SOME THEOREMS ON INTERPOLATION BY PERIODIC FUNCTIONS

BY

E. STRZELECKI (WROCŁAW)

A sequence $\{t_n\}$ of positive numbers is said to have *property* (P) in a class K of sequences of real numbers if for every $\{\varepsilon_n\} \in K$ there exists a continuous periodic function $f(t), -\infty < t < \infty$, such that

$$f(t_n) = \varepsilon_n$$
 for $n = 1, 2, ...$

The problem is to find conditions on $\{t_n\}$ implying (P). Some results concerning this problem and related questions can be found in [1]-[4].

In particular Ryll-Nardzewski [3] has shown that the sequence $\{3^n\}$, but no sequence with $0 < t_n \le C \cdot 2^n$ (C any constant, n = 1, 2, ...), has the property (P) in the class K_2 of all sequences taking on values 0 and 1. He asked whether every sequence $\{t_n\}$ such that

$$t_{n+1} \geqslant (s+\beta)t_n$$
 for $n=1,2,\ldots,$

where $\beta > 0$ and s is an arbitrary positive integer, has the property (P) in the class K_s of all sequences taking on s different values only. I have shown in [4] that this condition is not necessary. In this note some further results concerning Ryll-Nardzewski's last question will be presented.

In the proofs we shall use closed intervals $[a_n, b_n]$ $(a_n > 0, b_n - a_n \leq \frac{1}{2})$ satisfying some of the following conditions:

$$(A_n) \frac{t_n}{t_{n-1}} a_{n-1} \leqslant a_n < b_n \leqslant \frac{t_n}{t_{n-1}} b_{n-1} (n > 1),$$

$$[a_n,b_n] \subset \begin{cases} \left[0,\frac{1}{2}\right] \; (\bmod 1), & \text{if} \quad \varepsilon_n=0, \\ \left[\frac{1}{2},1\right] \; (\bmod 1), & \text{if} \quad \varepsilon_n=1, \end{cases}$$

$$(C_n) b_n - a_n = \frac{1}{2}.$$

For any numbers denoted by b_n and b_{n+m} (m = m(n) > 0 integer) and any $\gamma = \gamma(n) > 0$

$$(\mathrm{D}_{n,m}^{\gamma}) \text{ means } b_{n+m} \leqslant \frac{t_{n+m}}{t_n} (b_n - \gamma).$$

We put

$$q_n = \frac{t_{n+1}}{t_n}$$
 $(n = 1, 2, ...).$

The following theorem is a generalization of a result by Mycielski [2]: THEOREM 1. Every sequence $\{t_n\}$ satisfying the condition

$$q_n=rac{t_{n+1}}{t_n}\geqslant 3 \quad \textit{ for } \quad n=1,2,\ldots$$

has the property (P) in the class K2.

The proof of Theorem 1 is based on seven lemmas.

LEMMA 1. In order that a sequence $\{t_n\}$ has property (P) in the class K_2 it is sufficient that there exists a sequence of intervals $[a_n, b_n]$ such that for every $n = 2, 3, \ldots$ condition (A_n) and for every $n = 1, 2, \ldots$ condition (B_n) hold and $(D_{n,m}^{\gamma})$ is satisfied with an $m = m_n$, whereas γ is fixed.

Lemma 1 is proved in [4] (see [4], Lemma 1).

LEMMA 2. If

$$(1) q_k \geqslant \frac{25}{8}$$

and for a given interval $[a_k, b_k]$ condition (C_k) holds, then there exists an interval $[a_{k+1}, b_{k+1}]$ such that we have (A_{k+1}) , (B_{k+1}) , (C_{k+1}) and $(D_{k,1}^{\gamma})$ with $\gamma = \frac{1}{50}$.

