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On the Mickle-Rado covering theorems
by
A. R. Bednarek (Akron, Ohio)

1. Introduction. In [1], E. J. Mickle and T. Rado derive a general
covering theorem that is expressed in terms of a pair of binary relations.
This covering theorem generalizes Theorem 3.3 in A. P. Morse’s paper [2].
The Morse theorem is realized by a particularization of the relations.
Moreover, Mickle and Rado show that their theorem is equivalent to
Zorn’s lemma [5]. The logical equivalence of this covering theorem and
one of its modified forms (involving a single relation) is implicit in their
argument. The purpose of this note is to present some equivalent, though
structurally different, formulations of the Mickle-Rado theorems, thus
adding to the list of equivalents to the axiom of choice. Some of the
set-theoretic maximality principles are immediate consequents of our
formulations.

2. Definitions. Let R be a binary relation over the non-empty
set X; this is denoted by (X; R). We say that @,y ¢ X are R-comparable
(R-incomparable) if and only if #Ry or yRz [xnon Ry and ynon Rz].

A set S CX is called R-scatlered (R-coherent) if for every pair of
distinet @,y <8, x and y are R-incomparable (E-comparable). An
R-scattered (R-coherent) subset of X that is not a proper subset of
any other R-scattered (R-coherent) subset of X ig called 2 mazimal
RB-scatlered (mavimal R-coherent) subset of X. .

If zeX, then R(z) = {yly ¢ X and yEx}. Given SC X, let R(S)
:1% R(x). Given two binary relations R and R* over X ; that is,

€

(X; R, R*), we define the set N(z), for x e X, as follows:
N(x) = R(x) n R*z) = {y|y ¢ X, y Rz, and yR*z) .
Let N(8) =J ¥ (). Although N(E)CR(E) and N(E)C R*(B), N(I7)

xeS
does not equal B(E) ~ R*(E).
Given (X'; B*) and B C X, an element «’ ¢ E is called an R*- dominant
element it B C R*(»'). :
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3. The Mickle-Rado coverihg theorems. The Mickle-Rado
theorems can be stated in the following form:

MR-I. If R is a reflexive and symmetric relation over X, thew there
exists an R-scaitered subset 8 of X such that X = R(S).

MR-II. Given (X; R, R*) and

(1) R is reflexive and symmetric over X, and

(2) every non-empty subset E of X contains an R*-dominant element,
then there exists an R-scattered subset S of X such that X = N (8).

Since each set {z}, for z ¢ X, must, by (2), contain an R*-dominant
element, B* is a reflexive relation over X.

In general, our formulations are derived by characterizing the
R-scattered sets in the conclusions of MR-I and MR-II.

4. Derivation of equivalents to the Mickle-Rado theorems.
In [1], Mickle and Rado observe that the R-scattered set in the con-
clusion of MR-I is a maximal R-scattered set. The following theorem
shows this maximality is both necessary and sufficient.

THEOREM 1. If R is a reflexive and symmetric relation over X, and
8 is an R-scattered subset of X, then X = R(8) if and only if 8 is o maximal
R-scattered set.

Proof. Tet 8 be an R-scattered subset of X and X = R(S).
Agsume § is not a maximal R-scattered set; that is, assume there exists
an F-scattered set 8* C X such that §C 8* and §*—8§ #= @.

Let teS8*—8. Since X = R(S), there is an se S such that tRs.
But 8§ C 8% Therefore ¢,s¢8* ¢z s, and tRs. This contradicts the
R-scatteredness of §*. Consequently, § is a maximal R-scattered subset
of X. .
Let § be a maximal R-scattered subset of X, and assume X —R(S)
# . Let §* = {t} v 8, where t ¢« X—R(S). Suppose tRs for s e 8. This
implies # e R(s) C R(S); but this is a contradiction. Therefore fnon Rs
for all s ¢ 8, and since § is R-scattered, the set §* is R-scattered. This
is a contradiction of the maximality of S; hence, X = R(S).

Theorem 1 yields the following proposition which is equivalent to
the Mickle-Rado theorems and, therefore, equivalent to the axiom of
choice.

MR-E,. If R is a reflexive and symmetric relation over X, then there
exists a maximal R-scatiered subset § of X.

The proposition below is obviously equivalent to MR-I. The proof
is omitted.

MR-Ey,. If R is a reflexive and symmetric relation over X, and A is
a subset of X, there ewists an R-scattered set SC A such that A CR(S).
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We use MR-E; and MR-E,, to generate the following equivalent
to the Mickle-Rado theorems.

MR-E,. If E is a reflexive and symmetric relation over X, then every
R-scattered subset S of X is contained in a maximal R-scattered subset
S* of X.

Proof. Suppose that X = R(S)# 0. By MR-E,,, there is an
E-scattered subset 8, C X —R(S) such that X —R(S) CR(S,). Let §8*
=8 v §;. Then X CR(S v §); and since, by definition, R(S v §8;) C X,
we have X =R(S v §;).

