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1. Introduction. Let E be a Lebesgue measurable subset of the
positive half-line. By |E| we shall denote the Lebesgue measure of E.
The limits

Bl = lim - |BAL0, D)), |Ble = fim - B0, T)|
= T oo T oo
are called the lower relative measure of B and the upper relative measure
of K respectively. If |E|p = |E|g, the set ¥ is said to be relatively measu-
rable; its lower and upper relative measures are then called simply rela-
tive measures and denoted by |HE|p. Obviously, the complement E' of
a relatively measurable set E is also relatively measurable and [E'|p =
=1—|E|g. Moreover, if I/, c B, and both E, and E, are relatively measu-
rable, then the difference F,\ ¥, is relatively measurable and |E,\ E,|p =
= |By|r— |E|p. Further, the union of a finite number of disjoint rela-
tively measurable sets H,, H,, ..., B, is again relatively measurable and

n n
(U EBjlr = D |Bjlg.
i=1 F=1

We say that a system of real-valued functions g,(t), g,(f), ..., gx(f)
defined on the positive half-line is relatively measurable, if for all systems
k

Ty, &gy ..., @ Of real numbers the sets (M) {{: g;({) < x;} are relatively
i=1

measurable.

For every interval I = [a, b] and for every function f we shall use
the following notation: f(I) = f(b)—f(a), I+t = {u+t: uel}.

We say that a function f(t) is a relative process with independent in-
crements, if for every positive integer & and for every system I,, I,,..., I,
of disjoint intervals the system of functions g;(t) = f(I;+1)(j =1,
2,..., k) is relatively measurable,

2 ke
(1) |t £ 40 <@l = [T 1t FT40) < 2}l
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for each x,,,, ..., 7; and
(2) F(I,x) = |{t: f(I+1) <}

for every interval I is a probability distribution funection, i.e. is a mono-
tone non-decreasing function continuous on the left, with F(I, —oo) = 0
and F(I,o0) = 1. The concept of relative processes has been propo-
sed by H. Steinhaus (see [12], [13]). It should be noted that it suffices
to require condition (1) for systems of disjoint intervals I,,I,,...,[;
such that the closed intervals I; and I;, (j = 1,2, ..., k—1) have a com-
mon point.

The following non-effective existence theorem for relative processes
with independent increments was proved in [13].

Let f(t, ») be a measurable separable homogeneous stochastic process
with independent increments. Then almost all ils realizations f(t, w,) are
relative processes with independent increments and

(3) {t: f(I+1, wo) < @}|p = Pr{w: f(I, 0) < z}.

Some effective examples of Poisson relative processes, i.e. relative
processes with independent increments having Poisson distribution
were given in [12]. An example of a Gaussian relative process was given
in [14]. The aim of the present paper is to give a combinatorial construc-
tion of relative processes with independent increments having conti-
nuous distribution functions (2). We shall first discuss some simple pro-
perties of distribution functions associated with a relative process, which
enable us to formulate the main result of this paper. We note that a simi-
lar problem of arithmetical modelling of sequences of random variables
was considered by several authors. For a complete treatment of this
subject the reader is referred to the paper [10] by A. G. Postnikov,
where further references to the literature can be found.

2. Distribution functions associated with relative processes. It
is very easy to see that for every relative process the equation F(/,, z) =
F(I,,x) holds whenever |I;| = |I,|. This fact permits us to introduce
the notation F(x) = F(I,«), which is more convenient for our pur-
pose. Thus to every relative process with independent increments there
corresponds a one-parameter family {F;}, , of distribution functions
completely describing relative measures (1).

THEOREM 1. The family {F}., associated with a relative process with
independent increments is a one-parameter semi-group under convolution,
i.e. F"l *F!2 = F¢l+32.

Proof. Let # be an arbitrary continuity point of the distribution
function F, * F,. For any positive number ¢ we can find a system
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T, < &y < ...<x, of real numbers such that

(4) D Py (@—a)(Fyy(@y,0)— iy () < By x Byl@)+ -,
i=1

(5) ,2 Fy(@— 0y41) (Foy (@741) — Fy (@) > Fy % Fpy(@)—,

(6) Fo@) <~ and 1-Fy(@) <

Consider the intervals I, = [0, ¢,), I, = [t;,#+1t) and (I; =
= [0,2,+1,). Put
A.(x) = {t: f(I,+t)<a} (r=1,2,3).
Of course,

(1) 4@ = Fy(@), |4:@)z = Fu(@), |43@)lz = Fipe(a).