Proof. By (Ck) we have

$$d_k = q_k(b_k - a_k) = \frac{1}{2} q_k = \frac{3}{2} + \frac{q_k - 3}{2}.$$

Consequently there exists a closed interval $[a_{k+1}, b_{k+1}]$ fulfilling (A_{k+1}) , (B_{k+1}) and (C_{k+1}) for which

$$b_{k+1} \leqslant q_k b_k - rac{q_k - 3}{2} = q_k igg(b_k + rac{3}{2q_k} - rac{1}{2} igg).$$

Hence, according to (1), we othain

$$b_{k+1} \leqslant rac{t_{k+1}}{t_k}igg(b_k - rac{1}{50}igg), \quad ext{ q. e. d.}$$

We shall say that the interval $[a_n, b_n]$ has the property (Q_n) if there exists an interval $[a_{n+1}, b_{n+1}]$ for which (A_{n+1}) , (B_{n+1}) and (C_{n+1}) hold and the inequality

$$(\mathbf{E}_{n+1})$$
 $b_{n+1} \leqslant q_n b_n - \frac{1}{16}$

is fulfilled. In the opposite case we shall say that the interval $[a_n, b_n]$ has the property (Q'_n) .

LEMMA 3. If for a given interval $[a_k, b_k]$ conditions (C_k) and (Q_k) hold, then there exists an interval $[a_{k+1}, b_{k+1}]$ satisfying (A_{k+1}) , (B_{k+1}) , (C_{k+1}) and $(D_{k,1}^{\gamma})$ with $\gamma = \frac{1}{50}$.

Proof. In virtue of Lemma 2 it is sufficient to consider the case

$$3 \leqslant q_k < \frac{25}{8}$$
.

In this case we take an interval $[a_{k+1}, b_{k+1}]$ fulfilling (A_{k+1}) , (B_{k+1}) , (C_{k+1}) and (E_{k+1}) . By (E_{k+1}) we have

$$b_{k+1} \leqslant q_k igg(b_k - rac{1}{16q_k} igg) < q_k igg(b_k - rac{8}{16 \cdot 25} igg) = q_k igg(b_k - rac{1}{50} igg), \quad ext{ q. e. d.}$$

LEMMA 4. If $q_k \geqslant \frac{25}{8}$ and, for a given interval $[a_k, b_k]$, (C_k) holds, then the interval $[a_k, b_k]$ has the property (Q_k) .

The proof is analogous to that of Lemma 2, since we have

$$d_k = q_k(b_k - a_k) \geqslant \frac{25}{8} \cdot \frac{1}{2} = \frac{3}{2} + \frac{1}{16}$$
.

LEMMA 5. Let us suppose that for a given interval $[a_k, b_k]$ conditions (C_k) and (Q'_k) hold and let $[a_{k+1}, b_{k+1}]$ denote an interval for which conditions (A_{k+1}) , (B_{k+1}) and (C_{k+1}) are fulfilled. (The existence of such an interval follows immediately from (C_k)). If this interval has property (Q_{k+1}) , then there exists an interval $[a_{k+2}, b_{k+2}]$ such that the conditions (A_{k+2}) , (B_{k+2}) , (C_{k+2}) and $(D'_{k,2})$ with $\gamma = \frac{4}{625}$ hold.

Proof. In view of Lemma 3, by (C_{k+1}) and (Q_{k+1}) , there exists an interval $[a_{k+2}, b_{k+2}]$ for which we have (A_{k+2}) , (B_{k+2}) , (C_{k+2}) and $(D_{k+1,1}^{\gamma})$ with $\gamma = \frac{1}{50}$. Since (C_k) and (Q_k') hold, Lemma 4 implies

$$(\mathbf{F}_k) q_k < \frac{25}{8}.$$

Hence, according to $(D_{k+1,1}^{\gamma})$ and (A_{k+1}) we obtain

$$egin{aligned} b_{k+2} \leqslant & rac{t_{k+2}}{t_{k+1}} igg(b_{k+1} - rac{1}{50} igg) \leqslant rac{t_{k+2}}{t_{k+1}} igg(q_k b_k - rac{1}{50} igg) \ &= rac{t_{k+2}}{t_k} igg(b_k - rac{1}{50q_k} igg) < rac{t_{k+2}}{t_k} igg(b_k - rac{4}{625} igg), \qquad ext{q. e. d.} \end{aligned}$$

In the same way we prove

LEMMA 6. If any three given intervals $[a_k, b_k]$, $[a_{k+1}, b_{k+1}]$, $[a_{k+2}, b_{k+2}]$ have the following properties:

