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Weak products of spaces and complexes

by
C. J. Knight (Sheffield)

Weak products of spaces and complexes. The Cartesian
product of two locally finite CW complexes is also a CW complex.
A well-known example due to C.H. Dowker [2] shows that ‘‘locally
finite” cannot be removed from this statement. In this paper, a result
in the opposite direction is proved; we construct a “product space”
of arbitrarily many spaces, which is a CW complex whenever each of
its factors is a locally finite CW complex. This “product” is, of course,
not the usual topological product: for this there is substituted a straight-
forward generalization of the notion of a weak vector space. We also
caleulate the homotopy groups of such a ‘“weak produect” in terms of
those of its factors.

§ 1. Introduction: notations and lemmas. Kelley’s notation
X Eg will be used for the product set of the collection of sets {H.] aed},

aed

the sign [] being reserved for the usual topological product ([5], p. 89),
or the Cartesian product of groups. All spaces will be assumed to be
provided with a basepoint (and so in particular, no space will be empty);
basepoints will be denoted systematically by asterisks. The letter X

will be used as an abbreviation for a Cartesian product like X Eg.
a€d
The projection maps from such a product will be written prg: X —FHps.

The “injection’ maps defined by using the basepoints will be written
injg: Ep—+»X. Thus, for any point 2z of Hp,

Preinjsz ==, if a £, and preinjsz==2.

If reX, the notation m, will be used for prgz; and o will then be
written (#z), the round brackets being used to indicate an indexed set.
The phrase “all but finitely many” will be abbreviated to ‘‘abfm”.
Suppose that {¥] ae A} is a collection of sets, indexed by some
set 4, and that each Y, contains a specified ‘‘basepoint” =,. If x is
a point of X, then we denote by ||zl the subset of 4 defined by
aelml] I waFE .
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We call that subset of X consisting of the points @ for which [l is finite,
the restricted product of the given collection of sets: we denote the re-
stricted product by L. Further, if ¥ is a finite subset of A, we denote
by Ly the set of points x of L with ||z C N¥. There is a natural one-to-one
correspondence between Ly and X ¥o: we shall when necessary identify

aeN
the two sets under this correspondence. If N has just one member B,
then Ly is the range of the injection map injs.
Now let each Y, be a topological space. For every finite subset N
of 4, we endow Ly with the topology of [, Z\ Y.. BEvidently, these topo-
aelN

logies agree on the intersections Ly ~ Ly. We now give I the “‘weak
topology” [1] with respect to its covering by all the L. Explicitly,

G is open in L iff @ ~ Ly is open in Ly, for each finite subset N of 4.

It is easy to check that the topology induced from I onto its sub-
space Ly is the same as has been given to Ly already; and that if 4
is finite, I has the topology of ]Z Y.

Q€.

DEeFiNrtion 1. The space L defined above is the weak product of its

factors ¥,. Its basepoint is (*s) (which we shall write as *). We shall also

use the notation [ Y., or L(¥qa,*) when it is necessary to emphasise
aed

the basepoint. The sets Ly where N is finite will be called finite sub-
products of L.
We see first that L does not depend essentially on its basepoint.
That is, if # is & point of L, then the pair (L, ») is homeomorphic to the
- space-with-basepoint I (¥,, z,). For the underlying sets are the same,
aed

since xg = * for abfm «. The identity map on X Y, restricted to the
aed
set involved, plainly takes z to the basepoint of I (¥4, x.); also, this
a€d

map is continuous both ways, for each finite subproduct of L(¥,, z4)
is contained in a finite subproduct of L(Yq, %), and vice versa.

Thus we have defined a product space for each collection of topo-
logical spaces. The products of different collections are related in a nat-
ural way. For suppose that {Zs/ e e 4} is another set of spaces, and
that for each « there is a continuous map fa from ¥, to Z,, preserving

basepoints. Let us write f for the transformation from XY, to X Z,
a€d a€.d

given by f(xs) = (faxs). Then
LeEMMA 1. f 45 a continuous map from L ¥q to I Zg, and preserves
a€d a€d
basepoints. ‘ ‘

Proof. Plainly, ||(faxa)l| Cllll, s0 that 7 takes the restricted product
into the restricted produect, and preserves basepoints. Now, let @ be
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an open set in I Z,, and let us consider the subset Ly of I, ¥, and the
ae.d ac.dq

corresponding subset, LY say, of I Z;. Then plainly fLyCZLy. Hence
a€.d

Ly nf G =Ly A Y G ALY ;

and the latter set is the same as (f|Lx)"'(G ~ Lj).
But G ~ LY is open in Ly, and the map f\Ly is (up to the natural
identification of Ly with X ¥,) merely the product []f,, and is thus
aeN v

aeN
a continuous map from Ly to Ly. Hence (f{Lx)""(G ~ LX) is open
in Ly; that is, Ly ~f '@ is open in Ly, for each finite subset N of A.
So '@ is open, and therefore § is continuous.
LemMMA 2. If B is a subset of A and for each a in A—B the space Y,

contains just one point, then L Yo and I ¥, are naturally homeomorphic.
aed ceB

Proof. For then {a]|C B for all x. Thus the underlying sets are
the same. For the topology, we remark that if ¥ is finite, the subproduct
Ly of [ ¥, is homeomorphic to the subproduct Lyn~z of I Y,. Thus

a€d a€B
a set which is open in Lz is open also in L4; and the converse is trivial.

