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1. Mycielski [10], answering a question of Marczewski and Ryll-
Nardzewski, proved that there exist sequences of positive numbers {ta}
such that for every sequence &, = 0,1 there is a continuous periodic
function f taking values ¢, at the points ¢, respectively. Lipinski [8]
exhibited a sequence {t,} such that every bounded real function on it
can be extended to a continuous periodic function. In both results it
is essential and sufficient that t,’s increase rapidly enough, e.g. in the
theorem of Mycielski at least as rapidly as (3-+4a)”, a > 0. This result
was strengthened by Ryll-Nardzewski who showed that for ¢, — 3"
a continuous periodic function with f(t,) = ¢, still can be found for any
sequence ¢, = 0,1. On the other hand, no sequence {?, = 0(2") has
this property [12].

Here we are concerned with interpolation by means of a continuous
almost periodic function (Bohr function, in the sequel denoted by a. p.).
More exactly, we are interested in two following properties of a subset
4 of the real axis L:

I: A has property I (or is an I-set or belongs to the class I: A el)
if every bounded, real or complex valued funetion on A which is uni-
formly continuous on A with respect to the usual metric of L can be
extended to an a.p. function over L.

I,: Terms and definition are analogous but the uniform continuity
is not assumed.

Obviously I, — I and the equivalence I, = I holds if o(4) >0,
where o(A) = inf{le—y|: 2 £ y; x,yeA}. Property I, will be applied
also to other groups than L: if ¢ is an Abelian topological group, then
the set A = G has property I, (is an I -set, Ael,), if every bounded
complex valued function on 4 can be extended to a continuous a.p. func-
tion on @.

Hartman [5] proved that no sequence {m;} (k integer) is an I-set.
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The same can be stated about any sequence n* (a > 0), because if a is
not an integer then {n'} is equidistributed on L [2], i.e. we have

r‘n

hm 2‘ f(n*) = hm ] f@)dt

for every a. p. function; hence f is uniquely determined by values it
takes at the points n“, even if one such point, ng say, is omitted. Thus
no a. p. function satisfies the conditions f(n") = 0 for n +# n, and f(n,) = 1.

We do not restrict our attention to sequences of points. We rather
ask about I-sets of the form (J7I,, where I, are (non-degenerated) inter-

vals. We intend to show that such sets do exist and we shall describe
a class of them. The main tool in our reasonings will be the Bohr com-
pactification of L. We shall use also Bohr compactification of other
Abelian locally compact groups. We remind: if G is such a group, we get
the needed compactification @ by passing to the dual group G, neglecting
its topology, thus obtaining a discrete group G4, and taking the dual
of G4. Another method to obtain @ is the mapping of ¢ by means of the
continuous homomorphism ¢(t) = {y(t)} (xe@) into the thorus of dimen-
sion card (G) and taking the closure of ¢(@) in it. If we understand by
an a.p. function on G a continuous a. p. function with respect to the
assumed topology, then, by the main approximation theorem, every

a. p. function, considered as a function on ¢(@), can be extended to
a continuous function over & and vice versa: if f is continuous on &, then
the function f(p(?)) is a.p. on G.

For any set A < G, A will denote the closure of ¢(A4) in G. We are
chiefly interested in the case @ = L and we shall use the notation L=FK.
Obviously, for ye L, 4(t) = ¢* for some real 2 and ¢ is a monomorphism.
So, in the sequel, for any A < L, A denotes the closure of A in the topo-
logy of K (the “weak” closure), whereas A means the usual closure in
L (note that A c A).

The first example of an application of K may be the immediate
proof of the following proposition:

If a> 0 is not an integer, then no non-constant 0-1-sequence can be
identic with the sequence f(n") for any a.p. function.

In fact, the sequence {n“} is equidistributed and thus dense in K.
The group K being connected, no 0-1-function can be continuous on its
dense subset unless it is constant.

Another application of the Bohr compactification method will
appear in the proof of the next theorem, which is not a new result, since
it was stated (without proof) e.g. in [10]:
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THEOREM 1. For a subset E of an Abelian topological group G lo be

an I-set it is sufficient that every function on E taking values 0 and 1 can
be extended to a continuous a.p. function over G.