1) The interval $[a_k, b_k]$ fulfils conditions (C_k) and (Q'_k) ,

- 2) the interval $[a_{k+1}, b_{k+1}]$ fulfils conditions (A_{k+1}) , (B_{k+1}) , (C_{k+1}) and (Q'_{k+1}) ,
- 3) the interval $[a_{k+2}, b_{k+2}]$ fulfils conditions (A_{k+2}) , (B_{k+2}) , (C_{k+2}) and (Q'_{k+2}) ,

then there exists an interval $[a_{k+3}, b_{k+3}]$ for which we have (A_{k+3}) , (B_{k+3}) , (C_{k+3}) and $(D_{k,3}^{\gamma})$ with $\gamma = 2^5/5^6$.

Now we proceed to the main lemma.

LEMMA 7. If for a given interval $[a_k, b_k]$ condition (C_k) holds, then at least one of the following possibilities takes place:

1° there exists an interval $[a_{k+1}, b_{k+1}]$ such that conditions (A_{k+1}) , (B_{k+1}) , (C_{k+1}) and (D_{k+1}^{γ}) with $\gamma \geqslant 2^5/5^6$ are fulfilled,

2° there exist two intervals $[a_{k+1}, b_{k+1}]$ and $[a_{k+2}, b_{k+2}]$ such that conditions (A_{k+1}) , (B_{k+1}) , (A_{k+2}) , (B_{k+2}) , (C_{k+2}) and $(D_{k,3}^{\gamma})$ with $\gamma \ge 2^5/5^6$ are fulfilled,

3° there exist three intervals $[a_{k+l}, b_{k+l}]$, l=1,2,3, such that conditions (A_{k+l}) , (B_{k+l}) , l=1,2,3, (C_{k+3}) and $(D_{k,3}^{\gamma})$ with $\gamma \geqslant 2^5/5^6$ are fulfilled.

Proof. If (Q_k) holds, then it follows from Lemma 3 that the first possibility occurs. Let us assume that (Q'_k) holds. Since $b_k - a_k = \frac{1}{2}$ and $q_k \ge 3$, there exists an interval $[u_{k+1}, v_{k+1}]$ satisfying (A_{k+1}) , (B_{k+1}) and (C_{k+1}) . Hence, by (Q'_k) , we obtain

$$(\mathbf{E}_{k+1}') v_{k+1} > q_k b_k - \frac{1}{16}.$$

We first show that

$$(v_{k+1}-1)-q_ka_k<\frac{1}{2}.$$

In fact, if the contrary is true, then according to (A_{k+1}) we obtain (see fig. 1)

Fig. 1

$$q_k a_k \leqslant v_{k+1} - \frac{3}{2} < v_{k+1} - 1 \leqslant q_k b_k - 1$$
.

Moreover,

$$[v_{k+1}-\frac{3}{2},v_{k+1}-1]=[u_{k+1},v_{k+1}] \pmod{1}.$$

Consequently the interval $[v_{k+1} - \frac{3}{2}, v_{k+1} - 1]$ satisfies (A_{k+1}) , (B_{k+1}) , (C_{k+1}) and (E_{k+1}) , which contradicts (Q'_k) .

We also note that

$$q_k a_k < v_{k+1} - 1.$$

This inequality immediately follows from (E'_{k+1}) , $q_k \ge 3$ and $b_k = a_k + \frac{1}{2}$. By (2) and (3),

$$[q_k a_k, (v_{k+1}-1)] \subset [u_{k+1}, v_{k+1}] \pmod{1},$$

i. e., the interval $[q_k a_k, (v_{k+1}-1)]$ fulfills conditions (A_{k+1}) and (B_{k+1}) (but not (C_{k+1})).

If the interval $[u_{k+1}, v_{k+1}]$ has property (Q_{k+1}) , then in virtue of Lemma 5 the second possibility is realized by putting $a_{k+1} = u_{k+1}$, $b_{k+1} = v_{k+1}$.