LeEMMA 3. Fach injection injs: Ys— L Yo is continuous.
aed

Proof. Let us write Z, for the set {x,} C Yo if o # f, and Z; for Y.
Then injs is the product of the inclusion maps Z; C ¥, for a # 8, with

the identity ¥z—Ys. Thus injs is continuous from [, Z, to LAYQ, by
a€d a€

Lemma 1. However, by Lemma 2, ] Z, is homeomorphic to ¥g.
aed

Lemma 4. Fach projection pra: I Yo— Y5 is continuous.
a€d

Proof. Let us write Z, for the same spaces as before, fo for the
unique map Yq—Z, if « # f§, and fp for the identity on ¥sz. Then prs

is the product of the maps f., and Lemma 1 shows that- prs: LAYa — LAZa
a€ ae€.

is continuous. However, L Z, is homeomorphic to Y, by Lemma 2.
a€d

LeMMA 5. Each projection prs is an open map.

Proof. It has already been remarked (just after Definition 1) that
the space L is independent of its basepoint. Thus it suffices to show
that if T is an open set in L containing =, then prsU is a neighbourhood
of #5. But U contains the subset U" ~injs¥s, which is open in injs¥p;
and prlinjsYs is a homeomorphism. Thus the subset prg(U ~ injs¥pg)
of prgU contains # and is open in Yp.

It is not difficult to see that L may be characterised in terms of
Lemmas 1 and 2 and the remark just before Definition 1. In faet, if P is
any produet with these properties, then there is a naturally-defined map

1*
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from I Y, to P ¥, which is one-to-one and continuous. That is, L is
aed aed

the smallest space with these properties, and has the largest topology.
We remark at this point that the product L is not associative; that is,
if the index set A is partitioned into subsets 4z, and § ranges over B,

then L =LY, and R=] L Y, are, in general, different spaces (on
a€d BEB aedg

the same underlying set). An example to show this is given after
Theorem 3.
If B is any subset of L, we shall write ||E| for UE[|m||. Thus, |2
&ZE

is finite if and only if # is a subset of a finite subproduct of L.
Lemma 6. Let C be o countably compact subset of L. If each facior
space Yq is Ty, then ||C| is finite.
Proof. Suppose that, on the contrary, ||C|| is infinite. Then we can
choose a sequence of distinct points 2®, 2@, ... of C, and a sequence
of values (1,2, ..., say) of a, such that

oD =% and  2fP for all

= ¥ i>4.
Now, for each 4 there is an open neighbourhood U; of #; excluding o
We define subsets U? of L as follows.

yeUP it  y;eU; forall 4.
Plainly, each U is open in the topology of L. Now, suppose that i > k.
Then, for all j >4, we have

e p?.

However, if & >4, then 2 does not lie in U(‘”; for of ¢ Ux. That is,
U® containg just those #* for which % < i.

However, the set consisting of all the #® is closed in L. For if 2 is
any other point of L, then ||2|| is finite. If z; = x;, we can choose a neigh-
bourhood of 2 to exclude . For each of the finitely many ¢ in |2,
there is some o for which 2, # :af), and we pick a neighbourhood of 2,
excluding «¥. For each value of a we have now chosen in all only
finitely many neighbourhoods of 2z, (possibly none at all); let ¥, be the
intersection of these neighbourhoods. Then the set V defined by

yeV iff y, eV,

is plainly a neighbourhood of z; and none of the points z belongs to V.
Thus {9 all 4} is closed in L.

Let W be the complement of this set, and congider the countable

open covering of ¢ by W and all the sets U”, W contains no 29, and

each U contains only finitely many, so the covering has no finite
subcover; this contradicts the countable compactness of C.

a:g]‘) =x*7¢ U;, and so

for each a

icm
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COROLLARY. In fact, this proof goes through with the, usually much
sironger, “box topology” on the product ([5], problem 3 V).

§ 2. Homotopy groups of L. We now consider the homotopy
groups of various spaces. The basepoint of a homotopy group is always
at a given basepoint of the space, so we shall suppress explicit mention
of the former. For convenience in writing the proof of Theorem 2, we
write all groups, abelian or not, in the additive notation.