Proof. The assumed property is equivalent to the fact that every
0-1-function on F can be extended to a continuous function over E. But
then it still must be true for every function on E assuming only a finite
number of values because of its being a linear aggregate of 0-1-functions.
Now, if a bounded function h(f) on E is given, we represent it as a uni-
form limit of a sequence {h,} of functions with finite range. Since every
h, can be extended over F, the same holds for their limit function h.
Tt remains to extend A continuously from £ to the whole group a.

Tt is obvious that in the above theorem the values 0 and 1 can be
replaced by any two distinet complex numbers.

Using Theorem 1 we immediately see that a set E is an I,-set if and
only if it has the following property:

(S,) If E is split arbitrarily into two parts, then these parts have
in @ no cluster point in common.

It is also easily seen that the closure in G of an infinite I,-sequence
in G is homeomorphic to the Cech-Stone compactification f(N) of the
set N of positive integers. Thus the existence of sequences in L which
are I,-sets implies that K contains topologically the space f(N).

The existence of I-sets which are unions of infinitely many inter-
vals of length 1> 0 is an obvious consequence of the results in [10]
and [8], quoted above, and of the following

THEOREM 2. If A = L and 1> 0 are such that every subset Z < A
with ¢(Z) =1 is an I-set, then the whole set A is an I-sel.

The proof will be based on four lemmas.

LeEMMA 1. If f is a bounded real function defined on a subset E of a nor-
mal topological space X and the closures of the sets {xeB: f(x) < a} and
{weB: f(x) > b} are disjoint for any numbers a and b > a, then f has an
extension to a continuous function on X.

The proof can be omitted.

LEMMA 2. A set Z < L is an I-set, if and only if it has the following
property:

(S)if 8,7 <Z and dist(S,T) >0, then S8~T = @.

The Lemma follows from Lemma 1 by putting X = K.

LEMMA 3. For every aeK and any numbers 1, ¢ > 0 there exists in K
a neighbourhood U = U(a,l,¢e) of a such that if x,yeL~U then either
lz—y| =1 or [x—y| < e.

This follows from the fact that the topology of L and that of K
coincide on segments [a,b] the latter being compact.
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LemMA 4. If aeX\X, where X < L, then for every 1> 0 there
exists a set T <= X such that o(T) =1 and aeT.
Proof. We put I, = [nl, (n+1)1], P, = Xnlsy, Q= Xnlyy g,

(1) szPny Q= L;'Qu-

Obviously we have X = Pu@, hence ae PU@. Suppose that aeP
(otherwise the proof would be analogous). Let us introduce the sets

Ft = Ula, 1, 1/k)~P,.

We obviously may assume that Ula,l,1/(k+1)) c Ul(a,l,1/k).
The diameter of Fj is <1/k and we have FF o Fi+l,

We now define the sets Z, as follows: if F} — @, then Z, = P,;
if r(n) > 1 is the first index k such that Ff = @, then Z, — M Fk, and

k<r(n)
if all sets F¥ are non-empty, then Z, = (M Fi; in the last case we put
k<oo

7r(n) = oco.

Let N, be the set of those n’s for which P, = @. For each
nelN, we select a point 7,¢Z,. We will show that « is a cluster point of
the set {r,: meN,}. In fact, if V is an arbitrary weak neighbourhood

of the point a we choose another neighbourhood V' and a k > 0 such that

1 1
(2) Vi4+scV for ——<sg<-—.
k k
In view of aeP and formula (1) there exists a real number { and
an integer n, such that

1
teV' U(a, E, k—}-—l) f"\Pﬂ“.

Then r(n,) > k+1 and, consequently, [t—7y,| <1/(k+1), since
t, Toye 0", and finally in view of (2) we obtain 7, ¢ V. Since 7, <P, c X,
we have 7, # a by the assumption aeX\ X.

The points 7, belong to P, by definition, but they need not belong
to P,. Therefore we replace points 7, by t, P, in such a way that [th— 70| <
< d/n, where 6 is the distance of a from P or § = 1 according as to a
is a real number or not. Then ael', where T = {1,: neN,}. Since by
definition of the sets P, we have o(T) > 1, the lemma is proved.