Now let us suppose that for the interval $[u_{k+1}, v_{k+1}]$ the property (Q'_{k+1}) holds. We shall denote by $[u_{k+2}, v_{k+2}]$ an interval satisfying conditions (A_{k+2}) , (B_{k+2}) , (C_{k+2}) and (E'_{k+2}) . Repeating the former considerations we show that the interval $[q_{k+1}u_{k+1}, (v_{k+2}-1)]$ also satisfies (A_{k+2}) and (B_{k+2}) (see fig. 2).

We shall now prove that

(5)
$$q_{k+1}(q_k a_k) < v_{k+2} - \frac{7}{2} < q_{k+1}(v_{k+1} - 1).$$

We remind that for the intervals $[a_k, b_k]$, $[u_{k+1}, v_{k+1}]$, $[u_{k+2}, v_{k+2}]$ conditions (C_k) , (A_{k+l}) , (B_{k+l}) , (C_{k+l}) (l=1,2), (Q'_k) and (Q'_{k+1}) hold. Consequently, by the definition of (Q'_n) , (E'_{k+1}) and (E'_{k+2}) are also true. Hence

$$\begin{split} v_{k+2} > q_{k+1}v_{k+1} - \frac{1}{16} > q_{k+1}(q_kb_k - \frac{1}{16}) - \frac{1}{16} \\ = q_{k+1}q_k(a_k + \frac{1}{2}) - \frac{1}{16}(q_{k+1} + 1) \geqslant q_{k+1}(q_ka_k) + \frac{9}{2} - \frac{1}{16}(q_{k+1} + 1). \end{split}$$

In virtue of Lemma 4 it follows from (C_k) and (Q'_{k+1}) that

$$(\mathbf{F}_{k+1})$$
 $q_{k+1} < \frac{25}{8}.$

Therefore we obtain

(6)
$$v_{k+2} - \frac{7}{2} > q_{k+1}(q_k a_k) + 1 - \frac{33}{128} > q_{k+1}(q_k a_k).$$

From (A_{k+2}) and (F_{k+1}) it follows that

$$v_{k+2} - \frac{7}{2} \leqslant q_{k+1} v_{k+1} - \frac{7}{2} < q_{k+1} v_{k+1} - q_{k+1}.$$

Hence, by (6), inequality (5) holds.

If v_{k+2} satisfies the inequality

$$(G_{k+2}) v_{k+2} - 3 \leqslant q_{k+1}(v_{k+1} - 1)$$

(see fig. 2), then we shall put

(7)
$$a_{k+1} = q_k a_k, \qquad a_{k+2} = u_{k+2} - 3, \\ b_{k+1} = v_{k+1} - 1, \qquad b_{k+2} = v_{k+2} - 3.$$

As we have already noticed, the interval $[q_k a_k, (v_{k+1}-1)]$ satisfies conditions (A_{k+1}) and (B_{k+1}) in virtue of (4). From (5) and (G_{k+2}) it follows that for the interval $[u_{k+2}-3, v_{k+2}-3]$ the conditions (A_{k+2}) , (B_{k+2}) and (C_{k+2}) hold (see fig. 2). Moreover, by (A_{k+1}) and (F_k) ,

$$b_{k+1} = v_{k+1} - 1 \leqslant q_k b_k - 1 = q_k \left(b_k - rac{1}{q_k}
ight) < rac{t_{k+1}}{t_k} \left(b_k - rac{8}{25}
ight),$$

i. e., the condition $(D_{k,1}^{\gamma})$ with $\gamma = \frac{8}{25}$ is satisfied. Thus, the second condition of the assertion is realized in the case when (Q_k') , (Q_{k+1}') and (G_{k+2}) hold.

Now let us assume that (Q'_k) , (Q'_{k+1}) and

$$(G'_{k+2}) v_{k+2} - 3 > q_{k+1}(v_{k+1} - 1)$$

hold. In this case putting $a_{k+1} = q_k a_k$, $b_{k+1} = v_{k+1} - 1$ we infer by (5) that the interval $[v_{k+2} - \frac{7}{2}, q_{k+1}(v_{k+1} - 1)]$ satisfies the conditions (A_{k+2}) and (B_{k+2}) (see fig. 3). We shall consider the intervals with the index

Fig. 3

n=k+3. If the interval $[u_{k+2}, v_{k+2}]$ has the property (Q_{k+2}) , then the third condition of the assertion follows from Lemma 6. (In this case we put $a_{k+1}=u_{k+1}$, $b_{k+1}=v_{k+1}$, $a_{k+2}=u_{k+2}$, $b_{k+2}=v_{k+2}$.)

