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DIRECT LIMITS OF TOPOLOGICAL SPACES AND GROUPS

BY

J. MIODUSZEWSKI (WROCLAW)

The purpose of this paper is to define the direct limit of completely
regular topological spaces and the direct limit of topological groups.
The first problem has a solution in a paper of Vegrin [6]. The problem of
introducing at once topology and group operation into direct limit set
was considered by Chogoshvili [2] and Berikashvili [1] and was solved
for direct systems consisting only of compact or only of discrete groups,
by using the duality theory of topological groups.

At the beginning, we recall the notion of direct system and direct
limit in general categories. In section 2 we introduce a notion of the clo-
sure of an equivalence relation. In the case of topological compact spa-
ces this notion, which is in fact dual to the notion of the closure of sub-
sets, is connected in a natural manner with topology. We define the
drect limit of completely regular topological spaces as the quotient space
of Cech compactification of the disjoint sum of spaces of direct system
by an equivalence relation which is the closure of the equivalence rela-
tion induced by mappings of the direct system. We show in section 5
that in the case when the objects of the system are topological
groups, the limit defined in this way admits a continuous group oper-
ation.

1. Direct systems and direct limits in general categories. Let %
be a category (). Let M be a directed set considered as a category: objects
of M are elements of (set) M, mappings are ordered pairs a < g, a, fe M.
An arbitrary covariant functor =: M — Z is said to be direct system
in category Z.

Direct systems form a category if Map(z,n’), n: M — &, a': M' - %,
consists of mappings defined as follows. Take a mapping (functor) p:
M — M’ such that a < f = pa < pf and define f: = — 2’ as a mapping

* (1) For the notions of category, functor etc. see Godement [4].
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of functors z — a'p, i.e. define f as a system of mappings f,: Xo = Xy,
ae M, with commutativity property

X,— X,

v

X, —> Xy
for a,fe M and o« < . Here X, and X, denote values of # at a and f
respectively (they should be denoted, in fact, by z(a) and =(f)), and
this notation will be used in the sequel. Mappings @(a < f) will be
denoted by ;.

Consider a covariant functor from category II1(%) of direct sys-

tem in Z into category Z. Such a functor is said to be direct limit in Z,
lim: IT(Z) — &, if the following properties are satisfied (see Grothen-

dieck [5]):

(1) there exist mappings x,: X, = limz, ae M, such that a < g =
= @, = w7 e

(2) if Y is an object of # and w,: X,— Y, ae M, are mappings for
which
(i) UgTy = U,
holds for every a, e M, a < f8, then there exists a mapping u: limz — ¥
uniquely determined by wu,, ae M, such that
(ii) U, = Uy

It is well known that functor lim is determined uniquely, up to an
isomorphism, by conditions (1) and (2) (see Grothendieck [5] and compare
with Berikashvili [1]).

2. Semicontinuity. Let X be a set and # an equivalence relation
on it. By the same letter # we denote the decomposition induced by
2% on X. Consider partial ordering of equivalence relations:

R <R = (@RY = aR"Y).
Denote by #° the identity and by #' the relation which holds for

every pair of elements of X. We have #° < # < #' for every Z.

1. Intersection of %%, a €A, is a relation Z = () #° defined by
aed

xRy < xRy for every aeA.

2. Sum of #°, aeA, is a relation Z = |J #° defined as a minimal
aed

equivalence relation such that

xRy = xRy for an aeA.
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3. Cartesian product. Let X, aeA, be sets and #° equivalence rela-
tions on X,. The Cartesian product is a relation Z = P #*on X = P X,

aed aed
defined by
xRy < xR, for every aeA.

In the case of two equivalence relations #,7 we use notation
RAT, RoT and AXT .

Remark. Subsets are special cases of decompositions, namely,
subset A =« X may be considered as a decomposition o/ given by

Ay <z, yed or x =y.

The intersection of subsets considered as relations coincides with
intersection of subsets in usual set-theoretical sense.

A family R of equivalence relations on X is said to be semicontinuity
on X if

D1. #'<R,

D2. 2cR = (| #"«R for aed.
aed

Elements of R we call semicontinuous decompositions of X,

Let # be a decomposition of X. Denote by #* a decomposition of
X which is the intersection of all semicontinuous decompositions %
of X such that # < #'. By D2, #* is semicontinuous. We have

Ol. # < #*,
02. 2™ = A',
C3. Z2** = #*.

CL. (BT >R T™.

The inequality converse to C4 is not true in general.

Remark. Denote by A4 the sum of elements R ¢Z such that A~R # 0.
Let X be a compact space. We take as semicontinuous decompositions
of X all these decompositions # of X with the property: 4 < X is clo-
sed = Ag is closed. It is easy to verify that conditions D1 and D2 are
satisfied.