Now we proceed to the proof of Theorem 2. If the assertion would
not hold, then by Lemma 2 there would exist two subsets P,Q c 4
such that dist(P,Q) =&>0 and P~Q # @. If ae P~Q), we put

P1=Pr\U(a,l,s), Q1=QHU(Q!I!£)-
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On account of Lemma 4, there are two subsets T < P, and § < @,
such that o(T) =1, ¢(8) =1 and

(3) acf~Q.

Then ¢(7TwS) =1 and in view of our assumption we get T'uSel.
But this leads to a contradiction, since (3) shows that 7~8 # @ and so,
by Lemma 2, T'uSel.

We finish this section by the remark that no set consisting of inter-
vals I, of unbounded length is an I-set. It follows from the fact that the
mean value

lim —— f ft
T—eo 21 T

of an a.p. function is reached uniformly in x and therefore, if |I,| — oo,

there is no a.p. function such that

f(t)ydt =0 or 1
|I| f

according as to n is even or odd. It is also easy to prove that a function
which is linear in each I, and reaches from a constant m to a constant
M > m cannot be extended to an a.p. function.

One negative result more is worth mentioning: there is no sequence
of reals {t,} such that for any bounded sequence {e,} a trigonometric
polynomial (with real exponents) could be found, taking values e, at
the points 7, respectively. We omit the proof.

2. Let us denote by I, the unit interval [0, 1] and by I its arbitrary
translation: I = a-+1,, where a is any element of K.

We now remind that a function f(¢) defined on L is called almost
periodic in the sense of Stepanoff (S-a. p. ), if it is the limit of a sequence
of trigonometric polynomials 2 a,e’" in the S-norm

fi=1
41

Iflls = Sllpf If(s) ds.
LA

Let A « L be an I-set. We shall consider only the case that A is
the union of disjoint unit intervals (the existence of I-sets of this kind
was stated in section 1). Hence A can be represented in the form

where E is the set of the left end-points of the components of 4. Con-
sequently we have
(2) 4= E‘i‘L}
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(remember that I, is a compact set!). Further for a function f defined on
the set 4 only we put

[ty it ted,
F(‘)_{o it teINA.

THEOREM 3. Under conditions imp'osed above on the set A a measurable
Sfunction f defined on A can be extended to an S-a. p. function if and only
if | f*lls < oo and f* is S-continuous i. e. for every e > 0 we have ||ff—f*|s<e
if |h] < 8(e), where fi(t) = f(h+1).

Proof. The necessity follows from the fact that the conditions im-
posed on f* are necessary for a function to be S-a.p. The sufficiency is
implied by Lemmas 5-9 given below.

LEMMA 5. If f* is S-continuous and |f*|s < oo, then for every & > 0
there exists a function g on A, bounded and uniformly continuous, such
that [|f*—g*|ls < e (the converse implication being also true).

Proof. Let us put
1 h
70 = futos.
0

Then for all sufficiently small h > 0 the restricted function g'= g"|,
satisfies all requirements of the Lemma.

LEMMA 6. If Z is a union of an arbitrary family of unit intervals I.
on the line, then for every ¢ > 0 and every wnwit interval I there exist two
intervals I, and I., such that

[ZAIN(I; o 1y,)| < ey
where || denotes the linear Lebesque measure.
The proof is obvious.

LevmA 7. If F is a closed subset of K and f is a continuous function
on I, then

(3) sup [ |f(a) | da > infmax [ |g(a)|da,
I IAF ¢ I 7
where I runs over all unit intervals of the form [f, 8+1] (BeK) and g over
the class C(f) of all continuous extensions of f over K, the differential da
referring to the ordinary Lebesgue measure shifted from [0,1] to [f, f+1].
(Actually the converse implication obviously holds).
Proof. Clearly it is enough to consider non-negative functions f, g
only. We assume

maxfg(a)da}c for every geC(Jf)
r g
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and we put
Z(g) = {p: [g9(a)da >, I = (8, p+1], g<C(f)}.
I

Obviously these sets are closed and non-empty. Moreover, they
form a centered family. In fact, we have

Z(g) . nZ(g,) = Z(min(gl, euny Q'n)):

but min(g,, ..., ¢,)¢C(f). In view of the compactness of K there is a point
By common to all Z(g), i. e. we have

1
fg(ﬁ,,—i—t)dt =c¢ for every geC(f).
0

This implies
() [ flayda>e
[Bo.Po+11NF

since for every ¢ > 0 we can find a ge¢C(f) such that

1
Jaotti@t— [ fla)da <e.
0 [ﬂn,ﬁo+ 1]~F
LEMMA 8. If A satisfies the assumption of Theorem 3 and f is bounded
and uniformly continuous on A, then for every £ > 0 there exists an exten-
sion of f to an a. p. function g such that

(5) lglls < 2[1f*lls+ .