Let us suppose that for $[u_{k+2}, v_{k+2}]$ the property (Q'_{k+2}) holds. Denote by $[u_{k+3}, v_{k+3}]$ the interval satisfying conditions (B_{k+3}) , (C_{k+3}) and

$$(A_{k+3}) q_{k+2}u_{k+2} \leqslant u_{k+3} < v_{k+3} \leqslant q_{k+2}v_{k+2}.$$

If (G_{k+3}) holds we put

(7')
$$a_{k+1} = u_{k+1}, \quad a_{k+2} = q_{k+1}u_{k+1}, \quad a_{k+3} = u_{k+3} - 3,$$

$$b_{k+1} = v_{k+1}, \quad b_{k+2} = v_{k+2} - 1, \quad b_{k+3} = v_{k+3} - 3.$$

The interval $[a_{k+2}, b_{k+2}]$ fulfils (A_{k+2}) and (B_{k+2}) which can be shown in the same way as the conditions (A_{k+1}) and (B_{k+1}) have been checked for the interval $[q_k a_k, (v_{k+1}-1)]$ under assumption (Q'_k) . Further, the interval $[a_{k+3}, b_{k+3}]$ satisfies (A_{k+3}) . We obtain this from (Q'_{k+1}) , (Q'_{k+2}) and (G_{k+3}) similarly as (A_{k+2}) has been proved for the interval $[u_{k+2}-3, v_{k+2}-3]$ under assumption (Q'_k) , (Q'_{k+1}) and (G_{k+2}) . Finally, $[a_{k+3}, b_{k+3}]$ satisfies (B_{k+3}) and (C_{k+3}) , since $[u_{k+3}, v_{k+3}]$ does. Taking into account that the intervals $[u_{k+1}, v_{k+1}]$ and $[u_{k+2}, v_{k+2}]$ satisfy (A_{k+1}) and (A_{k+2}) , we obtain from (F_k) and (F_{k+1})

$$egin{aligned} b_{k+2} &= v_{k+2} \! - \! 1 \leqslant q_{k+1} v_{k+1} \! - \! 1 \leqslant q_{k+1} q_k b_k \! - \! 1 \ &\leqslant q_{k+1} q_k igg(b_k \! - \! rac{64}{625} igg) = rac{t_{k+2}}{t_k} igg(b_k \! - \! rac{64}{625} igg), \end{aligned}$$

i. e., the condition $(D'_{k,2})$ with $\gamma = \frac{64}{625}$ is also fulfilled. Hence, in the case that (Q'_k) , (Q'_{k+1}) , (Q'_{k+2}) and (G_{k+3}) hold, the third possibility of the assertion is again realized.

Now let us suppose that

$$(G'_{k+3})$$
 $v_{k+3}-3>q_{k+2}(v_{k+2}-1).$

We shall prove that the inequality

$$(8) q_{k+2}\left(v_{k+2} - \frac{7}{2}\right) \leqslant v_{k+3} - \frac{21}{2} < v_{k+3} - 10 \leqslant q_{k+2}q_{k+1}(v_{k+1} - 1)$$

follows from (Q'_k) , (Q'_{k+1}) , (Q'_{k+2}) and (G'_{k+3}) . Taking (G'_{k+3}) into account we obtain

$$egin{split} v_{k+3} - rac{21}{2} &> q_{k+2}(v_{k+2} - 1) - rac{15}{2} \ &\geqslant q_{k+2}(v_{k+2} - 1) - rac{q_{k+2}}{3} \cdot rac{15}{2} = q_{k+2} \Big(v_{k+2} - rac{7}{2} \Big). \end{split}$$

