist an index » and
=k

a subsequence k,, k,, ... tending to oo such that

lim |a{*)| = co.

=00

Then the sequence of random variables

kg
1 %
%q) 2‘ ﬂgas}vn
as.’

n=—kg

tends to 0 in probability as s — oo, which in the language of character-
istic functions can be written as follows:

. t
Lm ¢, (t) ppr, (W) =i,
L

S=+00
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Hence it follows that |g,(¢f)] =1 for all ¢ or, in other words, that
v, is a constant random variable. But this contradicts the hypothesis
and (14). Thus for every index r the coefficients o) (k = r,r+1,...)
are bounded in common. Consequently, passing to a subsequence if ne-
cessary, we may assume that for all indices » the limits lim o = q,

k—so0

exist. Hence it follows that for every positive integer m the sequence of
random variables
m
‘}_: an'vn-_;_ Z a.(»f)vn
Ne=—1m m< n|=Fk
tends to x in probability as k — oo. Thus
K
im [] galant) [] 0a(aPt) = g(1)
koo T m< | nj<k
and, consequently, for any positive integer m
m

[] [#ntant) = i (o).

Moo= =

Hence it follows that the infinite product [] |¢,(a,t)| converges on

N=—0C

a set of positive Lebesgue measure. This implies that the series )' a,v,
converges with probability 1 when centered (see [2], Theorem 2.7, p.

115). Applying Lemma 3 we conclude that the series ' «,v, converges

Nh=—00

with probability 1, regardless of the order of summation. Setting

o0
(15) y=a— ) a,0,
M= -0
for every positive integer m we have the convergence of
k n v
agl)‘v'ﬂ_ Z\.J ay Uy
m | =k e ||

to y in probability as k — oco. Thus ye[v,: [#| > m] for every m, and,
consequently, the random variable ¥ is measurable on the sample space
of v, (|n| > m), which, by zero-one law (see [2], Theorem. 1.1, p. 102)
implies that ¥ is a constant random variable. Since 0 is the only con-
stant random variable in [v,], we have ¥ = 0, which, by (15), comple-
tes the proof of the Lemma.

LEMMA 6. Suppose that for every m =1,2,... the random variables
x, and y, are independent. If 0 is the only constant random variable belong-
g to [x,], then the convergence x,+y, — 0 in probability implies the con-
vergence x, — 0 in probability.
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Proof. From the relation ,-+v, — 0 in probability and from the
independence of x, and y, it follows that the absolute values of character-
istic functions of z, tend to 1 as n — co. Consequently, there exists
a sequence ¢, ¢y, ... of constants such that

(16) By =0y =0

in probability (see [3], Theorem 3, p. 57). If the sequence {¢,} contains
a subsequence {c,,} tending to a finite or infinite limit different from 0,
then by (16)

Cpp ¥ —1 — 0

in probability as k — co. But this would imply 1le[x,], which yields
a contradiction. Consequently, ¢, — 0, which, by (16), completes the

proof.
Now we shall prove a representation theorem for completely non-

deterministic sequences.

TuEOREM 2. Let {x,} be a stationary completely non-deterministic
sequence. Then there exvists a sequence {v,} of independent identically distri-
buted random variables such that [v,: n < 0] = [x,: n < 0] and =z, 8

a moving average
0

17) T = D GOy (0=0,%1,42,..),

k=—c0
where the series converges with probability 1, regardless of the order of summa-
tion.

Conversely, if {v,} is a sequence of independent identically distributed
random variables such that 0 is the only constant random variable in [v,],
then the moving average (17) is a stationary completely non-deterministic
provided [x,: n < 0] = [v,: n < 0].

Proof. Let {z,} be a stationary completely  non-deterministic
sequence and A, (k =0, +1, +2,...) its predictors. Put

(18) O =q—Ap 2 (B=0,+1, +£2,...).

