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i

In [3] E. Fogels proved that in the field R(i-5"%) almost no ratio-
nal integer has a unique factorization into irreducible factors. He also pro-
ved that almost every integer of this field has a non-unique factorization.
His method makes it possible to prove the same for all quadratic fields
having only one class of ideals in each genus.

Professor P. Turan proposed me to investigate this problem for
other number fields. In this note I generalize the results of Fogels to
all normal fields and prove moreover that in such fields for any fixed &
almost every rational integer has at least %k different Ffactorizations.

In [1] L. Carlitz proved that if the class number of an algebraic
number field is at least 3, then one can find integers in K having at least
two factorizations of different lengths (i.e. a = p,...pp = r,...7,,, where
the p;-s and r;-s are irreducible and k + m). We shall prove that if the
class number of K is at least 3, then for any fixed % almost every integer
in 'K has factorizations of at least & different lengths.

THEOREM I. Let K be any finite, algebraic, normal extension of the
rationals, of degree n, with the class number h + 1. Denote by Sy (x) the num-
ber of positive rational integers not greater than x, having at most k essentially
different factorizations in K. Then Sy (x) = O (x(loglogx)® (logxz)~" ), where

a, = (2hnt,+1,—1)/2(hn+t.), by = 1/(hn+1.),

te = (kg—1)[3(1+V8k—1)],
and g s the smallest prime number dividing h.
(Here and in the sequel we denote by [x] the integral part of z).
TureoreM II. Let K be a finite algebraic extension of the rationals
with the class number h + 1. Denote by T (x) the number of non-associated
integers a in K with |N(a)| < x, having at most k essentially different fac-
torizations in K. Then

Ty (z) = O(x(loglogx)* (logx)~ f’:.-) ,
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where

f+1
di =1/(14+h+1), ck:dk(h+tk(h+ k;_ )):

te = (Bg—1) (9((k+1)/[g/2]1—1)),

B is the least integer such that (Bg)!/(!)’g! >k and g is an arbitrarily
chosen order of a class in the ideal class group of K.

TueoreM III. Let K be a finite algebraic extension of the rationals
with class number h #1, 2. Denote by Uy(x) the number of non-associated
tntegers in K with |N(a)| <z, having factorizations of at most k different
lengths. Then

Ui (x) = O(z(loglogz)™ (logx)~'¥),
where

k
= Gt=1) (b 22 —1)/(h+ bg—1), fo=1/(h+kg—1)

and g is the smallest order + 2 of a class in the ideal class group of K, if it
exists, and g = 2 if X* = B for all X in the ideal class group of K.

THEOREM IV. Let K be a quadratic extension of the rationals with the
class number h #1,2. Denote by V,(x) the number of rational positive
integers not greater than x, having factorizations in K of at most k different
lengths. Then

Vi(®) = O (x(loglogz)™ (logz)~*)
where
8 = 1/(2h+kg—1), 1 = 8(kg—1)(kg+4h—1),

g being the smallest order # 2 of a class in the ideal class group of K, if it
exists, and g =1 in the other case.

We shall use the following results:

(i) For every ideal class X and for Res >1 we have Y N(p)~* =
= k™ 'log(1/(s—1))+G(s), where the summation is taken over all prime
ideals (or over all prime ideals of the first degree) in X and G (s) is regular
for Res >1 (see e.g. [4], p. 33).

2]

(ii) If a, is a sequence of non-negative real numbers, f(s) = Ya,n*
1

M=

is convergent for Res > 1, and, for some P # 0, —1, —2, ..., f(s) =
= ¢,(8)(s—1)"F4g,(s) for Res > 1, where g,(s), go(s) are regular for
Res >1 and, moreover, ¢,(1) + 0, then

,é: a, = f“l((le; z(logz)” '+ o (x(logz)"")

for z — co (see [2]).
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LemmA 1. If A;(z) (j=0,1,...) i8 a sequence of real fumctions,
satisfying the conditions:

() 4j1(2) = O( 3 4;([p)),
(b) 4;(x) = O(=),
(e) Ao(x) = O(x(loga)~?), >0,
then
A(x) = O(z(loglog 2)"i (logz)™™),

wherek; = j(1+B(j—1)/2)/(L+3B), m; = B/(L+]B) for j =1,2,... (the
constants in O(...) depend on j).

