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DIFFERENTIABILITY THEOREM FOR ELLIPTIC EQUATIONS
CONSIDERED ON A COMPACT RIEMANNIAN MANIFOLD

BY
H. MARCINKOWSKA (WARSAW)

The object of the present paper is to study the solutions of elliptic
differential equations considered on a compact infinitely differentiable
manifold M, . It is well known that on such a manifold the Riemannian
metric can be defined. Therefore we can assume without loss of general-
ity that M, is a Riemannian manifold and the differential operator is
expressed in an invariant form in terms of the covariant derivatives.
We use the method of Hilbert spaces with the so-called “negative norm?”
due to Lax [7] and utilized by him in the case of an elliptic operator with
periodic coefficients considered on the class of periodic functions in
Euclidean space. Such functions may be treated as defined on some
special compact manifold, namely, on the Euclidean torus, so our result
generalizes in some manner the theorem of Lax about periodic weak
solutions of elliptic equations. The differentiability theorem we are going
to prove follows from an a priori inequality, which is a consequence of
the known inequality due to Garding [4] (see section 3 of this paper).
The essential point of the proof is based on the existence of smooth solu-
tion of the equation

(I+A) ¢ =f

considered on the manifold M, (). This is assured by the known the-
orem of de Rham [10].

1. Preliminary remarks. Let us consider a compact infinitely dif-
ferentiable manifold M, with the Riemannian metric defined by a pos-
itive definite tensor field g¢;;(#). We suppose the coordinate system on I,
to be given by a finite covering with open sets,

s
M, = U,
i=1

(*) 4 is the Laplace-Beltrami operator, I denotes the identical operator, f an
infinitely differentiable function and » is a natural number.
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each ©; being homeomorphic with some open region =; of the Euclidean
space R". Let us denote by 60; the corresponding homeomorphism:
0:(£2;) = Z;. Because the results which shall be proved are independent
from the particular choice of the coordinate system, so it can be assum-
ed without loss of generality that 1° each =; has a smooth boundary
such that the estimate (3.2) is valid, and 2° inf det||g;.(6;2)| is positive.
oo

The set of all infinitely differentiable complex tensor fields of order
k over M, shall be denoted by C**(M,) (for k = 0 we shall write simply
C™(M,) instead of C>®(M,)). If f is an element of C**(M,), then the
tensor field of the covariant derivative of f of order I will be denoted by
ADf and its covariant components will be written as Bonnill s oo
For any two infinitely differentiable tensor fields f and % of order % their
scalar produet is defined by

daf ajy...aj.
(f} h)Li(J"ﬂ):ufful".“kk ! ;‘dyx
n

(dyz is the invariant measure on M, given by the Riemannian metric).
The completion of C**(M,) in the norm 1 2, )&‘_L"(Jf,j)”2 is a Hil-
Tl

L2001,
bert space. It will be denoted by Li(M,) (2).
Because M, is compact, the formula of “integration by parts” fol-
lows from the generalized theorem of Stokes. It will be used later in the
form

(L1) [ A Vg, e

M,

Byt

- tep [ i IS rdd ¥l 90 T,
= (=1 [ Gu e P VP P G
M,

(peC* v (DL,), feC*+P™(M,)).

For @eC*~(M,) and s = 0,1,2,..., define the semi-norms by

liplls & sup (7 @)y VO (@))r-iess] 2,

In such a way the set of all infinitely differentiable tensor fields
of order k¥ becomes a locally convex space, which will be denoted by
Z;(M,). The linear functionals over Z,(M,) will be called the tensor-
distributions and the space of such functionals will be denoted by 2,(M,).

