ON A THEOREM OF TOEPLITZ

R. JAJTE (ŁÓDŹ)

Let X be a locally bicompact Hausdorff space. By C(X) we denote the set of real functions defined and continuous on X with bicompact carriers and by $C^+(X)$ the set of functions continuous and non-negative on X with bicompact carriers. Let J(f) be a distributive functional defined on C(X) and non-negative on $C^+(X)$. Let μ and $\int f(v) d\mu$ denote the Lebesgue measure and the Lebesgue integral generated by the functional J ([4], § 6, [2]). A function f(x) defined on X shall be called convergent in ∞ to the number ξ if for any $\varepsilon > 0$ the set $\{x : |f(x) - \xi| \ge \varepsilon\}$ is contained in a bicompact set.

Definition 1. Let $S = (S_{\tau})$ $(0 \leqslant \tau < \infty)$ be a family of bicompact subsets of the space X such that $S_{\tau'} \subset S_{\tau'}$ if $\tau' < \tau''$ and $\bigcup_{0 \le \tau < \infty} S_{\tau} = X$ (1).

$$(S)\int f(x)\,d\mu\,=\,a$$

is said to exist if the integrals $\int\limits_{S_{\tau}} f(x) d\mu$ for $0 \leqslant \tau < \infty$ exist and $\lim_{\tau\to\infty} \int\limits_{S_{\tau}} f(x) d\mu = a.$

Definition 2. Let $\Phi = (\Phi(t,x))$ $(0 \leqslant t < T \leqslant \infty)$ denote a family of continuous functions defined on X. A function f(x) defined on X is said to be limitable by the method $M = M(SJ; \Phi)$ to the number ξ if 1° the integrals $\omega_t = (S) \int \!\! \varPhi(t,x) f(x) d\mu$ exist for every $t \in [0,T)$ and

 2° the limit $\lim \omega_t = \xi$ exists.

Evidently, by specifying the space X, the classes S and Φ , we can obtain some well-known classes of limitability methods for number sequences or of functions defined on the semi-straight line (see e.g. [3]). The case considered here is, however, much more general, for it includes even the limitability of functions defined in non-metric spaces.

⁽¹⁾ A space for which such a class of sets exists is called a σ -bicompact space.

Definition 3. A function defined on X is said to be *locally bounded*, if for every point $x_0 \in X$ there exists a neighbourhood $U(x_0)$ in which this function is bounded.

Theorem (of Toeplitz). In order that a method $M=M(JS;\Phi)$ limitates all μ -measurable, convergent in ∞ and locally bounded functions to their ordinary limits, it is necessary and sufficient that the following conditions are satisfied:

$$1^{\circ} \lim_{t \to T^{-}} (S) \int \Phi(t, x) d\mu = 1;$$

 $2^{\circ} \lim_{t \to T-} \int_A^{\Phi} \Phi(t,x) d\mu = 0$ for every measurable set A contained in some bicompact set;

$$3^{\circ} \overline{\lim}_{t \to T^{-}} (S) \int |\Phi(t, x)| d\mu < \infty.$$

Proof of necessity. The necessity of conditions 1° and 2° is evident. To prove the necessity of condition 3° we complete the space X with the point x_{∞} into a bicompact space to be denoted by X_{∞} . The set of functions continuous on X and having a limit in ∞ may be treated as a set of functions continuous on X_{∞} . We denote it by $C(X_{\infty})$. The set $C(X_{\infty})$ is a Banach space with the norm

$$||f||_{\infty} = \sup_{x \in X} |f(x)|.$$

The functional

$$A_{t,\mathbf{r}}(f) = \int\limits_{S_{-}} \Phi(t,x) f(x) d\mu$$

is linear in $C(X_{\infty})$. We shall show that its norm is equal to $\int_{S_{-}} |\Phi(t,x)| d\mu$.

Since the set S_{τ} is bicompact, we have $\mu(S_{\tau}) = K < \infty$ and there exists, for every $\eta > 0$, an open set $U \supset S_{\tau}$ such that $\mu(U - S_{\tau}) < \eta$.

We denote by A_1 and A_2 the subsets of the set S_{τ} in which $\Phi(t,x)$

 $\geqslant \varepsilon/K$ or $\Phi(t,x) \leqslant -\varepsilon/K$, respectively.

In view of the continuity of the function Φ , the sets A_i are bicompact. Thus there exists a function $\varphi(x)$ continuous on X and such that $|\varphi(x)| \leq 1$ and

$$\varphi(x) =
\begin{cases}
1 & \text{for } x \in A_1, \\
-1 & \text{for } x \in A_2, \\
0 & \text{for } x \notin U.
\end{cases}$$

Obviously $\varphi \in C(X_{\infty})$. Moreover, we have

$$A_{t,\mathbf{T}}(\varphi)\geqslant\int\limits_{S_{\mathbf{T}}}|\varPhi(t,x)|\,d\mu-\varepsilon$$
 .