Thus the first inequality in (8) is proved. Since (C_{k+2}) and (Q'_{k+2}) hold, we have, by Lemma 4,

$$(\mathbf{F}_{k+2})$$
 $q_{k+2} < \frac{25}{8}.$

From (A_{k+3}) , (A_{k+2}) , (F_{k+1}) and (F_{k+2}) it follows that

$$egin{aligned} v_{k+3} - 10 &\leqslant q_{k+2} v_{k+2} - 10 \leqslant q_{k+2} q_{k+1} v_{k+1} - 10 \ &< q_{k+2} q_{k+1} v_{k+1} - q_{k+2} q_{k+1} = q_{k+2} q_{k+1} (v_{k+1} - 1), \end{aligned}$$

i. e., the third inequality in (8) is also true. Hence, if we put

$$(9) \quad \begin{array}{ll} a_{k+1} = q_k a_k, & a_{k+2} = v_{k+2} - \frac{7}{2}, & a_{k+3} = u_{k+3} - 10, \\ b_{k+1} = v_{k+1} - 1, & b_{k+2} = q_{k+1} (v_{k+1} - 1), & b_{k+3} = v_{k+3} - 10, \end{array}$$

the intervals $[a_{k+l}, b_{k+l}]$, l = 1, 2, 3, satisfy conditions (A_{k+l}) , (B_{k+l}) , l = 1, 2, 3, respectively and $[a_{k+3}, b_{k+3}]$ fulfils (C_{k+3}) . Moreover, by (A_{k+1}) and (F_k) we obtain

$$b_{k+1} = v_{k+1} \! - \! 1 \leqslant q_k b_k \! - \! 1 \leqslant rac{t_{k+1}}{t_k} igg(b_k \! - \! rac{8}{25} igg).$$

Therefore $(D_{k,1}^{\gamma})$ with $\gamma > 2^5/5^6$ is also satisfied.

The reader may note that the following cases have been considered in the above-mentioned proof:

- 1) $(Q_k);$
- 2) (Q'_k) , (Q_{k+1}) ;
- 3) (Q'_k) , (Q'_{k+1}) , (G_{k+2}) ;
- 4) (Q'_k) , (Q'_{k+1}) , (G'_{k+2}) , (Q_{k+2}) ;
- 5) (Q'_k) , (Q'_{k+1}) , (G'_{k+2}) , (Q'_{k+2}) , (G_{k+3}) ;
- 6) (Q'_k) , (Q'_{k+1}) , (G'_{k+2}) , (Q'_{k+2}) , (G'_{k+3}) .

Thus all possibilities have been exhausted and Lemma 7 is proved.

Proof of Theorem 1. Let us put $a_1 = 1$, $b_1 = \frac{3}{2}$, if $\varepsilon_1 = 0$ and $a_1 = \frac{1}{2}$, $b_1 = 1$, if $\varepsilon_1 = 1$ and build the sequence of intervals $[a_n, b_n]$, $n = 1, 2, \ldots$, by induction as follows: if $b_k - a_k = \frac{1}{2}$, then we choose subsequent intervals according to Lemma 7 till we get an interval of length $\frac{1}{2}$. On account of Lemma 1 in order to prove Theorem 1 it is sufficient to show that condition $(D_{n,m}^{\gamma})$ is satisfied for every n with a $\gamma > 0$ independent of n, e.g. with $\gamma = 2^{11}/5^{10}$.

- 1) If $b_n a_n = \frac{1}{2}$, then we obtain $(D_{n,m}^{\gamma})$ $(\gamma \ge 2^5/5^6, m = 1, 2 \text{ or } 3)$ as a direct consequence of Lemma 7 putting n = k.
- 2) If $b_n a_n < \frac{1}{2}$ then, by Lemma 7, it is sufficient to distinguish the following cases:
- a) Case (Q'_{n-1}) , (Q'_n) , (G_{n+1}) . Then the intervals $[a_n, b_n]$ and $[a_{n+1}, b_{n+1}]$ satisfy formulae (7) with n = k+1 or (7') with n = k+2. Since $b_{n+1} a_{n+1} = \frac{1}{2}$ there exists, by Lemma 7, a positive integer m