() It is readily to be seen that Li{ﬂn) is the direct integral of all tensor
spaces of order k tangent to M, .
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It is easy to show that in the case of a compact manifold the semi-norms
defined above in the set 0°(M,) yield the same topology as that defined
in local terms by de Rham [10]. Thus Z,(M,) is the space of all distri-
butions (in the sense of L. Schwartz) over M, . The space L} (M,) may be
considered as a subspace of 2;(M,), because each feL}(M,) defines
the linear functional

g, > (o, n;}j%)’ ¢eZi(M,),

over Z,(M,).
For each fe2;(M,) and I <k, let us consider the tensor-distribu-
tion Fe2;, ;(M,) defined by

(1.2) - W, = (—1)g, F).

gelp (M)

We call F' a weak divergence of order I of f and denote it by div(f.
In particular, if f is an infinitely differentiable tensor field of order ,
then formula (1.1) yields
(divi®f) = ...

v; DI L6 EOPLY L 98 PP 0

For I = k = 1 this is the divergence (in the usual sense) of the vector
field f.
We shall use later the estimate

: Ao 1---01 |
(1.3) [ a5y ¥y | < lalllolgll 2 g, , 11l 2037,

M,

valid for arbitrary aeC*¥*'(M,), geLi(M,), ypeLi(M,). It may be
proved in a simple manner by applying the Schwarz inequality to the
integral on the left.

2. The spaces H}(M,). In the present section we are going to define
the Hilbert spaces which will be used later to study the solutions of dif-
ferential equations. We assume that the index m will be always a natural
number or zero and the index p will be an arbitrary integer.

Given two infinitely differentiable tensor fields f, h of order k, let
us introduce their scalar product by

m

(2.1) (fy b & D1 (VOf, 7OR)

= L£+j(ﬂ-f“)

If we put
1l Z (f5 a5
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the completion of the set ¢**(M,) in the norm | |,, becomes a Hilbert
space, which we shall denote by H}'(M,) (evidently Hj (M,) is identical
with Li(M,)). For feC**(M,), we define also the norm with negativ
index by

| ;
(2:2) Ifllw & sup 7D zion)
geCRioo (31, l"P | [m
and consider the completion of ¢ (M,) in the norm | |_,, which we

shall denote by H; ™ (M,). (In the case k = 0 we shall write simply H” (M)
instead of HY(M,).) From (2.2) it follows

€39) 3| < WPl

for arbitrary ¢, feC**(M,). This implies that the scalar product in Lj (M)
can be extended to a bilinear form (which shall be denoted by (,)) defi-
ned on the Cartesian product HE(M,)x Hiy?(M,) and that the general-
ized Schwarz inequality

(2.3) (@, NI < llpllpllfll_»

holds for all peH%(M,) and feH."(M,).

The set of all linear functionals over H'(M,) of the form (¢, j)L,(M )
& n

(where f is an arbitrary fixed tensor field of class O"""’(Mn}) form a com-
plete system of functionals (3). Therefore the space Hp™(M,) may be
identified with the space adjoint to Hj (M,) and therefore it is a Hilbert
space. Because of the reflexivity also Hj'(M,) may be treated as the
space adjoint to Hj;™(M,). The isomorphism between H7(M,) and
(H?(M,))* is given by the correspondence

H}(M,)> f o Le(Hi" (M,)*

with
Lp) = (9, ])
identically for @eH;”(M,).
For feC*™(M,) let
at (pi)g. pieLe _
(2.4) 152 7O, PO s o

If a sequence {f,} of infinitely differentiable tensor fields of order
k converges in the norm | ||, to some feH} (M,), then it is fundamental
in the norm || ||,, and all the more in the norm | |; with 0 < j < m. Because

() The set A of linear functionals on a Banach space X is said to be a complete
system of fumctionals if 1(x) = 0 for all leA implies # = 0. If X is reflexive, then
A is dense in the adjoint space X*.
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the space Lj,;(M,) is complete, there exists a tensor field (which shall
be denoted by V{’f) such that {f,} converges to V{)f in the norm | |;.
We call V{)f the strong covariant derivative of order j of the tensor field f.
The formulas (2.1) and (2.4) are valid for all f, heH}'(M,), when the co-
variant derivation is understood in the strong sense.

ProrositionN 2.1. If p, > p,, then the space HY (M,) may be embedded
into the space Hi2(M,) algebraically and topologically.