Therefore, the semicontinuity of a compact space X is canonically
determined by the topology of X.

Let Y be a subspace of X and R a semicontinuity on X. Denote by
Ry the family of decompositions of ¥ induced by R as follows: if #Z¢ R,
then the induced decomposition #j;e¢ Ry is given by

Y Ryy' = i(y)Ri(y"),

where ¢: ¥ — X is the inclusion map. It is easy to verify that Ry satis-
fies the conditions D1 and D2, i.e. that Ry is a semicontinuity on Y.

Colloquium Mathematicum XII 2
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We conclude that if Y is a topological space and X is a compactifi-
cation of ¥, then this compaectification induces canonically a semiconti-
nuity on Y.

3. Properties of mappings with respect to semicontinuity induced
by compactification. Let X be compact and f: X — Y continuous. It
is well known that the decomposition of X into f~'(y), yeY, is semi-
continuos, as it satisfies the property of the second remark of section 2.

We say that f annules Z if, for every Re#, f(R) is a single point.

Let ¥ < X and let #; be a decomposition of Y. Relation Zy indu-
ces a relation Zy on X given by a%xb < a,beY and aZyb. Consider
the closure #% of the relation Zy. Relation Z% induces in a natural man-
ner a relation in Y, which will be denoted by #}x and will be called the
closure of A3 with respect to the inclusion ¥ < X.

We prove some properties of continuous mappings with respect
to the semicontinuity induced by pg-extensions.

ProreErTY 1. If X, ¥ are completely regular, f: X — Y continuous
and f annules #, then f annules Z*, where A* is the closure of # with respect
to the inclusion X — fX.

Proof. Consider the diagram

X BX
\f L
Y —- BY

where f, is the Cech extension of f (see [3]). Denote by the same letter
# the relation induced by # on pX. Let #* denote the closure of Z in
B(X). It is sufficiently to prove that f, annules Z*, i.e. {f;" (W)}yepy > 2.
This inequality follows from inequality {fy'(¥)},.s» > %, which is true
by hypothesis, and from the fact that {f;'(¥)},c;r is semicontinuous.

PROPERTY 2. Let X 5 X" BX/#* be a sequence of mappings,
where BX [Z* is the quotient space and nx s the natural mapping (the topo-
logy in BX [Z* is the finest topology by which 3x is continuous). Letf: X — Y,
where Y is completely regular, be continuous and annulating #. Then the
sequence may be extended to the diagram

i, Ny
X% x5 px/a
T
Y 2> gy ¥ fur

Proof. It remains to define the mapping f,, and to prove the con-
tinuity of it. Let » = nx(x). We take f,4(r) = fi.(2). The mapping f,.
is well defined, as all # in question lie in the same element R of %#*, and f,,
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by Property 1, annules #£*. The continuity of f,, follows from the
implication (f¢ = h, g and h continuous) = (f continuous), which is true
for mappings of quotient spaces.

Let # and 7 be decompositions of X and ¥, and let (#Zx.7)* be
the closure of #x.7 with respect to the inclusion map ix, y: X XY —
— (X xY) Let gx,y: B(XAXY)—>B(XXY)(RXT)" be the natural
mapping.

PROPERTY 3. There exists canonical homeomorphism vy, yix, y(X X ¥Y)~
~nxix (X)X nyiy(Y).

Proof. Consider commutative diagram

XXY —— B(XXY)—> BXXY)/(RxT)"

Y |

< f . 9 l % i f**
BXXBY <> BXXBY|R*xT*,

where f(z,y) = (ix(2), ir(y)) and f, is the Cech extension of f.

Note that 5f,ix,y annules relation (#x.7)*. In fact, relation on
B(X x Y), which is the counterimage f,' of the relation #* x.7* on g(X) x
X fY, is closed. It contains the relation induced by i¢x,y and #X7.
Therefore it contains (% x.7)*. This implies, by Property 2, the exis-
tence of f,.

It is easily verified that f is a homeomorphism, relations on X x ¥
induced by (Zx7)* on (X x Y) and by #*xJ* on X x pY are equal.
Hence mapping fu.l7x.rix (X X¥Y) is a homeomorphism. It maps
canonically 7x,yix,y(X X Y) onto 7xix(X)X npiy(Y).

4. Direct limit of topological spaces. Let 2 be the category of com-
pletely regular topological spaces and continuous mappings. Consider
a direct system in %, ie. m=: M — Z.

Let S be a disjoint sum of X,, ae M, with a topology in which every
X, is closed-open and which coincides on X, with a given (completely
regular) topology 0.-f X,. Let ~ be an equivalence relation given by

&, ~ x; < there exists y: a%(x,) = 75 ().
Consider the sequence of mappings
S 5 B8 2 p8 |~

where ~* is taken with respect to gS.
We define
lim =z = %i(8).