Since f(I3+1) = f(I,+1t)+f(I,+1), the set A;(x) is contained in
the union of disjoint relatively measurable sets

n—1
Ay (@) c Ay(@y) o Ay (@) v H Ay (@—25) ~ (Ag(271)\ A4 (2))
and contains the union of disjoint relatively measurable sets
n—-1
45(@) > H A (26— 2540) A (‘Ai(mf-f—l)\AS(wf))'

Hence, by virtue of (1), (2) and (7), we get the inequalities
Ftl-{—t,{m) < ]As(ﬂh)ln—l‘ |A;(xn)|R+

n—1 n—1
+ D) 1Ay (@— ) ~ Ay(@0)lr— D) |4 (@—31) ~ Ay ()|
i=1 j=1

n—1

= Fy, () +1—Fy,(2,)+ 2 Fy (@ — ;) (Fy, (1) — Fo, (7)),
=1

n—1

F=1+t=(-"?) = 2 [Al(:'v_m}'+l)"‘(Aa(w1+l)\A2(wf))|R
F=1
n—1 '

=,§ Fy (o — 1) (Foy (@7,0) — Fy (27)).-
By (4) and (6) the first inequality yields
Fy,(@) < Fy % Fy (@) +e
and, by tﬁ), the second omne yields
Fy (@) = Fy * Fy(x)—e.
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Since & can be chosen arbitrarily small, we obtain the equation
Fy 4, (@) = Fy * Iy, (@) in all continuity points & of the function Fy x Fy .
Hence and from the continuity on the left of both functions F ,, and
Iy % F;, we get the desired result. Theorem 1 is thus proved.

It follows from Theorem 1 that the distribution functions /, asso-
ciated with a relative process with independent increments are infinitely
divisible. Let ¢, be the characteristic function of ;. Then ¢;(s) == 0 for
all positive ¢ and all s. Since, by an argument of IFubini’s type, F,(x)
is for each @ a Lebesgue measurable function of f, we have, by Theorem
21. 4.1 in [6], the equality ¢;(s) = (ps(8))' (£ > 0).

Now consider an arbitrary characteristic function ¢ of an infinitely
divisible law. By well-known theorems of Kolmogorov ([8], III, §4)
and Doob ([2], p. 61 and p. 418) there exists a measurable separable
homogeneous stochastic process f(f, @) such that the characteristic fune-
tion of the increment f(I, w) is equal to (qn(s))?‘". Thus, by the theorem
quoted in Chapter I, there exists a relative process having distribution
funetions F, which, by (3), are probability distribution functions of cor-
responding increments of the stochastic process in question. This yields

THeoreEM 2. A family {p}., is a family of characteristic functions
of distribution functions associated with a relative process with independent
inerements if and only if @(s) = (rp(s))‘, where ¢ is a characteristic func-
tion of an infinitely divisible law.

We note that the expression (¢(s))’ = exptlogg(s) is uniquely de-
termined by defining logg(s) to be continuous and vanish at the origin.

In the sequel a semi-group of distribution functions whose charac-
teristic functions satisfy the condition of Theorem 2 will be called ad-
missible. From Theorem 2 and Lemma 3 in [13] (Formula (30); see also
[1], Theorem 1) it follows that either all distribution functions from
an admissible semi-group are continuous or all distribution functions
are discontinous. In the first case the distribution functions F,(x) are
continuous as functions of two variables z and ¢ > 0.

3. Admissible sequences of integers. Let F be a distribution fune-
tion. By S(F) we denote the support of F, i.e. the smallest closed subset
I such that [dF (z) = 1. In other words, x«S(F) if and only if F(z—h) #

I

# F(x-+h), where h is arbitrarily small and positive. Denoting by £ the
closure of a set K and by F,-}E, the set {z+y: well,, yell,} we have
the formula

(8) S(Fy % Fy) = S(F)+8(F,)
(see [D], p. 275). In what follows we shall use the notation

a(F) =inf{w: F(x) >0}, b(F)=sup{w: F(x) <1}.
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LEmMMA 1. Every continuous infinitely divisible distribution function
F is strictly increasing in the interval (a(F), b(F)).