Proof. Consider at first p, and p, non-negative. Evidently Ifllp, =
= [|fllp, for all feC*°(M,). To prove the compatibility (*) of the norms
Il I, and || [l,, on C**(D,) it is sufficient to show that for each p > 0
and feHJ (M) the condition ALf = 0 implies V¥f = 0forj =1,2,...,p.
Let ¢ be an infinitely differentiable tensor field of order k-- j over M,
and {f,} a sequence of infinitely differentiable tensor fields of order k
tending to f in the norm || [|,. After integration by parts (formula (1.1))
we have

6] 1y
(v fis qD)LiJI_ij-n)_ =1} {fnf w)Li(Jf“)
with
Yayooap = vi.. 'Vyltpvl..yjal‘..ak
and then in the limit
(7) — (—1Y (')
(2.5) (V3 W)LL;'(-“») = (=1 (V?Y, ‘P)Li(Mu).
Formula (2.5) proves our supposition, because C**"®(M,) is dense
in L;,;(M,). Thus the space HP1(M,) can be treated as a (obviously
dense) subset of the space Hj2(M,), where p, > p, > 0. Accordingly
the space H;"2(M,) can be also embedded into the space H (M), be-

cause they both may be considered as the spaces adjoint to HE2(M,)
and H}'(M,) respectively. The proof is complete.

Let us study yet the relationship between the spaces H?(M,) and
the space of tensor-distributions 2,(M,) introduced in the preceding
section. The convergence in Z;(M,) is obviously stronger than the con-
vergence in Hj(M,), thus each feH;”(M,) defines a tensor distribution
Jf according to the formula

lpy IS i‘t(({ﬂ,ﬂ-

(*) We call two norms || [y and | [l(2) compatible on the set Z, if the following
conditions hold:

1° |ifllay < [Ifllz) for each feX,

2¢ every sequence {f,} = ¥ fundamental in both norms || [lay and || |l¢2) and
tending to zero in the norm || ll(1) tends to zero also in the norm || [|(z).

It is known [5] that in such a case the completion of X in the norm Il llizy may
be embedded in a one-to-one and continuous manner into the completion of X in
the norm || ||y).
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Clearly the mapping J is one-to-one. In particular, if feLi(M,),
then Jf = f almost everywhere on M,,.

ProrositioN 2.2. feHp ™ (M,) if and only if the distribution Jf can be
represented in the form

(2.4) Jf = Y dividy,
i=0

with pyeLi, ;(M,).

Proof. Let feH;™(M,). From the duality of the spaces Hj (M,)
and H;™(M,) and from a theorem of F. Riesz applied to the space Hy' (M,)
it follows the existence of a f,eH} (M,) such that

(@, f) = (@3 fi)m

identically for ¢eC**(M,). According to the formula (2.1), this can
be written in the form
(2.5) (@) =D (W0, VPf) o
S =0 k+7
or
m

@i dfy = D <V, VP>
§=0

and the latter identity yields (2.4) with y; = (—1)/F{)f,. The converse
statement is also easy to verify, if we observe that the expression on
the right of (2.5) defines a linear functional over ¢**°(M,) which is con-
tinuous in the norm || ||,,-

3. The differentiability theorem. In the present section we are going
to study the existence and differentiability properties of the solutions
of elliptic differential equations with infinitely differentiable coefficients
considered on the manifold M, . At first, we shall prove some differential
inequalities, which are a simple consequence of the following well known
theorem proved by Gdarding [4]:

THEOREM. Let 2 be a bounded domain of the Euclidean space R" and
let us consider the Dirichlet integral

INY D [ay(@) Df(2) Df(x)da

0<lal,|fl<m 2

with

ar 0“f(2)

Df(x) = T

a=(a,...; @), la| = a,+...+a,.
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We suppose the coefficients a,; to be infinitely differentiable complex-
-valued functions satisfying the conditions
1° Gy = a5,  for |a| = || =m,

2° 3 agu(@)n*n’ =e(pi+...+un)" for arbitrary real 7y, ..., 7, and
lal={p|=m
arbitrary x<Q (with ¢ independent of x).