Denoting by T the shift transformation induced by {z,} we obtain,
by (1), the equation
(19) T*y = T¥w,—T*A_,zy = ,—TA_ T "0, = @, — Ay 2 = .,
which shows that the random variables v, are identically distributed.
Moreover,
(20) vpe[a,: n<k] (k=0,4+1, +2,...)

and, by (4), for every ye[z,: n < k—1] the random variables v, and y
are independent. Thus for every system B, pr_1, ..., Pr_r of real numbers
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the random variables f,v; and > Bi_;v;_; are independent. Consequently,
§=1

5 r
Eexp (@' E ﬁk—f”k_f) = Eexp (if;v) Bexp (‘7 2 ﬁk_f‘”k_;) .
i=o i=1

Hence, by induction, we obtain the formula for characteristic func-
tions

kK r
Eexp (‘l: 2 ﬂk—j"wk—i) == H Eexp (iﬁk_,"vk_,') ¥
j=0 =0

which implies the independence of vy, vx_,, ..., ¥x_,. Thus the sequence
{v;} consists of independent random variables.
Setting

wy = Ag@y—Ap_1® (k= —1,—2,...),

we have the formula
-1

(21) By = By—A_ 04+ Z Wi+ A_m®y (m=2,3,..).
k=1-m
Moreover,
(22) wie[@a: n <k]  (k=—1,—2,...).

Since, by Lemma 1, 4;_,4, = A;_,, the element w; can be rewrit-
ten in the form

Wy = Apy—Ap_Ar 2y,

which, by (4), shows that for every ye[z,: n < k—1] the random varia-
bles w; and y are independent. Hence and from (3) it follows that

(23) Ak_lwk == 0 (k = "-1._, —2, ...).

Further, by (22), there exists a sequence of linear combinations
k

Y o (n=k,k—1,...) tending to w; in probability as m — —oo.

j=n
Replacing, by (18), @ by v+ A;_,7 and denoting the expression
k—1

Z G;-ﬂ)xj + ﬂLn)Ak,_lﬁk

f=n

briefly by 2., we get the convergence
(24) : A+ 2 —> Wy

in probability as n — —oco. Since z,; belongs to the subspace
[®, :n < k—1], we have, by (2) and (18),

Ap_1 (0 0r+ 2nk) = 2y
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which, by (23) and (24), implies that z,, — 0 in probability as n — —oo.
Thus, according to (24), v, — w, in probability as n — —oo. Con-
sequently, there exists a constant a such that w;, = a,v, (k = —1, —2,...)
Setting in addition «, = 1, we obtain from (21) the equation

Ty == 2 ap+A_,x, (m=2,3,...).
k=1—m

Since the sequence {z,} is completely non-deterministic, A4_,,x,
tends to 0 in probability as m — co. Consequently, the last equation
vields

0

Ly = Z Uy Vg
k=—00
where, according to Lemma 5, the series converges with probability 1
regardless of the order of summation. Hence and from (19) formula (17)
follows. Consequently, [#,: n <0] < [v,: n < 0], which together with
(20) implies the identity [z,: % < 0] = [v,: n < 0]. The first part of
the Theorem is thus proved.

Suppose now that {v,} is a sequence of independent identically di-
stributed random variables such that 0 is the only constant random va-
riable belonging to [v,]. Let 7' be the shift transformation defined by means
of the formula Tv, =wv,., (n =0, +1, +2, ...). Further, let {x,} be
a sequence of moving averages (17) satistying the condition [2,: n < 0] =
= [v,: n < 0]. Of course, Tw, = x,.,, which shows that the sequence
{w,} 1s stationary. Moreover, [z,] = [v,]. Thus, by Lemma 5, each elem-
ent x of [z,] can be represented by a series

(25) z= > o
k=—00
which converges with probability 1 regardless of the order of summation.
It should be noted that this representation is unique except a trivial case
=0 (=0, +1, +-2,...). Since in this trivial case the sequence
{z,} is obviously completely non-deterministic, we shall assume in the
sequel that v, s 0.
For elements x having the expansion (25) we put

(26) Agwes Y Bty

We note that by Theorem 2.6 in [2] (p. 112) and Lemma 5 this
series converges with probability 1 regardless of the order of summation.
We shall prove that 4, is the predictor for {x,} based on the full past up
to time n = 0. First of all we note that the operator 4, is linear and
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transforms [z,] onto [x,: n < 0]. Its continuity is a direct consequence
of Lemma 6 because of independence of the random variables 4,z and
x—Ayz. Further, the conditions (i) and (iii) are obvious. In order to prove
(ii) suppose that xe[x,] and for every ye[wz,: n < 0] the random varia-
bles # and y are independent. Hence, in particular, it follows that the
random variables  and A,z are independent. Since z— A,z and A,x
are also independent and x = (#—A,x)+ 4,2, we infer, by a simple
reasoning, that 4,z is a constant random variable. But 0 is the only con-
stant random variable belonging to [z,], which implies 4,2 = 0. Thus
condition (ii) is also fulfilled and, consequently, 4, is the predictor for
{x,} based on the past up to time n = 0. Finally, for z given by (25)
we obtain, in view of (1) and (26), the equation