In other words, almost periodic extensions of f not only exist (which
is the sense of property I) but they can be so chosen as to have a “reaso-
nably” small S8-norm.

Proof. The set A being an I-set we can extend f (uniquely) to a con-
tinuous function f over A. Then we have for éeLnE

[ If)de <sup [ |f(0)dt <|f*s.
L N el c+Iu
Since 4 = E-+1I, the set L~A4 is the union of unit intervals é-+1I,,
where éeLnE. Hence, by Lemma 6, we have for every unit interval
I cL

(6) [ 17@)1at <2(f|s.
Ind

”~

Now from Lemma 7 we infer that for every ¢ > 0 there is a conti-
nuous function g on K such that g/, = f and
t+1

sup f gl dt <sup [ |f(t)ldt-+e.

Ind
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This implies (5) in view of (6).
Now we are able to present the proof of Theorem 3. In view of Lemma 5

the function f can be expanded into a series f = }'g,, where every g,

=1
is a bounded and uniformly continuous function on 4 and the series is
not only convergent in the S-norm (more exactly we must consider the
oo

relation f* = } gp) but it is also absolutely convergent, i. e.

=1
(7) D llgills < oo.
. =1

By Lemma 8 there exists a sequence of a. p. functions h, such that

(8) huga = go  and  [hlls < 3 lgalls.

Let us put A = }'h,. Obviously, in view of (7) and (8) this series
=1

is absolutely S-convergent, hence its sum h is a required extension of the
given funection f.

3. The notion of an almost periodic function in the sense of Riemann-
-Stepanoff (RS-a. p. function) was introduced by Doss [3]. An equiva-
lent definition (see Theorem 2 in [3]) is as follows:

A real function f(¢) is RS-a.p. if for every ¢ > 0 there exist two
Bohr a. p. functions ¢ and y such that ¢(t) < f(t) < p(¢) for all s and
lp—glls < e

Functions f. defined in unit intervals /. respectively, will be called
uniformly R-integrable, if for every & > 0 there are two families of equi-
continuous funections ¢ and v, such that for every & one has ¢. < f: << p:
and f(v,ua—rrg)dt < &.

TIILORI‘\I 4. If A c L, Ael and A s the union of disjoint unit in-
tervals I,, then in order that a measurable function f, defined on A, can be
extended to an RS-a.p. function it is necessary and sufficient ihat the re-
stricted funmctions f, = flr, be uniformly R-integrable.

In order to prove the necessity let us remark that if ¢ is an RS-a. p.
function, then the restricted functions g¢|p, where I runs over all unit
intervals, are uniformly R-integrable. This follows from the uniform
continuity of Bohr a.p. functions ¢ and w, which is equivalent to the
equicontinuity of the restricted functions ¢|; and w|;.

To prove the sufficiency we take two double sequences of functions
{g!") and {9}, defined on A and such that 1° for every fixed m they
are equicontinuous, 2° for every m we have ¢ < f, < i in each I,,
3° g = " and 9"tV < U™ for any m and n 4"f (P — g ydt < 1/m.

n
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The existence of such sequences easily follows from the definition of
uniform R-integrability.

Let us fix an index m. Since A is an I-set, we may find a Bohr a. p.
function ¢'™ equal to ¢/ in I,, (n = 1,2,...). We may also find a Bohr
a. p. function A™ which is equal to ™ —¢{® in each I, and non-nega-
tive. Moreover, making use of Lemma 8 we may assume that || 4™ <
< 3/m. Let "™ = "4 A", Analogously we define a.p. functions
" and ™D = ¢V which are equal to ¢ or p{"*! respectively in
each I, and such that |[p™ ) —¢™ ||y < 3/(m41). Without destroying
these conditions we modify ¢ " and ™" so as to obtain functions
™) and ™"V fulfilling the inequalities @™ < g™+ < M1 < gl
This can be done in the following manner: first we put

(P{m}(” lf q_(m..;,]) (t) = (P[M) (f},
y() i g () > ™ (),

™D (t)  elsewhere;
then we put

q;(m-: 1) (f) if t;_,(n'.a-{-l) (f) < (;c(m.:. 1) (f),

l _w{m] (3) ]f w(m +1) (t) -~ 1’v(m) (t) .
P (g) = |

p" (1) elsewhere.