In such a case a positive constant t, may be chosen so that for arbitrary
feCX(2) (5) and t =1, the imequality

(3.1) If)+tiflize =¢ D IDFlkz
0<al=m

holds with ¢ independent of f (°).
We shall also use the estimate

(3:2) ZnD"fnLe(g, <ot ”"((illfllzi(aptz lD“fIlr,z(a)) (0<1<k)

laf=
valid for 2 with sufficiently smooth boundary, if feC*(2,) (with 2, o Q)
and if ¢ is sufficiently large, which is due to Ehrling [1].
PrOPOSITION 3.1. Consider the tensor field a<C*™™(M,) satisfying
the following conditions:

(3'1) aﬂl..‘%,ﬁl...ﬂm == aﬂl---ﬂm-al---am,

(3.11) for each xze M, there is a constant ¢ > 0 such that

(3.3) (a(@)firbmemr, | gomy .. (Zt,)

for every real vector t lying in the space tangent to M, at the point x. (Because
M, is compact, one can obviously choose a constant ¢ independent of x such
that (3.1) holds). Under the above assumptions the inequality
34)  [afttn(V,,.. Wy AT Tzt [[fdgx

My,

AY.aflpy .
My

( Jl.ﬂ s+ D' [1Dfrag| (6% 0,0, 062)
|la|=m Z;

holds for feCF (£2;) with 1 < j < s and t greater than some constant t, (inde-

pendent of f and j).

] Og° (£2) denotes the set of all infinitely differentiable functions with compact

support contained in 0.
(®) In this section, ¢ denotes always a positive constant, may be taking dif-
ferent values in different inequalities.
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To prove (3.4) it is sufficient to write the integral on the left in terms
of the local eoordinates and to apply inequality (3.1). Note that if, in

particular, aflfm — 1., 6fm, then (3.4) yields
(3.5) !fl?ﬁtlflﬁ;“c(t [iftae+ ' [ ID"fJ“dE)
E'; !n[umE}'

for feCP (), if t > 1,
ProprositioN 3.2. For each feC®(M,), 0 <l1<m and t>1, the
inequality

(3.6) fi < et ™t 1flo+ Ifln)

holds (t, is independent of f).

Proof. For feCy(£2;), 1 <j <s, it is easy to obtain (3.6) by writ-
ing [f|7 in terms of local coordinates and making use of inequalities (3.2)
and (3.5). Let now feC™(M,) and let us consider a finite decomposition
of unity {¢}} with the carrier of ¢; contained in 2; and D'o; = 1. At first,
we shall prove by induetion

(3.7) If} < et=2+tm (t Iflo+ i+ le;fifn),

feC®(M,), 0<l<m.

For | = 0 the estimate (3.7) is evident. Suppose it is true for I < r
(with some r < m) and write |f|} in the form

rf1i=_2||¢ffw+ D [ OtV g Vi1 V) dy+

I<r M,
+ ) [( RtV V)P V) Byt
l<r ‘fn
+ Y [( @y, ...V, ) (V2. VF)d,ai,
kdl<r M,

where the tensor fields b, ¢/, d are infinitely differentiable and have
supports contained in £2;. Making use of the estimate (1.3), of inequal-
ity (3.6) applied to the function ¢;f and of the inductive assumption we
get (3.7) with I =». It remains to estimate the sum 2 l@ifls,- Writing it
in the form

et D [Okw,,... 0, N7V dye

i kil<zm M,
O<k,l<m
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and applying (1.3) and (3.7) we obtain

N oifs < B+ e(t) (t o+ I+ mf::;)
i i
with

‘P(t) — 2 t"l (k- Jy2m :

k+j<2m

Because y(t) -0 as t - oo, we get for sufficiently great ¢

D lpifla < e(tIfiR+1f2),
i

and this together with (3.7) yields (3.6).
PROPOSITION 3.3. If aeC*™>™(M,) is the tensor field satisfying con-
dition (3.1) and (3.1I), then for every feC>(M,) and t >, the inequality