Proof. It suffices to prove that from
A;(2) = O(w(loglogw)“(logm)"”) (y >0)
it follows
A;.,(x) = O(z(loglogz)* ) (loga) 707,
Put
e(®) = (loglogm)‘”“”“ﬂ’)(logw)—”"‘”’.
Then for sufficiently large @ one has 1/2 > & > 1/logz. Now

Na@p)= Y 4@+ Y Alp) = 8i+8,

=z 1<sz/p<xt r=zlp=z
8, = O(w Z Y = O(x(logloga:—log{l—s)—loglogm)—l—
zl—t<p<zr
+0(z/logx) = O(ex)

and

S, = 0(x(logloga:)“a(a:)"’(logm)"’ Zw p!

p=xl—t
= 0 (z(loglogz)' "¢ (2) " (loga)~7) = O(ew),

whence

A; (@) = 0(8,+8;) = O(ex), q.ed.

Proof of Theorem I. Let X be an ideal class with X’ = E, X +# E.
Let P be the set of all rational primes which are norms of prime ideals
from X, and which are not ramified in K. Moreover, let wp(m) be the
number of different prime factors of m belonging to the set P and Qp(m)
the number of prime factors of m belonging to the set P, each counted
according to its multiplicity. Finally, let F(m) be the number of different
factorizations of m into irreducible factors in K. For abbreviation, let

us put r = 1+[(1/2)(14+V8k—1T)].
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LeMMA 2. If F(m) <k, then Qp(m) < (kg—1)(r—1) = ..

Proof. Let p,,...,p, be different primes from the set P. Then
Pi = PiQ;, where p; are prime ideals from X with Np; = p; and g; are
ideals from X' (i =1,2,...,7).

At first we shall prove that the number p,...p, has at least
1+(1+2+...+(1°—1)) >k different factorizations. Since p;eX and
q;eX!, we have Pig;eE for each pair ¢,j. Consider the factorizations
D; ; arising from

Pre-Pr = (Pi0))(9;00) D1+ Di 1 Pigr oo Dj 1 Djr--Pr (1 <i<j<7)

by factorization of the terms inside brackets and of the Pi-s (kB #£1,7)
into irreducible elements. It suffices to prove that the factorizations D; ;
are all different. Let us fix 4 and j (¢ < j). Choose an ideal tr — r(i,]j)
in X! such that r divides ¢; and no proper divisor of r belongs to X'
Such a choice is always possible. Obviously, p;re E and t¢E. We assert
that p;r has no proper divisors from #. Indeed, if p;r — ab (a,bekE),
then p; divides a or b, say p; divides a, thus with some ceY~! one has
@ = p;¢, whence p;v = p;cb and v = ¢b.. From the choice of t it follows
t=Dbel, whereas reX-1 £ E, and so we get a contradiction. Con-
sequently, p;t(¢,j) is irreducible.

We see thus that in the factorization D, ; there must appear an irre-
ducible factor p;r(7, j), where re X', 1 divides q;, and no proper divisor
of v has both these properties. Suppose now that for some sty a1
(7 # 4,, or j = j,) the factorizations D; ; and J),-l_f-] coincide. Then a fac-
tor a = p;r(¢, j) must occur in the factorization D; ;. It cannot oceur
in factorizations of p,, ..., p, for from p; | pi it would follow p;r(i,j) =
= a|p;=Pq;, whence t(i,j)|q;, and simultaneously v(¢,7) | a5,
which is impossible, since two different rational primes pi; and p; cannot
have an ideal divisor = (1) in common. L‘.onsequently,' a must oceur in
the factorization of Pi,Q;, or in the factorization of P;,9i,- Suppose that
a divides Pi 9;, (the second case is analogous). Then Y, | P 9;, and we
must distinguish between two cases, 7 4, and i — i

1. i# 4. In this case p;|q; |p;, whence it must be i = j,,
and thus pj |p;q;, = p;, which is impossible, because p;, is not
ramified.

2. @ = {,. In this case j -+ j, and r(4, j) divides both g; and q; , which
is impossible,

Since the factorizations D;; are all different, the number Py-e-Dy
has at least k-1 different factorizations.

Taking into account that F(ab) = max (F(a), F(b)) we see that
from F(m) < & it follows mp(m) < r—1. Remark now that the number
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p” (peP, p =4, peX, NP = p) has at least f+1 different factor-
izations arising from

% = (9 (Y (pa)*~"  (j =0,1,...,p)

in the same way as above. Consequently, from F(m) < k follows 2p(m)<
< (kg—1)(r—1), q.e.d.
Let R be the set of all prime numbers which are not norms of prime

ideals of the field K. The notation >™ will be used for sums ranging
pes
over all prime ideals of the first degree, belonging to a set §. If S is the set

of all prime ideals of K, we shall write Z*. Moreover, by g(s) we shall
denote (may be different) functions regular for Res > 1.