The functions ¢ and " are a. p. which is easily seen by con-
sidering them, as well as the functions involved in their construction, as
continuous functions on K. The inequality [jp*V —g®™ )| < 3/(m+-1)
holds, because we have g™ gl < (el __ gmil)

Afterwards we construct ¢ % and " *? and modify them by means
of ™ and 9™+ 50 as to get ¢+ and ™+, analogously as ¢™*? and
»" " were obtained from ¢™*" and ™" by means of ¢™ and ™.
If we proceed in this manner starting from m = 1 we get a non-decreas-
ing sequence of a.p. functions {p™} and a non-increasing sequence of
a. p. functions {p™} such that p™ = ¢™ everywhere, ™ > f, > p™
in all 7,’s and |p"—¢™)|g < 3/m. These sequences give raise to an
RS-a. p. function equal lim 9™ () = ¢(t), for example. An equivalent

M0

RS-a. p. function is obtained, if we modify g on L so that it remains
always between ¢ and ™. So we may replace g by f, in every I,
getting thereby the required RS-a.p. extension of the given function
fon A.

4. In this section we will investigate I,-sets in locally compact
Abelian groups in general. Property I could be defined in them as well
as for the group L, but it does not seem to be of equal importance, e. g.
in & compact group every set would be an I-set, because every uniformly
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continuous function on a subset can be extended to a continuous and,
consequently, almost periodic function on the whole group.

Let G be locally compact and J be a closed subgroup of G.

LeMMA 9. If H = G|J and there is an I-set Z, in H, then there is also
an Iy-set in G, of the same cardinality as Z,.

Proof. If ¢ is the natural homomorphism G — H, then, clearly,
fo is a. p. on G provided f is a. p. on H. Therefore we obtain the required
set in G by selecting one element from each coset ¢~ '(a) (a€Z,). (The local
compactness of G was not used here).

LemMA 10. If Z is an I,-set in J, then it is also an I,-set in G.

The Lemma follows at once from the fact that an a.p. function
f on J can be extended to an a.p. function over . To see this let us
consider f as a continuous function on the Bohr compactification J of
J. Since J is a closed subgroup of @, f can be continuously extended
over the latter. (Obviously the Lemma would also hold with I instead
of I,).

It is obvious that there is no infinite I,-set in a compact separable
group @, since in this case every infinite subset of G contains a conver-
gent sequence with distinet terms. On the other hand, there exist com-
pact groups containing infinite I -sets as is e.g. the group K > L (re-
member that {2"} is an I,-set). The latter example is only a special case
of much more general situation, but it is advisable to deal first with I;-sets
in discrete groups and to prove the following

THEOREM 5. 4 discrete Abelian group of cardinality m contains an
I-set of the same cardinality.

The proof will be preceded by the following

LemMma 11. If G is a discrete Abelian group and Z = {a} is a set of
independent elements of G (i. e. from nya, +...+mn.a, = 0 follows na, =0
(j =1,..., k) for any integers n; and k > 0), then Z is an I set.

Proof. Let us split Z into two parts: Z = Pu@. We have to prove
that the (weak) closures P and @ in ¢ are disjoint. To this purpose it is
sufficient to point out a character y of G such that

(1) lx(t)—x(s)l = 6 for any teP, any se@) and a fixed & > 0.

We define a function y, on the set Z as follows: if a,P is of order
n < oo, then we put y,(a,) equal to an arbitrary value of the n-th root
of unity with negative real part; if a, P is of infinite order, we put y,(a,)=
= —1; if a,eQ, then y,(a,) = 1. The function y, obviously can be exten-
ded to a character y of G fulfilling (1) with § = V2.

Now we can immediately prove Theorem 5 for m > §,. In fact,
it is easy to show by standard ineffective methods that ¢ must then
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contain a set of m independent elements. It remains to apply Lemma 11.
We pass to the case m = N, If G contains an element of infinite
order, then it contains isomorphically the group I of integers. This group
contains an infinite Ij-set, e. g. the set {2"}; in fact: every I,-set in L is
I, in I, because an a. p. function on L is also a. p. if restricted to I (a so-
-called almost periodic sequence). It remains to apply Lemma 10.