-k
'J:l_kil'} — T_k440Tk = E ﬁn'cwm

fl=—pa
which implies lim A4 ;2 = 0. Thus the sequence {x,} is completely non-
J )
deterministie, which completes the proof of the Theorem.

THEOREM 3. Let {x,} be a stationary sequence admitting a prediction.
Then there exists a norm || |, on [x,] invariant under the shift transformation
induced by {x,} and such that the convergence in the norm | ||, is equiva-
lent to the convergence in probability. Moreover, for every we[x,] and for
every predictor A; (k =0, +1, +2,...) the formula

(27) lle—Agally = inf{[x—ylle: yelw,: n < K]}
holds.

Proof. By Theorem 1 the sequence {z,} is the sum of two indepen-
dent components {z,} and {z, }, where {z,} is a deterministic stationary
sequence and {x,} completely non-deterministic stationary sequence.
Moreover, [#,] = [2,]®[x,]. Thus each element z belonging to [z,]
has a unique representation x = &'--2'', where a'e[x,] and 2" ¢[a),].
Further, by Theorem 2, there exists a sequence {v,} of independent iden-
tically distributed random variables belonging to [x,] such that [a) ]

(s ]
consists of all series »' p,v, which, by Lemma 5, converge with proba-
N=—00

bility 1 regardless of the order of summation. Moreover, for every we[z,]
we have the formula

(28) dg =o'+ ) futy,
where
(29) =0+ D fuva (@e[ay]).
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Put
(30) lello = '+ sup | g_ﬁnﬂn\ ,
where = is represented by (29), || | denotes the Fréchet norm and the

supremum is extended over all subsets N of integers. We note that all
series ) p,v, converge with probability 1 regardless of the order of sum-

neN

mation (see [2], Corollary 1, p. 118) and, of course, their sums are inde-
pendent of the order of summation. It is clear that || ||, is a norm on
[#,] and ||, = |®| for all xe[x,]. Thus the convergence in the norm
|| |lo implies the convergence in probability. Now we shall prove the con-
verse implication. Let us assume the contrary, that is, we assume the
existence of a sequence {y,} in [x,] which tends to 0 in probability and
[lyillo>¢ (E=1,2,...), where ¢ is a positive constant. Representing
y; in the form

Ve =i+ D a0,
where ype[x,] and taking into account the formula y; = A__y., we
have, by continuity of the operator A__, lim [y = 0. Thus, by (30),
k-0

there exists a sequence N,, N,,... of subsets of integers such that

(31) lim | 2 Yo, >

L—»oo ne \r

The random variables Y »%v, and y,— 3 %, are independent
neNp. neNj.

and their sum, being equal to 4 JA, tends to 0 in probability as k — oo.

Consequently, by Lemma 6, > ) “)p, tends to 0 in probability as k — oo,
neNp,
which contradicts (31). Thus the convergence in probability implies the

convergence in the norm | |,.

Since both subspaces, [xz;,] and [z,], and the Fréchet norm are
invariant under the shift transformation induced by the sequence {z,},
the norm || ||, is also invariant. Hence and from (1) it follows that to
prove (27) for all k it suffices to prove it for & = 0.

From (28), (29) and (30) we obtain the formula

(32) lo—doalo = sup*|| 3 v

where sup* denotes the supremum extended over all subsets N of posi-
tive integers. Further, each element y from [z,: n < 0] is of the form

.')'—1'! + E aﬂ’”ﬂ’

N=—00



PREDICTION OF STATIONARY SEQUENCES 129

where y’e[2,]. Thus, by (30) and (32),

lo—gllo > llo' |1+ sup* | 2 b > lo— Aozl

which implies the equation

le—Aozlo = sup{lle—yllo: ye[@,: n <0]}.
The Theorem is thus establizhed.
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