Proof. The characteristic function of an infinitely divisible distri-
bution function F is given by the Lévy-Khintchine formula

fus )1+u

1+4?] o aeil )}

@(8) = exp {e‘ys-}- f(e‘:‘“ul—
where y is a real constant and G is a monotone non-decreasing bounded
function with G(—oco) = 0 (see [4], p. 76). If the distribution function
F is continuous, then

(9) ‘ [w?aG (u) = oo

(see [13] Lemmas 2 and 3 or [1], Theorem 1).

To prove the Lemma it suffices to show that the support of F is
connected. If G(04+)—G(0—) > 0, then F contains a Gaussian com-
ponent and, consequently, by (8), S(F) is the whole straight line. The-
refore suppose that G(0+)—G(0—) = 0. Then, by (9), we have the ine-
quality G(co) > 0. Consequently, for sufficiently small positive numbers
¢ the integrals

1+u

dG (u)

|t]=8

are positive. Moreover, from (9) it follows that there exists a sequence
€1y €9y .er (n#0, mn=1,2,...) tending to 0 such that

(10) gmeS(H,) (n=1,2,..),
where the distribution function H, is defined by the formula

+ u?
9 dG(u)!

H 1
(11) Hy(@) = 6" [ ga(w)

%n 18 the indicator of the set {u: |u| > }|e,|} and

Consider a compound Poisson distribution function

F,=¢"n H*" (=T1,8,.:)s

bFa

=
1
=
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where HX (z) = 0, if 2 <0, HX (@) =1, if 2> 0 and H}*™) = H* « H,
Since

S(F,) = g S(H)

([6], p. 277), we infer, by virtue of (8), that S(F,) is the least closed ad-
ditive semi-group of real numbers containing 0 and S(H,). Hence and
from (10) it follows that S(F,) contains an |e,|-net. Let F, be a distribu-
tion function with the characteristic function

1/2)en

: " ius \ 1+u*
ya(8) = exp {3(?+y1:.)8+ f (6 w_1— 15 u") T -d’-ﬁ(u)}s
—1/2ey '

where
Yo = — f wrdG (u).
]u[‘;vl[ﬂ|¢ﬂ|
Since the characteristic function ¢, of F, is equal to

exp (c,l_ f(em—l) dHn(ﬂ)) ’

we have, by (11), the equation ¢(s) = ¢,(8)vy,(s). Thus F = F, % F,
and, consequently, by (8),

S(F) = 8(F,)+8(F,) (n=1,2,..).

Since S(F,) contains an |g,|-net, the last formula implies that for
any »n the support S (F) contains an |¢,|-net. Thus 8 (F') is connected, which
completes the proof.

Let {F};, be an admissible semi-group of continuous distribution
functions. By Lemma 1 each function F, is strictly increasing in the
interval (a(F,), b(Ft)) and, consequently, has an inverse function F;'
in this interval. Of course, the inverse function F;! is continuous in the
open interval (0, 1). Let w, be the modulus of continuity of the function
F,;, on the whole real line and let w, be the modulus of continuity of
the function Fy, in the interval [#~*,1—n"%] (n =2,3,...). It is
obvious that we can find a sequence r,, r;, ... of positive integers satis-
fying the condition

(12) o, (0, (7)) =0(n”') as  nm —>oo.

Every such sequence associated with {F},_, will be called admis-
sible. It should be noted that for admissible sequences r,,7;,..., by
virtue of the inequality w,(w,(k)) = h, the asymptotic relation
(13) rm'=o0(Mm"") as n-—>o00
holds.
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As an example we shall present admissible sequences associated with
semigroups of symmetric stable distributions. Consider a semi-group of
distribution functions F; with characteristic functions

(14) p:(8) = exp(—t[s|),

where o is a constant satisfying the inequality 0 < «a < 2. Of course,
for « = 2 we have a semi-group of Gaussian distributions.