Asg
n Np~t = Y N(p) =log(1/(s—1))+g(s),
PR
Npt =log(1/(s—1))+9(s),
we have

—1
Ep_s=nn log((1/s—1))+g(s) for Res>1.
reR

Let Y be the set of all prime ideals of the first degree which do not
belong to X, but which are conjugated with a prime ideal in X.

Let us define for p in P, f(p) as the number of prime ideals divid-
ing p, which are not in X, and put f(p) = 0 for all other primes.

Moreover, let
0 for peP,

¢(p) = ll for p¢P.

Then we have

n Mg = NNy = Y Nert- Y N

A
1
:(1——};)log(1}(8—-1))+9(8)—- an
=i
and so
1 1
Zp—s = Zp—-“_i_ ZP“S = (1— E) log(1/(s—1))+g(s)— ;2)’(?)1’_8
PP pepP PeR »

PiR

hence finally, if we put f,(p) = &(p)+f(p)/n we shall have

(1) D filpp~ = (1—~}3—n) log(1/(s—1))+g(s).
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Now define for N = pi1...pj%, f,(N) = fi(p1)...f1(pr). Then

jfl(N)N" = [[+1m)p~+...) = exp (Z‘fl(p)p‘“ry(s))
N=1 p

r
=g(s)(s—1)"" 14 g,(s) for Res>1.
Since obviously f,(N) =1 if Q,(N) = 0 and J1(N) is non-negative,
we obtain by (ii)

2 1< Y H(N) = 0(a(loga)y™™).
N=<x N=x
2,(N)=0

Since by lemma 2

2) Se(@) < Qo(@)+...+Qy(a), where Qi(z)= ' 1

N<z
2p(N)=1
and obviously
(3) Q@) = D'Qi(2/p) < Y Qi_y(alp),
p=x pP=x
pelP

one has but to apply Lemma 1 to achieve the proof.

Proof of Theorem II. Let X be an ideal class of order g (X # E).
Let Z Dbe the set of all prime ideals from X, and D the set of all ideals
having no prime factor from Z. For an integral a in K, let F(a) be the
number of different factorizations of a into irreducible elements, for any
ideal a let wz(a) be the number of different prime ideals from Z dividing
a, and 24 (a) the number of all prime ideals from Z dividing a, each coun-
ted according to its multiplicity.

LeMMA 3. If F(a) <k, then a has the form: a = p™a, where peZ,
m s a non-negative integer and Qz(a) <t (f, is defined in the statement
of Theorem II).

(Here and in the sequel we need not distinguish the number aq,
and the principal ideal generated by a.)

Proof. If a = p,...p;, (p;eZ, all p; — different), then a has at least
(79)!/(3!)g! factorizations:

&= (Psl--—Pig)---{Pim_gﬂ--l-l’iw):

hence from F(a) <k it follows wy(a) < Bg—1.
If a = p{"p® (p,,p.eZ), then a has at least [9/2](min (4, 4,)+1)
factorizations arising from

a = (p1)"=7 (pdy2-i(pipg 7y (p?-Tpi)’
(t=1,2,...,[g/2]; j = 0,1,..., min(4,, 4,)).
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Thus, if F(a) <k, then there can exist at most one prime ideal
PeZ such that p™|a with some m > g((k+1)/[g/2]—1)—1 and, con-
sequently, a has-the required form.

Let now G(m) be the number of ideals from D with the norm m.
For Res>1 we have

ZG(m}m“’ = YN = H(l +N ()~ +...)

m=1 ael) pezZ
=exp ()N ()~ +g()) = g(s)(s—1)"" 49, (s)
Z
and by (ii) a
(4) ZG(m) = 0(z(logz)™'").

m=x

Let R;(x) be the number of ideals with norm not greater than x,
Ik
for which Qz(a) =j. Let T(z) = ) R;(x). Then
i=0
(5) Ty@) <T@+ D T(a/N@pm).

pe X, NpM<a
Observe that

Ry (@) < D) Bi(a/N(p) <n D Ri(a/p).

Niy)<z =z
From the last inequality, (4) and lemma 1 it follows that
(6) T(x) = O(x(loglogz)*(logz)~°),
where
e =t(h+3(t—1)/(h+4), o=1/h+1).
Finally
2 TlNem)< Y T(/Nem)
pe X Np™)<z NyM)<z
<) X Tep™<n Y T@p™).
"<z N(p)=p pM<a

Let 7(x) = (loglogz)@*VC+ (logg)=/+), Then
2 Tep™ =3 T@p™+ Y T(p).
pM<z 1<z/pM<an aN<z/pM<a
Proceeding similarly as in lemma 1 and"*l;a,king into account that
2 p~" = loglogz+A4 +0(1/logx)
<z
we obtain > T (m/j;"‘) = O(7nz), which together with (5) and (6) proves
P
Theorem II. o

Collogquium Mathematicum XII q
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Proof of Theorem III. First case. There exists an ideal class X,
such that X® = E.