(m=1,2 or 3) such that

$$(\mathbf{D}_{n+1,m}^{\gamma}) \qquad b_{n+1+m} \leqslant \frac{t_{n+1+m}}{t_{n+1}} \left(b_{n+1} - \frac{2^5}{5^6} \right).$$

Consequently, according to (A_{n+1}) and (F_n) we obtain

$$b_{n+1+m} \leqslant \frac{t_{n+1+m}}{t_{n+1}} \left(q_n b_n - \frac{2^5}{5^6} \right) \leqslant \frac{t_{n+1+m}}{t_n} \left(b_n - \frac{2^8}{5^8} \right).$$

Thus $(D_{n,m+1}^{\gamma})$ with $\gamma > 2^{11}/5^{10}$, m = 1, 2 or 3 holds.

b) Case (Q'_{n-1}) , (Q'_n) , (G'_{n+1}) , (Q'_{n+1}) , (G'_{n+2}) . The intervals $[a_n, b_n]$, $[a_{n+1}, b_{n+1}]$ and $[a_{n+2}, b_{n+2}]$ satisfy formulae (9) with n = k+1. In this case $b_n - a_n < \frac{1}{2}$, $q_n < \frac{25}{8}$, $b_{n+1} - a_{n+1} < \frac{1}{2}$, $q_{n+1} < \frac{25}{8}$, $b_{n+2} - a_{n+2} = \frac{1}{2}$. Reasoning like in the previous case we get the inequality

$$b_{n+m} < \frac{t_{n+m}}{t_n} \left(b_n - \frac{2^{11}}{5^{10}} \right)$$

for a positive integer m ($2 \le m \le 5$).

c) Case (Q'_{n-2}) , (Q'_{n-1}) , (G'_n) , (Q'_n) , (G'_{n+1}) . The intervals $[a_n, b_n]$ and $[a_{n+1}, b_{n+1}]$ fulfill formulae (9) with n = k+2. In this case $b_n - a_n < \frac{1}{2}$, $q_n < \frac{25}{8}$, $b_{n+1} - a_{n+1} = \frac{1}{2}$. Therefore, by Lemma 7, there exists a positive integer m $(1 \le m \le 4)$ such that

$$b_{n+m} < \frac{t_{n+m}}{t_n} \left(b_n - \frac{2^8}{5^8} \right).$$

Theorem 1 is thus proved.

In a similar way we can prove the following theorems.

THEOREM 2. The sequence

$$t_n = \left(3 - \frac{1}{s+1}\right)^n \quad (n = 1, 2, 3, ...),$$

where s is any positive integer, has the property P in the class K2.

Remark. The case $\{(5/2)^n\}$ must be considered separately.

THEOREM 3. If the q_n 's assume only two integer values m or m+1 $(m \ge 2)$ and the number of consecutive terms $q_n = m$ does not exceed a finite upper bound, then the sequence $\{t_n\}$ has the property P in the class K_m .

Remark. In the case of m=2 the period δ of the function f(t) for which $f(t_n)=\varepsilon_n$ ($\varepsilon_n=0,1$) can be obtained by the formula

$$\frac{1}{\delta} = \sum_{n=1}^{\infty} \frac{a_n}{t_n},$$

where $a_1 = \frac{1}{2} \epsilon_1$ and for n = 1, 2, ...

$$a_{n+1} = \begin{cases} \frac{1}{2} \varepsilon_{n+1}, & \text{if} \quad q_n = 2\,, \\ \frac{1}{2} \left| \varepsilon_{n+1} - \varepsilon_n \right|, & \text{if} \quad q_n = 3\,. \end{cases}$$

REFERENCES

- [1] J. Lipiński, Sur un problème de E. Marczewski concernant les fonctions périodiques, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 8 (1960), p. 695-699.
- [2] Jan Mycielski, On a problem of inetrpolation by periodic functions, Colloquium Mathematicum 8 (1961), p. 95-97.
- [3] C. Ryll-Nardzewski, Remarks on interpolation by periodic functions, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 11 (1963), p. 363-366.
- [4] E. Strzelecki, On a problem of interpolation by periodic and almost periodic functions, Colloquium Mathematicum 11 (1963), p. 91-99.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, WROCŁAW

Reçu par la Rédaction le 15.6.1963