COLLOQUIUM MATHEMATICUM

VOL. XII 1964 FASC. 2

REMARKS ON THE ENTROPY IN QUANTUM MACROPHYSICS
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The ordinary formalism of quantum theory may be described in
hurried outline as follows. To every physical system there corresponds
a Hilbert space . All elements y belonging to the unit sphere of $ are
called microstates of the physical system. Further, to every physical quan-
tity or observable there corresponds a self-adjoint (not necessarily bounded)
linear operator on $. Let A be an operator corresponding to an obser-
vable and let

A= fZHA(dA)

be its spectral decomposition (see [5], p. 318, [6], p. 180). It should be
noted that the projector-valued spectral measure /7, defined on Borel
subsets of the real line is uniquely determined. The fundamental statisti-
cal law of quantum theory states that the formula p% (&) = (H__, (6)p, )
gives the probability that a measurement at a microstate y of the obser-
vable corresponding to the operator A will lie in the set &. The mean

value of the observable A at a microstate yp, i. e. the intergal f APY (dA),

will be denoted by m,(y), provided that it exists. Further, the entropy
$4(y) of A at the microstate y is defined by the formula

s.4(y) = sup (— D'pY(&x) logpk (&),

k=1
where the supremum is extended over all finite decompositions of the
real line into Borel sets &, &, ..., &,.

We shall now quote some basic notions of macrophysics introduced
in [2]. Two microstates ¢ and y are said to be equivalent with respect
to the observable 4, in symbols ¢ ~ ¥ if m4 (@) = m,(p). The relation ~
divides the set of all microstates in which A has finite mean value into
disjoint classes. These classes will be called macrostates with respect to A
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or shortly macrostates and denoted by capital Greek letters @, ¥, ...
The macrostate containing a microstate ¢ will be also denoted by [¢].
The mean value M ,(®P) of the obsevable A4 at the macrostate @ is defined
as the common value m 4 (p) for all microstates ¢ belonging to @. In order
to define the entropy S,(®) of A at the macrostate ¢ we apply the prin-
ciple of maximum uncertainty formulated by Jaynes [3]. This principle
may be regarded as a precise and mathematically correct replacement
of the ambiguous Laplace principle of insufficient reason. According
to Jaynes principle we define S,(®) as the maximal uncertainty con-
cerning A when the mean value M ,(®) is known. More precisely, we put
S84(D) = sup {s4(¢):pe®}. It was proved in [2] that the entropy S8,(P)
is finite at every macrostate @ if and only if the spectrum of A4 is discrete
and if there exists a real constant ¢ such that

2: exp (edy) < oo,

kel
where 1,, Ay, ... are proper values of the operator A. Each operator A
satisfying the last condition is called thermodynamically regular. The class
of thermodynamically regular operators is the largest class of operators
for which the generalized thermodynamics can be developed (see [2]).
In what follows we shall consider only thermodynamically regular opera-
tors.

The evaluation of the physical system in time brings about a syste-

matic and continuous change of microstates. This change is determined
by the equation

p(t) = eXp(~%H)w (t=0),

which may be written in differential form as the Schrodinger equation
of the motion

. Oy(t)

ih T Hy(t)
with the initial condition (0) = y (see [1], p. 110, [4], p. 108). Here H
is the Hamiltonian operator, i. e. the total energy operator for the system
in question and 7 is an abbreviation for Planck’s constant divided by 2=.
In what follows we assume that the Hamiltonian does not depend on the
time f.

The entropy in evolving physical systems was discussed in [7] and [8].
Since, in general, macrostates with respect to operators non-commuting
with the Hamiltonian branch out during the motion of the system, it
was necessary to introduce a new concept of entropy at an instant t for
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a macrostate @, in symbols 8 (®). According to Jaynes principle, 8% (®)
is defined to be the maximal uncertainty at time ¢ concerning 4 when
the initial mean value M, (®) is known. More precisely, we put

8 (@) = sup (8.4 ([p(t)]):(0) B}

In [8] (see also [7]) the principle of increase of entropy for spin ope-
rators, i. e. the inequality

S84 (D) = 8,4(P) (t=0)

was established. Moreover, for arbitrary operators 4 a limiting principle
of increase of entropy was proved.

We have seen that the definition of fundamental quantities of maero-
physics 8,(®) and 8% (D) is based on J aynes principle of maximum un-
certainty. It is natural to ask whether the Jaynes principle can be replaced
by a less pessimistic statistical principle which also would imply the law
of increase of entropy. A possible way is to regard the uncertainty of
a macrostate as an average of uncertainties of its microstates. Thus the
question can be formulated as follows. Consider a thermodynamically
regular operator A. One wants to associate with every macrostate @ with
respect to A a probability measure P, defined on Borel subsets of ® such
that for average entropies

(1) S4(9) = [34(¢)Po(dp)
¢

and

(2) S4(0) = [ s4(p() Po(dyp)

the law of increase of entropy is valid, i. e.
S4(9) > 84(®) (t>0)

for every motion of the physical system in question. We note that the
definition of average entropy at an instant ¢ for a macrostate @ admits
another reasonable version. Namely,

(3) 84(®) = [ B4 (lw()]) Po(dp).