(3.8) [ alitm(Ve.. W V.. VP dz+tIf; > etIf+ f12)
hY
holds (the constants t, and ¢ are independent of f).
Proof. For feCy(2;) (1 <j <s) the estimate (3.8) follows from
proposition 3.1 if we make use of the inequality

tIflo+ flm < ( Jiftae+ 3 10 dE)
|a|=m E'j
which is easy to be proved by the use of Schwarz inequality applied to
the space L*(Z;) and of the estimate (3.2). For an arbitrary feC™(M,)
one writes the left-hand side of (3.8) in the form

3.9) > [aling(Vs..Vp Ng (V.. Vo] dott Ylosfli,
7 M, i
where {¢j} is a finite decomposition of unity with the carrier of ¢; con-
tained in £;. Similar reasoning as that in the proof of the proposition
3.2 yields our assertion, if we make use of the estimate (3.6) and of the
just proved inequality (3.8) with f replaced by g¢;f.
ProrosiTioN 3.4. Consider the differential operator of order 2m

Lf= ) (=1 . V(@iv,. . Vaf) (feC®(M,)
0=k,l=m
defined on M, with the coefficients infinitely differentiable and satisfying
conditions (3.1) and (3.1I) (so L is elliptic and, moreover, uniformly ellip-
tic, because M, is compact). Let us put D = I+ A4, where Af = —V'V,f
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for feC®(M,) and I is the identity operator. If r, is a positive integer, then
for 0 <r <7y and feC™(DM,) the inequalities

(3.10,)  (DLf, ) = ellfifr
and
(3.10,) (LD'f, )l = elfit.r

hold, if the real part of the coefficient a in the term of L containing mo der-
1vatives has the lower bound greater than some positive number t, (depending
on 1, and not depending on f).

Proof. We shall prove inequality (3.10,), the proof of (3.10,) being
analogous. Making use of the formulas for the covariant derivative of
a product and of a commutant of two covariant derivatives one can bring
the expression D'Lf to the form

(3.11) D'Lf = (—1y+™°m,. . Vapr. . P (aimV, ..V, V...V )+

+fRea+ Y PP, T f)+

aj...qk
o<k, l<m-4tr
0<k+l<2(m4r)
+ ) A Readf)+ N (—1)4V(ReaV,4Y),
l<i<([r/2] 0<j<[(r—1)2]

where the tensor field bj-f! does not depend on Rea (it depends only
on the covariant derivatives of positive order of Rea and on the remaining
coefficients of L as well as on their covariant derivatives). The Dirichlet
integral corresponding to the two last terms on the right of (3.11) is non-
negative and may be rejected when deriving desired estimate. After inte-
grating by parts and making use of the propositions 3.2 and 3.3 one ob-
tains

(D'Lf, )] > (e— erp(®) (b 1fla+ 1fi2usr)

with ¢, depending on the coefficients of L (with only exception of Rea)
and

w= 3 e,
0<j<msr
This yields (3.10,) for ¢ sufficiently large.

ProrosiTioN 3.5. Let L be an elliptic differential operator satisfying
the assumptions of proposition 3.4. For an arbitrary integer p and feC~(M,,)
the a priori imequality

(3'12) ”f”p < c”Lfl..l;p—ﬂm
holds (with ¢ independent of f).
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We shall prove at first some lemmas. -
Levva 3.1. If aeC®*(M,) and feC®(M,), then for any integer p
there is a positive constant ¢ (independent of f) such that

(3.13) livlly < ellfllpsr
with v = @g)_ o V.. .V%f.