If @ is a torsion group, then ¢ = }'G;, where G; are p-groups and

' denotes a direct sum. If this sum is infinite, then choose an element
a; # 0 from each ;. The set {a;} is I, by Lemma 11. If }'is finite, then
one of the G;’s is infinite, and so, on account of Lemma 10, the proof has
been reduced to the case of a denumerable p-group (. Such a group
contains a basic subgroup B, i.e. a (pure) subgroup which is the direct
sum of (finite) cyclic groups and such that G/B is divisible ([7], p. 115).
If B is infinite, then Lemmas 11 and 10 imply immediately the assertion
of Theorem 5. If B is finite, then G'/B is infinite and so equal to the direct
sum of groups (-‘p,u ([7], p. 149). On account of Lemmas 10 and 9 the proof
will be achieved if it is shown that the group U, ~ contains an infinite
I-set.

Let Z be a sequence of elements (,,,e(‘ such that (,, 1 =y 0 =1
Analogously as in the proof of Lemma 11, let us split ¢ into two palts
P and . We try to construct a character y fulfilling { ). Since p* =4,
we can define a function y, on Z step by step so as to have

[xo(en :.1)]”2 = () 2l =1
and

|70 (e,)—1| < 28in T for cpeP l#o(€,)+ 1) < 2sin *_ for ¢, 0.
8 ’ Ao 8

The first condition is necessary and sufficient for y, to be extendable
from Z to a character ¥ of € o the second ensures that y satisfies (1)
with & = V2. '

THEOREM 6. A compact group G whose topological weight is = 2%
containg an infinite I,-set.

Proof. By Lemma 9 it is sufficient to prove that a homomorphic
image of G contains an I,-set and this happens if and only if it contains
homeomorphically the space f(N) (see section 1). To contain B(N) is
a property of any Tichonoff product of at least 2% non trivial T',-spaces.
So it is enough to prove that there is a homomorphic image of G being
such a product. Homomorphic images of G are dual groups to subgroups
of the discrete group @, dual to @ (see [11], p. 258). As the character
group of a direct sum ) G, of discrete groups is the complete (Tichonoff)

product of the duals @,, we have but to show that G contains a direct

Colloguium Mathematicum XII 3
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sum of 2% (non-trivial) groups. We have card(@) =m > 2% and so
@ contains m independent elements. Hence the direct sum generated
by them satisfies our requirements. The proof is thus achieved.

We omit reasonings pertinent to the existence of infinite I,-sets
in locally compact Abelian groups other than L, which are neither dis-
crete nor compact. Corresponding theorems can be easily stated owing
to the well-known structural properties of such groups.

We do not know anything about analogical questions concerning
non-Abelian groups, even if they are maximally almost periodic (see [9],
p. 226-227).

5. Now we give a review of some properties of sequences of reals
with respect to the Bohr compactification K. The properties listed below
are directly or indirectly related to the main object of our interest, i. e.
to the property I. An increasing sequence Z = {a,} is said to belong to
the class

Lif ap ,fa,>¢>1 (n=1,2,...),

O if u(Z)=0, u being the Haar measure in K,
B if a, ,—a,<C,

Is if 7 is isolated in K,

N if Z is non-dense in K,

D if Z is dense in K,

E if Z is equidistributed in L,

P if there is a real 2 such that ||a, 4| — 0, |-|| denoting the distance
to the nearest integer.

In the diagram on the next page, which involves also the class I,
the continuous arrows denote implication and the broken arrows indicate
conjectured implications. A’ means negation of the property denoted by A.

TneoreM 7. The diagram s all right. The implications converse to
those indicated by continuous or by broken arrows are false, except possibly
Is > 1.