We shall prove that each sequence r,,rs, ... satisfying the condition
(15) imr;'n** =0 o a<2,
N—p00

or the condition

(16) . limr'at<oo if a=2
N—0C
is admissible for a semi-group of symmetric stable laws with exponent a-
It is well-known ([4], p. 183) that each stable probability distribu.
tion is absolutely continuous and its density function is bounded on the
whole real line. Let p(a,x) be the density function of F,(x). Since, by
(14), F,(x) = F,(xt~"%), we have the inequality

(17) 0 (h) = oy (n'*h) < o',

where ¢, is a constant. Furthermore, we have the equation for inverse
functions F;'(x) = t""F; (). Hence we get the formula

“Ye sup |F7 (y,)—Fr ' (y2)

where the supremum is extended over all y,,y, satisfying the condi-
tions |y, —ya| <h, n <y, ¥y, <1—n"* Since the distribution F,
is symmetric and unimodal (see [7], [16]) the above supremum is not
greater than p(a, x,) 'h, where z, is defined by the equation

wn(h) =n

(18) P (x,) =1—n"2.

Thus
(19) wn(h) < np (a, @,) " .

For a < 2 there exists a positive constant ¢, such that
(20) lim z°(1—F, (#)) = ¢,

(see [9], p- 201 and [4], p- 182). Moreover, from a Wintner’s result ([15];
see also [11]) we obtain an asymptotic formula

1
lim &' “p(a, 2) = —I'(1+a)sin i;—.
™

T—r0Q
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Hence and from (18) and (20) it follows that there exists a constant
¢y such that p(a, )" < en*™* (a < 2). Thus, by (17) and (19),

wa(0n(h)) < en***'h (a < 2),

where ¢ is a constant. Hence it follows that a sequence 7y, rs, ... satis-
fying (15) is admissible for a < 2.
L o)

If @ =2, then
and lim w(l —F, (a))exp (2?/4) = =~ (see [3], p. 131). Hence and from

p(2,2) =

(18) 113 follows that p(2,2,)"! < ¢, 'n?, where ¢; i8 a constant. Thus,
by (17) and (19),

wp(wn(h)) < cap'nh  (a = 2),

where ¢ is a constant. Since lim w, = oo, each sequence r,,7;,... satis-
Te—p00

fying (16) is, by the last inequality, admissible.

LEMMA 2. Let {F;},., be an admissible semi- group of continuous di-
stribution functions and let ry,r,, ... be an admissible sequence associated
with this semi-group. If s,,s,, ... -is a sequence of integers satisfying the
condition

(21) lim 2 — g0,

N0

then for every real number x we have the Sformula

i 3oy o- S

where the summation 3 is extended over all systems kl, kay ooy ks, of in-
legers satisfying the condition 1 <k; <r, (i =1,2, n)

Proof. For brevity we introduce the notation

(22) A4, (x) = ZFlm(m——ZFI‘m( ))(i*;.,,,-i-l)_sﬂ .

Let p, and g, be integers satisfying the conditions P =1, gp <1y,

n— 1 1 w1 1 w2
P <pn qnt e _<Q+

R | <?Hr,,+1’ T n r,+1°

)) (rat- 1)~ = Fa(a),

(23)
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Put

(24) B.(2) = ZF;( me( n+1)) (ra 1),

where the summation ) is extended over all systems k,, ks, ..., ks, of
*

integers satisfying the condition p, <k < ¢, (i=1,2,...,8,). By a sim-
ple reasoning we obtain the inequality

n Sn ki
a@)—Ba@)] < Y Zpl,,,(m_ e, +1)) (1),
i=1 () i=1 n

where the summation ) is running over all systems k,, ks, ..., ks, of

. 0]
integers satisfying the conditions 1<k <7, (i=1,2,...,8,) and
k; # Puy Put+1ly...,8.—1,¢,. Hence we get the inequality

|4 (%) — Bp(@)] < 80(Pn— 1+ 70— ga)rin (ry+1)""
< 8 (Pt Ta—gu) (ra+1)7".
Finally, taking into account (13), (21) and (23), we obtain the formula
(25) lim (4,,(¢)— By (@) = 0.
Consider the expression

(26)  Cal2)