Proof. For p> 0 our estimate follows simply from inequality (1.3)
when making use of the formula for the covariant derivation of the prod-
uct. Suppose now p = —m < 0 and let us consider at first the case
m > k. Integrating by parts and using the generalized Schwarz inequal-
ity we get

[ . |
‘F’(»’G) a‘ul...akdﬂ] s ‘Aakfdﬂ'm < ||hilm—klv||—m+k
M, " |
with an arbitrary ¢eC*(M,), where h = V...V (a, .¢) and the
expression on the right is not greater than ¢||g|l,||fll_n.%, Which follows
from (3.13) by putting there p = m—k > 0. Let now m < k. Integration
by parts yields the identity

[ o(@) 8y, 7. Ve
M,

[ 7o Vgay ) (7o V) dal.
ﬂ!fn

If we take derivative of the product ga, ., we can estimate the
integral on the right by means of (1.3). Thus for each p < 0 we get

< ell@ll—p lfllp+ 2

[ o @)te V...V dy@
M'n

and this implies (3.13).
LEMMA 3.2. For an arbitrary integer p and feC®(M,) we have

(3.14) 17l < fllp.s1-
Proof. For p >0 inequality (3.14) is obvious. Suppose now
p=—m <0 and let peC"*(M,). Integrating by parts we have

@ VN a0, = [ (PR
v n. M,

and applying on the right the generalized Schwarz inequality one obtains
(3.15) (s V0 23,y < 1l [l mn

with ¢ = V'p,. Note that
l9lhn-1 < ll@llm
for m =1,2,... because of the inequality
(V.. VD) (Vo Vol "B) < (V.. VH19) (Vo .V, 7,
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which is easy to prove in the orthonormal coordinate system. So inequal-
ity (3.15) yields
)
(¢, vV f)Lf(M“)¥ < “‘P|lm”ﬂ|—m+1

and this implies (3.14).

LeEMMA 3.3. For arbitrary r=1,2,... and arbitrary function
feC®(M,) the equation
(3.16) D'h=f

has a solution heC™(M,).
Proof. At first, let us recall the concept of weak solution of a diffe-

rential equation. We say that we | H“(M,) is a weak solution of the

f=—c0

equation Lu = v (L being some differential operator with infinitely diffe-

rentiable coefficients and ve (J HY(M,)) if the equation

=—00

(L, u) = (¢, )
holds identically for @ eC™(M,) (L™ denotes the differential operator for-
mally adjoint to L). This is equivalent to the following statement: Ju
is a solution of the equation Lu = Jv» with the operator L understood
in the distributional sense (. denotes the embedding of H” (M,)into Z,(M,)
described in section 2). To prove our lemma let us consider at first the
case r = 1. It will be shown that equation (3.16) has at least one weak
solution; because of the known theorem of de Rham [10] it must be an
infinitely differentiable function, if so is the right member. From the
identity .

(Dg, ¢) = lglh,
valid for arbitrary ¢ eC*(M,), we get, by applying the generalized Schwarz
inequality, the following a priori inequality for the operator D:

(3.17) llplh < [[1Del| -

Consider now the linear functional I defined on the set of all functions
of the form D¢ with ¢eC™(M,) as follows:

[(Dg) & (9, f).

Inequality (3.17) implies that 7 is well defined and continuous in the
norm || ||_,. Therefore it can be extended to a linear functional on the whole
space H~'(M,) according to the Banach-Hahn theorem. From the duality
of the spaces H '(M,) and H'(M,) it follows that there is an he H™'(M,)
such that

L) = (v, h)
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for peH'(M,). Especially if y = Dp with geC®(M,), this yields

(Dg, h) = (¢, ),

which means that % is the desired weak solution of (3.16). The case r > 1
follows by induction.

Let us prove now the proposition 3.5. In the case p = m it follows
simply from inequality (3.10,) with » = 0 and from the generalized Schwarz
inequality. Suppose now p >m, 80 p = m-+7» with » > 0, and consider
the expression (D'Lf, f) with feC®(M,,). Integrating by parts and apply-
ing lemmas 3.1 and 3.2 we obtain

(D'Lf, )l = ellLfll_msr|fllmr

and this, together with (3.10,), yields our proposition. For P =m—r
(with r > 0) let us estimate the expression (Lf, ) with & given by lemma
3.3. The inequalities (3.10,) and (2.3) imply

’

(318) cHh'ﬁn.q.r *-~<~. |(Lf! k): é ”Lf”-m_r”h[er

and lemma 3.1 yields

(3.19) Iflbar < [1*lhnsr-

The inequalities (3.18) and (3.19) give (2.12) with p = m—7. The
proof is complete.