Proof. L — B’ is trivial. L — I is a result of Strzelecki [13]. L — O
is a consequence of Theorem 8 given below. B’ — L is obviously false.
I — L and even I, — L is false, because the sequence consisting of num-
bers 2" and 2"+ 1 is an I-set in view of Theorem 2. The implication O — L
is false, since the weak closure of the set I of all integers is of measure
0; in fact, otherwise, I being a group it would be the whole of the con-
nected group K. But this is impossible, because there exists a periodic
continuous non-zero function f with f(n) = 0 (nel) and so the set N
of positive integers is not dense in K. Now observe that N ¢Is. This
follows from the fact that there is no a.p. function with f(1) = 0 and
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f(n) =1 for n > 1. Since I > 1Is and O — N trivially hold, so O — I
and N — Is turn out to be false. The implications Is - N and N — D’
are trivial.

N — O can be disproved as follows: take a closed non-dense set B
of positive Lebesgue measure on the unit circle C'; the character y (1) = ¢,
extended over K, maps K continuously and homomorphically onto this

%
| %
N
| N
|

CHO-0-0-0-0

O~

circle. Since this homomorphism is open, the set y~'(Z) is non-dense too.
Clearly, ¥ maps the Haar measure on K onto an invariant Borel measure
on C which must be then identic with the Lebesgue measure. Hence one
has u(y~'(E)) > 0. Let M = {z,} be a sequence dense in F. Then 5~'(M)
is ‘dense in y~'(¥). Obviously, each set y~'(z) (2¢C) contains a positive
real. So we choose a positive real number a, (» =1,2,...) from each
set 7 '(2y). Then y~'(M)= |J(a,+Q), where Q = {aeK: y(a) = 1}.
kL

We claim that the set 4 = {a,+2=m} (n,m =1,2,...) is dense in
2 '(M). All one has to prove is that the sequence @, = {2nm}
(m =1,2,...) is dense in Q. First of all let us observe that ¢, is equal
to the weak closure of {2xm} (m = 0, 4+1, +2,...), because every com-
pact subsemigroup of a group is a group. If (), were a proper subgroup
of @, then there would exist a character equal to 1 on (), but not on the
whole of ¢. This is, however, impossible, since a character of , which is
equal to 1 on @, is of the form y* (k integer).

Sowehave d = y~'(E),hence 4 c Lisnon-densein K, but u(4) > 0.
In order to replace A by an increasing sequence we choose one point
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of A in the interval (0, 1], if there is any, then we take one point of 4
in each of the intervals (1,7] and (3, 2], if there are any, then we choose
from four intervals of length ] between 2 and 3 ete. We obtain an in-
creaging sequence {b,} and by its construction we have A {j,} = L.
Hence u({h,}) > 0 and {b,} is N without being O.

Property E is equivalent to the equidistribution of the sequence Z on
K (see section 1). We remind that E-sequences do exist, e.g. {n"} for any
non-integer a > 0. Obviously E — D. Taking « > 1 in {n"} we get a B'-
-sequence which is not Is and so not I. Therefore B" — Is and B" — I
turn out to be false. D — E is also not true. To see this take an open
set M in K whose measure is << } and whose boundary is of measure 0.
1t follows from Weyl’s equidistribution theorem that in sufficiently
long intervals on the line there are points from 1. So we can choose
for n > n, @ number from M between »** and (n-+1)"*. We enlarge the
set thus obtained by adding to it all numbers »** and so we get a sequence
which is dense in K without being equidistributed. All numbers »**
belonging to M form a sequence which is neither dense nor non-dense
in K; so D' — N’ is false.

Let us notice that I or E are in some sense opposite properties to
N, Is or O. Property P has a different character. It gives no information
as to the “thickness” of Z, but it may be interesting by itself, since
a P-sequence Z = {a,} differs from a subsequence of an arithmetical
progression {m,/i} (m,eN) by a sequence tending to 0. Since {m,/A}
and Z have the same cluster points, the weak closure Z of Z has a mea-
sure not exceeding that of an arithmetical progression. The latter is 0,
which can be proved in the same way as it was done for N. So P — O
is proved. To see that the converse does not hold we make use of the
theorem of Pisot and Vijayaraghavan ([1], p. 134) stating that if for an
algebraic number # > 1 the sequence {#"} has property P, then # is
a Pisot number, i.e. an algebraic integer all conjugates of which are less
than 1 in absolute value. So if we choose an algebraic number # > 1
not being a Pisot number, then the sequence {#"} does not have property
P, nevertheless it is an L-sequence and therefore I and O.

From the discussion of the diagram there arise the following ques-
tions, which the authors are not able to answer:

P 452. 1s I, > O or even I — O true?
P 453. Is I, -~ B’ or even I — B’ true?
P 454. Is Is — I true?