Ty +1 Thp 1 Fhg +1 By
=3[ [ [ Pule— Y a)dl (@il @). . .aF ),
* le aki a-"s” i=1
where
k
(27) Fl;n(_r +1)
n
Since
a
T'de‘ @y kL R 1
e 1l a1 r,+1°

a;
g
the expression (24) can be written in the form

Gy +1 Okp+1 PRy 1

B@=3 [ [ o [ Fiulo— a)dBp@)dFna).. . aua,).
i=1

* a"l akl k‘n

Colloquium Mathematicum XII 9
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Thus
(28)  |B,(z)—0,(x)]
n Urtl %hgtl  Okg +1
< o Ylw—ad)) [ [ o [ AR (@) APy (@)...dF,, (o, ).
* P=1 ! ﬂkl a"'z aksu

Since, by (23), the interval [p,/(r,+1), ¢a/(r,+1)] is contained

2

in the interval [» *,1—n""], we have the inequality

s kt"i“ l 3 ki = ’ =
F”:‘(m——kl_) —Fia (m)} < on(rat),
whenever p, <k; <g,. Thus, by (21) and by well-known formula
o, (mh) < mwy(h) (m =1,2,...), inequality (28) implies

@1 — g | =

|BH (w) _Cﬂ (m” = 85 Oy ((U.:l (}'; 1)) = dn w”[w;(r; I)) + 0 (1 ) s
which, by (12), yields
(29) lim (B, (x)—C,(x)) = 0.

Further, from (13), (21), (23), (26) and from the formula
F{sn-;-lj,m(m) = FT;[;""'”

00 00 00 8
" f f J Fy, (I_E‘Bi)dpl_’n () dF,p, (@,).. . dF, ()
-0 —00 —00 i=1
it follows that
oy o
0 < Fiyrnn@)—Cu(@) <o [ alyu(@)+ [ dPy(y)
= Uity 1

1
= 3;1.(—1?-" 41— gﬂL—-) = o(1).
rn+1 Tnt1

Since, by (21), lim Fig .y (@) = Fa(x), the last inequality together
with (25) and (29) implies the assertion of the Lemma.

4. A combinatorial construction of relative processes. In this Chapter
we shall give an effective combinatorial construction of relative proces-

ses with independent increments having continuous distribution fune-
tions.

THEOREM 3. Let {F.},_, be an admissible semi-group of continuous
distribution functions and let vy, ry,... be an admissible sequence of inte-
gers associated with this semi-group. For every n > 2 let <k{P, kP, ..., k™),
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j=1,2,...,7", be a sequence of all ordered ro-tuples of positive integers
not exceeding r,. Put a, =1*, b, = Z'r;”'r‘*"sﬂ n>=2), b, =0,
8=1

H(it)=0,if t<0 and H(t) =1 if t > 0. Then the funetion

Wy 41041 B kgg}
f(t) —Z Z Z Z F”},(m)x

(n_ 1}1““&”+ (J_ 1)rﬂ+ (1’_'}) )
n

X H(t-bﬂ_l—

18 a relative process with independent increments. Moreover, {F}, , is the
family of its distribution functions.

Proof. Consider a system of intervals I, = [¢,_,,¢,) (p = 1,2, ..., k),
where ¢, = 0. In what follows we assume that the index n satisfies the
conditions #» > 2 and min |I,| > 2n~'. For every such index »n we can

l<p<k
define an auxiliary system of intervals
Upp O
IP??- —= m) '.l"':k)s

where u,,, v,, are integers,

(30) Uy = 0,  Mep_; KUy, S0, +1, nep—1 < vy, < ey,
(p=1,2,..., k)

and

(31) un+1,n=”1m+1 p=1,2,...,k—1).
Of course, I,, I, (p=1,2,...,%) and

(32) Iim |L,,| =L, (p=1,2,...,k).

T—e00

Moreover, by (31), the distance between two consecutive intervals
I,, and I,,,, is equal to n~'
Let us introduce the notation

(m—1)r,a, Mmry, ay,
U(ﬂ’! m) = ﬂ l+_—ln'_'_ b?‘l jiinf ’
where m =1,2,...,n7,,,8,,, and n =2,3,.... Further, for any sys-

tem ¥,,%s,...,¥; Of real numbers we put

(33) A(nym; Y1y Yay -y Up) = ﬂ{t L+t e Umym), f(Ipn+1) < Yp}-

By the definition of the functmn f the distance between its con-
secutive jump points in the interval U(n,m) is equal to n~'. Put

(34) Wpn = Vppn— Upp (P=112!"‘1k}'