We prove that lim=z satisfies axioms of section 2.

—
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1. lim is a functor. Let f: x — ' be a mapping of direct systems

n: M —~Z and a': M' — & given by f,: X, X,,, where p: M — M".
In order to define the mapping limf: limz — limz’, consider mapping

¢: 8 — 8" given by ¢ | X, = f,. Consider the diagram

i 7
8 —> B8 —— B8/~

@ . l‘?’t , ‘?’nl

v 1
8'—s B8’ —— B8’ [~'*

To prove the existence, note that, by commutativities fyz5 = m,5°f,,
a, fe M, mapping 7'i'p annules ~. Hence, by Property 1 and the uni-
queness of Cech extension of mappings, mapping 7'g, annules ~*,

The existence of ¢,, and commutativity of the second rectangle
of the diagram is a consequence of Property 2.

In particular, we have

Paani(8) = 71" (8').
Hence, we define
l_“_?f = @us | 7(8).
Now it is easy to verify that lim is a functor, by showing that lime, =
= €jm-~ and limfg = limf limg (proofs of these formulas will be omitted).
Introduce projections =,: X, —limz by formula
m, = i | X,.
By definition and commutativity of the diagram, we have
(imf) 7z, = wpafs-
Proof of (1). Let z,¢X,. We have x, ~ nj(,). This implies z,~*
~* mj(x,) and, in consequence, in(x,) = ina%(z,), i.e. m,(z,) = 7575 (2) -
Proof of (2). Let u,: X, - Y, where Y is completely regular, be

continuous. Consider «': § — Y given by «' | X, = u,. By (i), «' annu-
les ~, hence, by Property 2, we have the commutative diagram

§ —> B8 — plj~*
|’ Uy /

*
‘l’ J Y /’H,

Now, we define « by formula
U = Uyy | 73(8).

Commutativity (ii) follows from commutativity of the diagram.
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5. Direct limit of topological groups. Let X,, ae M , be topologi-
cal (completely regular) groups and my: X, - Xy, a < B, continuous
homomorphisms. We shall introduce group operation in the space limx

defined above and we shall prove that functor lim considered on category

of topological groups is a direct limit in this category, i.e. 7, and limf

are homomorphisms. -
Let ¢,: X, x X, —~ X, be group operation on X,. In order to define

group operation g¢:limz X limz — limz, consider continuous mapping

-—

v: XS —limz defined as follows: let (x,, Z)e X, X X,; =« xS and let

y>a and y > f; we define v(z,,x,) = nig, (7 (@a), 2(z,)), and this
is meaningful, for the right side does not depend on y. Now, we define

q.f = Uiy I nSxSinS(SXS)’

where v,, corresponds to v in the same manner as w,, to « in the dia-
gram of Property 2. Property 2 implies the continuity of ¢’. The compo-
sition
. . I . . ” 9
Ni(8) X i (8) ~ tg, sigys8 X 8 "> 1i(8) = lima,

where £ is the canonical homeomorphism of Property 3 for X = ¥ — §,
is the required group operation on limz = %i(S). In the formulas which

follow we write often 4 instead of ¢ and ¢,.
Neutral element is defined as the image #i of neutral elements of
groups X,. The inverse of zrelimz is defined as a mapping limz — lim»

induced by the mapping § — § which transforms z,e8 onto —z,. The
continuity of the inverse operation follows from Property 2.
Projections =, are homomorphisms. In fact, let Lo, Yo X,. We
have Jra(wu—I_ya) = nqu{xa? ya) = Dy quSiTSxS(mu! yﬂ) = ?)!nSxS‘£SxS($a? ,‘yn)
= ¢'h1sis(@a)y N5ts(Ya)] = Nsis(@a)+ Nsis(Ya) = 7a(@0) + 70 (¥,).-
Also limf is a homomorphism. In fact, let #,yelimz. We have

r = m,(%,), ¥ = m,(yYs) for an ae M. The calculation which follows is
obvious if we consider the following commutative diagram:

s . h
O Mg ﬁ(SxS)Eg—fﬁ{SxS)/{wav)**—f—’?’i(S)><??3'(8)
|
Voo v
S BS ] pS|~*
| f
v

P , !
n
Sr ﬁgr ﬁS’ /N’*
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Hence we have limf(z+4y) = 9'ifa(@+¥a) = 7'V [fa(@)+fa(¥a)] =
= T [fua (@) + Ful¥a)] = Tpa fa(@a) + Apafa(¥a) = U fr,(a) + Lim fr, (ya) =
= limf(2)+Lmf(y).
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