Of course, this definition requires some obvious measurability condi-
tions for S, ([¢(t)]) regarded as a function of microstates @. The corres-
ponding principle of increase of entropy can be written in the form

B(@) > 8,0) (t>0).
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The aim of the present note is to prove that, unfortunately, for some
simple physical quantities A probability measures P, described above
do not exist. This result shows that the theory of macrophysics based on
the Jaynes principle cannot be seriously modified without having spoilt
the law of increase of entropy.

Consider non-relativistic spin component operators o, oy, o, for
a single fermion with the spin } (e.g. electron, proton, neutron) fixed
in the configuration space, i. e. whose behaviour can be described by spin
variables only. In this case the Hilbert space 9, is two-dimensional and
the operators o, o, and o, can be represented by Pauli’s matrices

0 anitl) il il

referring to a basis consisting of proper vectors of o, (see [1], p.149).
LEMMA. Let £e9,. If for every t = 0 the equations

(5) (op6™ 0 &, 6="af) = (o6 "vE, 67" VE) = 0

hold, then & = 0.
Proof. From (4) we get the well-known relations:

(6) 00y = —0y0z = }io,,
(7) 0y0y = —0,0y = }ioy,
(8) 0,0, = —0,0,; = }ioy,
(9) o =op =0 =},

where I is the unit operator in H,. Further, by the last equation, we have
e~z — cos}t-I—2isindt-o,,
e "y = cos}t-I—2isin}t-o,.

Hence and from (6), (7) and (8), by a simple computation, we obtain
the equations

(0,67"E, 7"nE) = cost: (0, ¢, £)+sint: (o€, §),
(oze‘“"vf, e_“"iv‘E) = cost- (0, &, &)—sint- (0, &, &)
which, by virtue of (5), imply
(028, &) = (04, &) = (0,§, §) = 0.
Hence, by (6),
(02, 0y &) = (0y05&, &) = —}i(0;6,8) =0
and, similarly, in view of (7) and (8),

(oy &, 0.&) = (0, 0,¢6) = 0.
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Thus, the vectors o, &, 0,& and o,¢& are mutually orthogonal. Since
the space 9, is two-dimensional and, by (9),

(UZE! 0, &) = (ayéi UUE) = {UzE: Usg) = i‘(f, ‘E);

we infer that (£, £) = 0, which completes the proof.

Now we shall prove the following statement:

There exists no family P, of probability measures on macrostates @
with respect to the observable o, for a spatially fized fermion such that at
least one of the inequalities

(10) ,s‘ {cD ) =8
(11) ?) > a( (
holds for every motion.

Indeed, suppose the contrary. Let P, be a family of probability
measures on macrostates @ such that one of inequalities (10), (11) holds
for every motion of the system. Let ¢, and y_ be proper vectors of o,
corresponding to proper values 3 and —3} respectively. Each microstate
pe9, can be written in the form y = a, 9, +a_y_, where a, and a_ are
complex numbers satisfying the condition |a_|24-|a,|® = 1. Hence it
follows that

m«s(w) == %|a+]2_'%la‘—I2:
$a,(9) = —la,|*logla,|*—|a_|*log|a |2.

Thus the equations m, (y) = 0 and 84,(y) = log 2 are equivalent.
Since log 2 is the maximum of the entropy 84,(y) for all microstates ye9,,
for any macrostate @ the equation

S, (P) = Jsa,(w)P@(dw) log 2

implies the formula s, (y) = log 2 Ps-almost everywhere. Thus
(12) M, (P) = 0 if and only if 8, (P) = log 2.
Let &, be the macrostate with M, (P,) = 0. By (12), taking into

account hypothesis (10) and (11) a.nd the inequalities S’ (D) < log 2,
St (@) < log 2, we conclude that at least one of the equatlons

(13) S5, (D) =log2 (¢t =>0),
(14) 8! (®) =log2 (t=0)

holds for every motion of the considered fermion. Hence, by (2) and (3),
we obtain, for every instant ¢, the equation s, (p(f)) = log2 P,-almost
everywhere in the case (13) and S, ([¢(t)]) = log2 P, -almost every-
where in the case (14). Now, by (12), in both cases we get the equation

My, (¢(t)) = 0 P, -almost everywhere. Applying an argument of Fu-
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bini’s type and taking into account the continuity of m,_(¢(t)) with
respect to ¢, we obtain for every motion the equation

(15)  mg(p() =0 for Py -almost all pe®, and all ¢ > 0.

Now consider the evolution of the particle in question in an external
uniform magnetic field. For uniform fields directed along the z-axis
and y-axis the corresponding Hamiltonians H, and H, are multiples
of o, and o, respectively. For simplicity of our considerations we may
assume that H, = ho, and H, = ho,. Consequently, in the first case
the evolution of a microstate ¢ is given by the equation ¢(f) = ¢ "¢
and in the second case by the equation ¢(t) = e *“vp. By formula (15),
valid for every motion, there exists a microstate g,e®, such that

—ilay

muz(e Po) = maz(e‘—ihyq%) =0

for all 2 > 0. Since

— ik — il — 1l
m,z(e Wx?’o) = (6™ %@y, € 2 ®o)

and
—1ia,

Mg, (€7 Vp,) = (056 “py, 3_“%990):

we have, by Lemma, ¢, = 0. But this contradicts the equation (g, @,)
= 1. Our statement is thus proved.
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