142 K. URBANIK

If 1,,+1, is contained in U(n,m), then the interval I,,+t, contains
exactly w,, jump points of the function f. Furthermore, the same jump
points belong to every interval I,,+¢, where ¢ is taken from an inter-
val of the lenght n~' containing #,. Thus as n — co we have

(35)  A(nym; Y, Yoy ooy Yu)l = n7a(0y M5 Yy Yoy oeny Yo)+O(07)
k
uniformly in m, where a(n, m; ¥;, ¥a, ..., i) is the number of all Dl Wy~
p=1
-tuples of consecutive jump points in the interval U(n,m) such that the
sum of w,, first jumps is less or equal to y,, the sum of next w,, jumps
is less or equal to y, and so on.
Now we shall establish an asymptotic formula for a(n,m;
Y15 Yay +-+5 Yr). The jump points of the function f in the interval U(n, m)
are of the form
{_ﬂ%__ 1)rya,+ (j"_l)rn'l' (3'—1)

by 1+ 5 - (£=1,2,..,7;j=1,2,...,a,).

k
We note that the number of }'w,,-tuples of consecutive jump
p=1

points in U (n, m) conta.inilig at least two jump points with different
k

indices j is not greater than a, ) w,,, which is of order o(r,a,) uniformly
p=1

in m as n —oo. Consequently, the number a(n,m;y,, ¥Ys, ..., ¥s) is
k

equal, with an accuracy o(r,a,), to the number of all D wp,-tuples of
p=1

consecutive jump points in U(n,m) corresponding to the same index

J and satisfying the requirements formulated in the definition of

a(n, m;Yiy Yay ..., Yx). In other words, the number a(n, m; y,, Yg, ..., ¥i)

is equal, with an accuracy o(r,a,), to the number of all pairs (j, s>
k

(1=1,2,...,a,5 $=0,1,...,7,— D'w,,) for which the following in-
p=1

equalities are true:

where
»
=0, Zu=Dwy (p=1,2,..,k.
g=1

Further, the last inequalities are equivalent to the following ones:
Epn

i [
(36) ICL:)_ 1,nt1+4 8,7 g (‘r-n-—i— l)Fl{-n. (y_u T 2 Fl;?]n ( rﬂi 1 ))

(»p=1,2,...,k).

v’uzp_l'n+2
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From the definition of r,-tuples <{?,%(?,..., %>, by a com-
binatorial argument, it follows that for any fixed index s the number of
indices j satisfying (36) is given by the formula

. 3
2»-"“!1 l_("nﬂ)Fun(y”_. f F‘_’:‘(fndrl))lr

t=2p—1,n+2

where the summation is extended over all systems d,; (i =z, ,,+2,
% P =1,2,..., k) of integers satisfying the condition 1 < d,; <r
and [z] denotes the integral part of x. Setting

n

(37) Spn = Zpn—p_1a— 1 =Wp,—1 (p=1,2,...,%),

we can write the last expression in the form

o [J[ S5l Srsa(e) evsars] oo

p=1 L (p) i=1
where the summation % is extended over all systems k,, kp, ..., Kpspy
of integers satisfying the condition 1 <k,; <7, (¢ =1,2,...,8,,). More-
over, since this expression does not depend on the index s and 0 < s <
< Tn— %, the number of pairs (j, s) satisfying (36) and, consequently,
the number a(n,m;¥y,, ¥y, ..., y;) are given by the formula

O (T — Zin) ﬁ IZFW Z wln(?f;l
p=1

: ))(?‘n+1}"’p"J +o(rua,).
(»)

From (32), (34) and (37) it follows that lim s,,/n = |I,| and
=00
2 = O(n), which, by (13), implies 2, = o(r,). Thus, by Lemma 2 and
formula (35),

k
(38) Ay M5 Y1y Yoy oeey Yi) = 'n']“r%aﬂ F]I. (Yp)+ O(R_lfnan)
Pp=1 ®

uniformly in m.
Now consider the set

(39)  By(n,m;e) ={t; Iy+1 = Un m), |[f(Ip+t)—f(Ipm+1)| > e},

where ¢ is a positive number. By (30) we conclude that if the interval
I,+t is contained in U(n,m), then the set (I,+t)\(Ip,+t) contains
at most two jump points of the function f. Thus the function f has a sal-
tus of absolute magnitude greater than ¢ in the set (I,+¢)\(I,,+1)
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whenever teB,(n,m;e). Since, by (30)