Let X’ =E, ¢ > 2, and, for ¢’ <g, X” # E. Denote by P,, P,
the sets of all prime ideals of the first degree in X and in X' respectively,
and by £;(a) (¢ = 1, 2) the number of prime ideals of P; which divide a,
each counted according to its multiplicity. Finally let H(a) be the num-
ber of factorizations of a into irreducible factors with different lengths.
At first let us remark that if @ = p;...P,y01...9,, (PieP,, q;eP,), then
H(a) =14 r in view of the following decompositions:

g r—1 r—-1
a = H(piqi)” (pia+1°°°p}a+a)”(%Hl'“qu): ‘1:1,2;---:?'_1:
7=4 j=4

i=1

r—1 r—1
a = ”(pia+l'“pfa+a)” (qfa+1'"‘h'0+a)a
j=0 j=0

a =[] ®:a).

i=1
Since H (ab) > max (H (a), H (b)), we immediately conclude that if
H(a) <k, then a is of the following form:

(7) a=9..5P o a=0q..46P; (G<ki—1),
where p;eP,, q;eP,, and P; has no divisor from P; (i = 1, 2). Now

NP = [[e+¥m)+..)

53;: pepP;
_ g o g(8)
= exp (D‘Z’EN{P) +9) = =y 0,
whence by (ii) ‘
(8) Z 1= O(z(logz)™™) (i =1,2).
N(py<=
Let
B@)= D 1 (i=1,2).
N(a)ez, By(0) =1
Then by (7)
kg—1 kg—1
9) Ui(2) < D) BP(2)+ D B ().
=0 =0
From f ’

Bi(@) < 3 BYw/N ) <n Y B @lp),

Np)==z p<x

and by (8), (9) and lemma 1 the theorem follows in the first case.
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Second case. For every ideal class X, X* = E.

Let Xi=F (i=1,2,3), X, X,=X,, X,,X,,X;#E. Let P,
be the set of all prime ideals of the first degree from X;. Define Q;(x)
and H(a) as in the previous case. Remark that if H(a) <k, then
min (2;(a)) < 2k. Indeed, for the number

b=DPr Py Qulye- T (PiePy, §iePy, 1€ Py)

one has H(b) = k-+1 in view of the following decompositions:

u n k
b= n(pEQiti)H(pk-HQk-;-irk;l‘) H (PiPx ) (97 Qg g) (%5, 5)
i=1 i=1 j=1tu

(n=1,2,...,k-1),

ok
e b= H(pichfi)s

i=1

K
b= H(PfP;c+j)(Q;Qk+j)(rjfk+f)=
i=1

and it remains to observe that H(ab) > max(H(a), H(b)).
It follows that every a with H(a) <k is of the following form:

a=9..0P or a=0¢q...P. or a=r1,...1,9P;,

where 0 <j < 2k—1, p;eP,, q;eP,, 1;eP, and P, are ideals with no
factor from P;. The proof of the theorem can now be completed in the
same way as in the previous case.

Proof of theorem IV. First case. There exists an ideal clags X
such that X* # E.

Let X’ = F, and X” # E, for ¢’ < g. Let P be the set of all ratio-
nal primes which are norms of prime ideals from X, Qp(m) — the num-
ber of primes from P dividing m, each counted according to its multipli-
city, and H(m) — the number of factorizations of the number m into
irreducible factors in K of different lengths.

Let pyy ..., piyeP. Then p; = p;q; (pieX, q;eX ', p;, q; are prime
ideals). For m = p,...py, one has H(m) > k-+1 in the same way as in
the first case of Theorem III. It follows that if H (m) < k, then Qp(m) <
< kg—1. By an argument analogous to the proof of Theorem I our the-
orem follows in this case.

Second case. For every ideal class X one has X* — E.

Choose X; = E (i =1, 2, 3) such that X, X, = X,. Let P; be the
set of all rational primes which are norms of prime ideals from X;, £;(m)
— the number of primes from P; dividing m, each counted according to
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its multiplicity, and H (m) — the number of facterizations of the num-
ber m into irreducible factors in K of different lengths. Let p; = p;p;eP,,
¢ = 4iq; Py, 7; = t¥iePs (i =1,2,...,k). Then for the number m =
= Py Piqy.+-GkTy... 7 oNne hag H(m) > k+1 in the same way as in (10).
Thus from H(m) <k it follows that min;(m) < k—1. The theorem
follows now by an argument analogous to the proof of Theorem I.
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