P 455. Does there exist a set § with ¢(8) > 0 which belongs to N
and not to O?
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The first and second implication (but not the third one!) may be
considered as the authors’ conjecture. One can even guess that the weak
closure not only of an increasing I-sequence but of any I-set in L has
measure 0. This conjecture implies a partial answer on P 453: no union
E of disjoint intervals of length > [ > 0 is an I-set if the distance between
consecutive intervals is bounded. In fact, L can then be covered by
a finite number of translations of ¥ and so ¥ must have positive measure,
against the conjecture.

If we had used the group I of integers instead of L and the com-
pactification I instead of K we could build an analogous diagram and
ask analogous questions. They are related to P 452-P 455; e.g. if the
solution of P 452 for I-sets in I is positive, then so is the solution of
P 453 (by translation argument), but I-sets in L consisting of integers
are at the same time I-sets in I and vice-versa; hence no “relatively dense”
set of integers could be an I-set in L.

TurorREM 8. If E consists of disjoint, possibly degenerated intervals
I, of bounded length and t, . ,[t, > 1+ a (a > 0) for a sequence of elements
t,el,, then E is of measure 0,

Proof. We may assume that |1,| < 1. We infer from Strzelecki’s the-
orem and from Theorem 2 that E is an I-set. There is a number n, so
that |J (/,+1) is disjoint with E, and in general, for every integer

Wy

k > 0 there is a number n; so that n, , > n; and the sets E,, = | (I,+ k)

are at positive distance from one another. Obviously, for any k a.rid l>k
the set E,wFE, consisting of I,+k (n=mnp+1,...,m) and (I,+k) U
(1,+1) (n > ;) is contained in a union of disjoint segments J, (v > n;)
of bounded length, each containing a point {,+ k. Since 1, ,/t, > 1+ a,
E, <~ E, is an I-set. Since dist F,, E;) > 0, Lemma 2 implies E,~E, = O
So we have proved that the closures F, are pairwise disjoint. Each E,
differs from £k only by a bounded set in L; hence u(E,) = p((E+k)") =
= u(E+ k) = u(F) (since the weak closure of a bounded set in L is of
p-measure 0). Thus there is a sequence of disjoint sets in K whose mea-
sures are all equal to wu(F). This proves the Theorem.

We now intend to discuss the existence of distinct subsets of K
homeomorphic to the Cech space (N). We know that such subsets
exist and it is from double source we do: the first is the existence of infi-
nite I-sets in L, the other is Theorem 6, since the weight of K is 9o,
Actually, we can easily prove that there are 92%0 disjoint f(N) spaces
in K. Here is the reason for it: K is the dual of the discrete group of real
numbers; the latter is the direct sum of 2% copies of R" (additive group
of rationals); therefore K is the Tichonoff product of 2% solenoidal groups
R'. The assertion follows by selecting any two point set on each “axis”
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R+ and forming their Tichonoff product. In fact, every such product
contains g(N).

But these algebro-topological reasonings do not supply any knowledge
about the existence of a set in K, homeomorphic to f(N) and such that
its isolated points are all in L. Only such knowledge would be sufficient
to deduce the existence of Ij-sets in L without special theorems of
arithmetical kind, like the quoted theorem of Strzelecki [13]. On the
other hand, Strzelecki’s theorem enables us to show that in K there are
2% disjoint copies of f(N) such that their isolated points lie all in L.
To see this observe that the union of any two of the sequences {C-2"}
(1 <0 < 2) has property L and so it is an I,-set. By property S, the
weak closures of any two such sequences are disjoint. Since each of these
closures is §(N), our assertion is proved. We notice still more: the copies
of B(N) we have just obtained are transformable one onto the other by
a group operation in K (since multiplying by a real is such operation).
Finally we put the following question:

P 456. If the sequences {a"} and {f"} (¢ >1, f > 1) are “far one
from another” [6],i.e. if for any M we have |a" — "| > M for m, n > n,(M),
must then the union of these sequences be an I-set?

Let us remark that this union is never an L-sequence and that {a"}
and {f"} are far one from another e.g. at the case a and f are distinct pri-
mes, which is a consequence of a theorem of Gelfond ([4], p. 40).
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