[(Ip+ N\ Tpn+1)| < 2n~! ’
we have the inequality
(40) - |Bp(n, m; )| < 2""1'511{“’! m; e),

where b,(n,m;¢) is the number of jumps of the function f in U(n,m)
of absolute magnitude greater than %e. In other words, b,(n,m;e¢) is
equal to the number of integers k(Y (i =1,2,...,7,; j=1,2,...,a,)
for which

1/n

Ky )
) :
(rn+1 !>%s

Since the last inequality is equivalent to the union of two inequalities
MY < Fy(—%e)(rat+1), kP > Fyu(de)(rat1),
we obtain by a simple combinatorial reasoning an estimation
by(ny m; €) < @n(rp+1) (1 —Fyjn(be) +Fyn(—1e)).
Hence, by (40), we get the inequality
(41) |Bp(n, m; €)| < 207 'ag (ra+1) (1—Fyu(de)+Fyjn(—2e)).
Further, setting
(42) Cp(n,m) ={t: Ip,+t =<« U(n,m), I,+t & U(n,m)}v
o({t: I+t = Un, m)IN\U(n, m))o(U(n, m)\ {t: I+t < U(n, m)}),
we have the inequality
(43) [Cpln, m)| < 207" 42|L,.

For every positive number &, taking into account (33), (39) and (42),
we obtain the inclusions

k
U(n, m)~ Q {t:f(f,,—l—t} < w‘p} < A(ﬂ'? M; X+ &y Lyt €y ouvy Tt &)
P=
k k
v U By(n, m; e)o U Cy(n, m),
p=1 p=1
k
An,m;e,—e, 8y— €y ..., L—e) = U(n, m)~ r"l] {t: f(Ip+1) < 2p}o
P=

k k
v U By(n, m; B)UPLJI Cp(n,m).

p=1
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Hence and from (38), (41) and (43) we get the inequalities
k k
@) [Ummn () AT+ 0 < 5| <n'raa, [1 i@+ o)+
‘ p=1 p=1 »
+27‘”_1’%%(1—-Fl,-'u(is)"l‘Flm(“ie))‘Fo(ﬂﬁlrn“n)s
k & _
45) U, m)n N {t: fIp+1) < o} > 0700 [ [ Fipy(@p— o)+
p=1 #

=1

+ 280" rnan(Fyn(}e)— 1— Fyyu(— )+ 0 (07, a)

uniformly in .
By the definition of numbers a, and b, for every positive number
T there exist integers N and M satisfying the conditions

Mryay (M+1)rya
- =T <byy b ——

bN—1+ 1 ‘-<=.. .M -.<._‘ NTN+‘aN+1.
Since by_, > ryayry_,ay_,, we have N~'ryay = o(by_,) and con-
sequently, N~'ryay = o(T). Thus

Mryay

T = bN-I'l' N

+o(T).

Further, taking into account the decomposition

MrNaN) N1, 4 1841

M
N =U U U(n, m)v ) U(N,m),
=2 Mm=l m=1
the formula |U(n,m)| = n'r,a, and the limit relation for e > 0,
].im(th”,,_(isH—Fm(—is)) =0,
o0

we obtain, by (44) and (45), the inequalities

(OabN_1+

k k
N :fI+) <@} ~[0,T) < T [ [ By (2p+e)+0(T),

k d k
N T+ ) <@} a[0,T) > T [ P, (@,—e)+o(T).

p=1

Hence we get the formulas
k

k
,Q: {t:f(IL+t) <m) < IJFlfpl{m,,+e),

Rk p=1

k
P [ B,y (@o—e),

p=1

k
Ql {t: f(I,+1) < Tp}

Colloquium Mathematicum XII 1w
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which, by virtue of the arbitrariness of ¢ and the continuity of distribu-
tion functions Fyp, (p=1,2,...,k), imply the equality

k k
m {t:f(I.ﬂ—!- t) < xp}‘ = H.F”P: (ﬂ?’,).
p=1 (R p=1

Thus the funetion f is a relative process with distribution functions
{Fi}t~o, which completes the proof.
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