PRrOPOSITION 3.6. Let L be the differential operator considered in pro-
position 3.4 and suppose p+m < p,. Then there exists a constant t, (depend-
ing on po) such that the set I'(L) of all functions Lf with feC®(M,) is dense
in H"(M,), if the real part of the coefficient a is greater than t,.

LEMMA 3.4. If A is some positive constant and t, is sufficiently large,
then

((D"+ A)Lf, f)] = ellfifmr
for all feC™(M,).

The proof is similar to the proof of proposition 3.4 and will be omit-
ted.

To prove proposition 3.6 we begin with the case p = —m and show
that each linear functional on H~™(M,) vanishing on /" must vanish iden-
tically. If I is such a functional, it can be represented by

Ug) = (@, fo)
with foeH, (M,). Consider the bilinear form

b(g, )Y (Ly, y)
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defined for ¢eC®(M,) and yeH™(M,). Because of the estimate

b(9y 9| < IILgll_mliln < eligln ¥l

it can be extended to a continuous bilinear form on the whole space
H™(M,). Moreover,
blp, fo) = UlLg)

for @eC™(M,). Finally, b being continuous, it follows that

(3.20) b, fo) =0

for all peH™(M,), especially for ¢ = f,. Inequality (3.10) with r =0
yields
b(9; ) = ¢liglm

for all pe H™(M,) and this together with (3.20) implies ||foll, = 0. Thus
we have proved that I'(L) is dense in H~™(M,). Therefore it is dense in
each space HP(M,) with p < —m. To examine the case p = —m-+r
(with 0 < » < p,) note at first that by means of similar arguments as
used above it can be shown that lemma 3.4 implies the density of the
set I'((D"+A)L) in the space H™™""(M,). Therefore to each feC%(M,)
and to every positive number ¢ an f,eC*(M,) can be chosen such that

(3.21) (D" +A)Lfe— (D" + A)fll-m—r < &.

If A is taken in such a manner that proposition 3.5 is true with L
replaced by D"+ A, then (3.21) implies

[ILfs_f||—m+r < &

and the proof is complete.

Note that it follows from propositions 3.5, 3.6 and lemma 3.1 that
an elliptic differential operator L with sufficiently large real part of the
coefficient @ considered on the set C°(M,) defines a continuous mapping
from the space H”(M,) onto some dense subset of H”~*"(M,) and the
inverse mapping is also continuous. So we have proved

THEOREM 1. Let L be an elliptic operator of order 2m with infinitely
differentiable coefficients satisfying conditions (3.I) and (3.1I) and let us
suppose that inf Rea(x) is greater than the numbers 1,1, considered in

xeM,,

propositions 3.4 and 3.6. Then the closure L of the operator L (considered as
the mapping from HP+*™(M,) into H”(M,)) is a topological isomorphism
of the space H**"™(M,) onto the space H"(M,).

Theorem 1 implies that to each fe H” (M, there is some we H"**™" (M)
such that Lu = f. We call « the strong solution of the equation

(3.22) Lu=f, feHP(M,).
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Obviously, each strong solution of (3.22) is always a weak one and
the converse statement is also true, if I satisfies the assumptions of
theorem 1. Consider now an arbitrary elliptic operator L (without assum-
ing that mf Rea(x) is large). Then theorem 1 is valid for the operator

LY L—HI (Wlth sufficiently large real constant ¢) and thus it can be de-
duced that if w is a weak solution of (3.22) with L replaced by L,
then it must lie in H?**"(M,). The last statement yields the following
differentiability theorem for the operator L:

THEOREM 2. If L is an elliptic operator of order 2m with infinitely
differentiable coefficients satisfying conditions (3.1) and (3.1I) and if u is
a weak solution of (3.22), then w must lie in H"**" (M,,).
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