Since $\|\varphi\|_{\infty} = 1$, this implies

$$||A_{t,\tau}|| = \int\limits_{S_{-}} |\Phi(t,x)| d\mu.$$

The functional

$$A_t(f) = \lim_{t \to \infty} A_{t,\tau}(f) = (S) \int \Phi(t, x) f(x) d\mu$$

is defined in $C(X_{\infty})$, therefore according to Banach-Steinhaus theorem ([1], Th. 5, p. 80) we have

$$\sup_{0\leqslant \tau<\infty}\|A_{t,\tau}\|=(S)\!\int\!|\varPhi(t,x)|\,d\mu<\infty.$$

Let us now fix a set S_{τ} and an open set $U \supset S_{\tau}$ such that

$$\int_{U-S_{\tau}} |\varPhi(t,x)| \, d\mu < \varepsilon.$$

We have

$$A_t(\varphi) = A_{t,\tau}(\varphi) + \int\limits_{U-S_\tau} \Phi(t,x) \varphi(x) d\mu \geqslant \|A_{t,\tau}\| - \varepsilon + \int\limits_{U-S_\tau} \Phi(t,x) \varphi(x) d\mu.$$

But

$$\int\limits_{U-S_{\tau}} \Phi(t,x) \varphi(x) d\mu > - \int\limits_{U-S_{\tau}} |\Phi(t,x)| \, d\mu > -\varepsilon.$$

Therefore

$$A_t(\varphi) \geqslant ||A_{t,\tau}|| - 2\varepsilon$$
.

Letting ε tend to 0 and τ tend to T_0 , we obtain immediately

$$||A_t|| = (S) \int |\Phi|(t,x)| d\mu$$
 for $t \in [0,T)$.

Since by assumption the limit $\lim_{t\to T_-} A_t(f)$ exists for every $f \in C(X_\infty)$, by Banach-Steinhaus theorem we have

$$\overline{\lim_{t\to T_-}} \|A_t\| < \infty,$$

which ends the proof of the necessity of condition 3°.

Proof of sufficiency. We show at first that for every locally bounded and μ -measurable function and for every bicompact set A

$$\lim_{t\to T-}\int\limits_A\Phi(t,x)f(x)d\mu=0$$

holds.

Let a $\delta > 0$ be given. Since f(x) is locally bounded, it is bounded on the set A. On this set we have, say,

$$m \leqslant f(x) \leqslant M$$
.

We fix $a_1, a_2, ..., a_N$ such that

$$m = a_1 < a_2 < a_3 \ldots < a_N = M$$
 and $a_{i+1} - a_i < \delta/2K$,

where

$$K = \sup_{0 \le t < T} (S) \int |\Phi(t, x)| d\mu (2).$$

We set

$$A_i = \{x \in A : a_i \leqslant f(x) < a_{i+1}\} \cap A, \quad i = 1, 2, ..., N-2,$$

$$A_{N-1} = \{x \in A : a_{N-1} \leqslant f(x) \leqslant M\} \cap A$$

and

$$\psi(x) = \begin{cases} a_i & \text{for } x \in A_i, \\ 0 & \text{for } x \notin A. \end{cases}$$

Obviously the function $\psi(x)$ is measurable and we have $f(x) - \psi(x) < \delta/2K$ on the set A. Moreover, by 2° we have

$$\begin{split} \left| \int_{A} \Phi(t,x) f(x) d\mu \right| &= \left| \int_{A} \Phi(t,x) [f(x) - \psi(x)] d\mu + \sum_{i=1}^{N-1} a_{i} \int_{A_{i}} \Phi(t,x) d\mu \right| \\ &\leq \frac{\delta}{2K} \int_{A} |\Phi(t,x)| d\mu + \frac{\delta}{2} < \delta \end{split}$$

for t sufficiently large.

Now, let f(x) be a locally bounded and μ -measurable function and let $\lim_{x\to\infty} f(x) = \alpha$. Let an $\varepsilon > 0$ be given. Then there exists a bicompact set Z such that

$${x: |f(x)-a| \geqslant \varepsilon/K} \subset Z.$$

We denote by CZ the complement of Z to the space X and by $\eta_A(x)$ the characteristic function of A. Then we have

$$\begin{split} (S) \int & \Phi(t,x) [f(x)-a] d\mu \\ &= \int & \Phi(t,x) [f(x)-a] + (S) \int \dot{\Phi}(t,x) [f(x)-a] \ \eta_{CZ}(x) d\mu \,. \end{split}$$

⁽²⁾ Without diminishing the generality of our argument we may assume that $\sup_{0\leqslant t< T} (S) \int |\Phi(t,x)| \, d\mu < \infty.$

According to what has been said above the first integral tends to zero as $t \to T$ —. From the estimation

$$\left| (S) \! \int \! \varPhi(t,\,x) \left[f(x) - a \right] \eta_{(z}(x) \, d\mu \right| \leqslant (S) \! \int \! |\varPhi(t,\,x)| \, d\mu \cdot \frac{\varepsilon}{K}$$

of the second integral we conclude that its absolute value is smaller than ε . By additivity of the functional

$$M(f) = \lim_{t \to \infty} (S) \int \Phi(t, x) f(x) d\mu$$

and condition 1° it follows that the function f(x) is limitable in ∞ to the number a, which ends the proof of the theorem.

REFERENCES

- [1] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [2] N. Bourbaki, Intégration, Éléments de Mathématique VII, Paris 1952.
- [3] G. H. Hardy, Divergent series, Oxford 1956.
- [4] М. А. Наймарк, Нормированные кольца, Москва 1956.
- [5] O. Toeplitz, Über allgemeine lineare Mittelbildungen, Prace Matematyczno-Fizyczne 22 (1911), p. 113-119.

Reçu par la Rédaction le 6.5.1963