The sets § and 8, are both R-scattered. Assert S o 8, is R-scattered.
Deny! Assume there exists an s ¢S and s, € §; such that sRs,. Since R
is symmetric, s;Rs. Therefore s, ¢ R(s) CR(S). This is a contradiction,
since s; € §; C X —R(f). Thus §u §; is R-scattered.

Hence, by Theorem 1 and the above, §* = § v §,; is a maximal
R-scattered set, and S C 8*.

We observe that since each set {x}, for » e X, is R-scattered, the
family of maximal R-scattered sets covers X.

We now characterize the R-scattered sets satisfying the conclusion
of MR-II.

THEOREM 2. (iven (X; R, R*) such that
(1) R is a reflexive and symmetric relation over X, and
(2) every mon-empty subset B of X contains an R*-dominant element,

@ given R-scattered set S satisfies X = N (S) if and only if

(3) 8 4s a maximal R-scattered set, and

(4) X—N(S—x)C N (x) for every = e8.

Proof. Let 8§ be an R-scattered set and X = N(§). Therefore
X = R(8), and, by Theorem 1, § is a maximal R-scattered subset
of X. Let o' e X—N(S8—a). Thus ' <X, but there is no seS—w
such that #'Rs and «'R*s. However, since § — N(8), there must
be an element s e8 such that #'Rs’ and #'R*s’. From the above
§'¢ §—u; therefore, s’ = . Thus 2’ ¢ N (z), and z— N (S—u) C N (x) for
every ref.

Assume that the R-scattered set § has properties (3) and (4) and
that X' —N(8) = 0. Let 2’ « X — N (8). Since § is a maximal R-scattered
set, it follows from Theorem 1 that X = R(8). Therefore, there is an
§" eS8 such that »'Rs’. But X—-N(8)CX—N(S—s')CN(s"); that is,
2’ e N(8'yC N (S). This is a contradiction; therefore X = N (8).

This characterization and MR-II yield

MR-E,. Given (X; R, R*) such that

(1) R is reflexive and symmeiric over X, and

(2) every nmon-empty subset B of X contains an R*-dominant element,
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then there exists an R-scattered subset of X such that

(8) 8 is a maximal R-scattered set, and

(4) X—N(S—x)CN(z) for every x 8.

Theorem 3, below, contains another characterization of R-scattered
sets satisfying the conclugion of MR-II.

THEOREM 3. Qiven (X ; R, R*) such that

(1) R is reflexive and symmetric over X, and

(2) every nom-empty subset B of X contains an R*-dominant element,
a given R-scattered set S satisfies X = N(8) if and only if

(8) 8 is a mawimal R-scattered set, and

(4) X—N(8—X)C R¥=) for all z 8.

Proof. Let 8 be an R-scattered set and X = N (8). By Theorem 2,
§ is a maximal R-scattered set, and X —N (S—a) C N(z) for all zeS.
But N{(z) = R(x) ~ R*(#); therefore, N (z)C E*(x). Hence X —N(§—u)
C R*x) for all zeS.

Assume that an R-scattered set S has properties (3) and (4), and
that X —N(8) == @. Let #' ¢ X — N (8). As in Theorem 2, § being a maximal
R-scattered set implies X = R(S8); therefore, there is an s’ e § such that
2'Rs’. But X—N(8)C X —N(S—s)C R*s'); that is, 2'e¢ R*(s"). This
is a conftradiction; for #' e X — N (S) implies #' cannot be in the R and
R* relationship to the same element in S. Therefore X = N (8).

In view of Theorem 3 and MR-II, the following proposition is
equivalent to the Mickle-Rado theorems.

MR-E,. Given (X; R, R*) such that

(1) R s reflexive and symmetric over X, and

(2) every non-empty subset B of X confains an R*-dominant element,
then there exists an R-scattered subset 8 of X such that

(3) 8§ is a maximal R-scattered set, and

(4) X—N(8—x)C R*x) for all z¢8.

5. Some maximality prineiples. Some of the known set-theoretic
maximality principles are derived from our formulations.

VAUGHT'S PRINCIPLE [3]. Every family & contains a mawimal subfamily
& of disjoint sets.

Proof. Define the binary relation R over J as follows: S'RS" if
and only if (1) 8" = 8", or (2) & £ 8" and §' ~ 8" % @. A subfamily
J" of S is a disjoint subfamily if and only if I’ is an R-scattered set.
The conclusion follows from MR-E,.

In [3], Vaught provides an interesting demonstration of the equiv-
alence of ‘his principle and the axiom of choice. In view of the above,
‘Vaught’s principle and MR-E, are equivalent. Similarly, Wallace [4]
‘indicates the equivalence of his principle, stated below, and the axiom
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of choice. We show that Wallace’s principle is an immediate consequent
of MR-E,, and we observe, furthermore, that Wallace’s principle is
equivalent to MR-E,.

WALLACE’S PRINCIPLE [4]. If R* is an arbitrary relation over the
space X, then every R*-coherent subset of X is contained in a maximal
R*-coherent subset of X.

Proof. Define the binary relation R over X as follows: xRy if and
only if either (1) # =y, or (2) # #* y and =, y are R*-incomparable. A set
('C X is an R*-coherent set if and only if € is an R-scattered set. The
conelusion follows from MR-X,.
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