DErINITION 2. If {G.l € A} is a set of groups, we denote by [] G,
aed

the ‘“‘unrestricted direct product” of the G.; that is, the Cartesian prod-
uct of the sets G, with the group structure of ‘“‘coordinatewise multi-
plication’.
DErFINITION 3. The “restricted direct product’ of the ., that is,
that subgroup of [] i G, consisting of the elements with abfm coordinates
a€
equal to zero, will be denoted here by > G,.

aed
THEOREM 1. We have

7in [] Yo} 22 ] 7a(¥a) .
aed aed
The proof of this is omitted; it is true for any spaces Y., and any
index set 4. It is proved in [4], Ch. IV, Th. 6.1, when A has two mem-
bers and each factor space is Hausdorff. The latter assumption is not
‘used; and the proof requires only minor modifications to apply to an
arbitrary set A.

THEOREM 2. We have

ﬂn( L Ya) o= Z ﬂn( Ya)
aed aed
for any T, spaces Y,, and any index set A.
To esbablish this theorem, we use the characterization of Y given
in [6], pp. 119 and 122. This is:

LevmA 7. If a group @ contains subgroups @, such that

(1) elements of distinet G, commute, and

(ii) each mon-zero element of G has a representavion as a sum of ome
non-zero element from each of finitely sany of the G,, and this represen-
lation s unigue apart from reordering of the summands,

then G is isomorphic to D, Gs.

aed
Proof of Theorem 2. Let the projection pr,: L—Y, induce the
map Pa: wn(L)—>ma(¥,) and let the injection inj,: ¥Y,—IL induce 4,:
7tn( ¥o) >mn(L). Then, as pr.inj, is the identity map on Y,, its induced
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map Pai. is the identity on ma(¥,). Thus, % is a monomorphism, :(md 80
i,0ta( ¥a) is an isomorphic copy of 7n(¥e) in ma(L). We write this sub-
group of (L) as Ga, and use Lemma 7.

(i) If = > 1, it is trivial that elements of distinct @G, commute, for
all the groups involved are then abelian. If n =1, 1« Gy a.n.d /,LE.G",,,
then we consider the injection map of ¥,x Y, into >§1Ya. This plainly

o€

induces a monomorphism (say, j) of m(¥pxY,) into m(L), and the
elements A and u lie in the image of j. But, by Theorem 1, 7 ( Y% Y,)
o my( ¥p) X my(Y,), so that in particular, i7'2 and §7'u commute. Thus
so do A and pu.

(ii) Now let » be an element of =n(L), represented by the map
f: 8 «+—L, . The n-sphere is compact, hence so is the image of f, and
Lemma 6 shows that ||f8"| is finite—that is, for abfm a, pPraf8” = x,.
Hence abfm of the elements i,p,» are equal to the zero of z,(L), and
for each a, f.p,v lies in G,. Thus the element

T=9— T DoV
aed
is well-defined. (The summation is meaningful because abfm summands
are zero; and it is unambiguous because the summands commute.)
Moreover, for each B,

1 .
DpT = pp¥ _ﬂépﬁq'a.'pu” =PV — Pp¥,

80 that psv is the zero of mu(Y¥;). Let g: 8% +—L, » be a map represent-
ing 7. Lemma 6 shows that |jgS"|] is a finite set, say N. Thus, for a¢ N,
Pr.g is the constant map to =,. Moreover, for a e N, pr.g is a representa-
tive of p,7, and hence is null-homotopic. Suppose that this is so by the
homotopy

G IS >Y,,

and for each a ¢ ¥, let G, be the constant map of I x 8" t0 »,. Then the
product map G: I x 8" L of all the @&, is continuous, for it is essentially
the same as gv G Ix 8" [!v Y, =Ly. But @ is a null-homotopy of ¢.

Thus the homotopy class v of ¢ is the zero of 7(L). That is,
y= TaPa? ,
a€d
and each element of m,(L) is represented as the sum of elements from

thn'e subgroups G, as required by Lemma 7. It remains to be seen that
this representation is unique.

icm°®
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Suppose then that

Y = 2 o g
aed
where x, € m(Y,), and =, = 0 for abfm a.
Then

Py = Zpﬂ'iux., = Pplprg = 25,
acd

s0 that xg = ps», and the representation of » iy the same as the one
obtained above.

Thus, the conditions of Lemma 7 are satisfied, and so 7,(T) is iso-
morphic to 3 G that i,

a€d
(L) 2 ) 7tn(¥) -
aed

Remarks. (i) The isomorphism established here is plainly “natural®.
That is, if {Zs a e A} is another set of T-spaces, with maps fu: Y,—>Za,
then the produet map f (as in Lemma 1) satisfies the commutativity
relation

pomnlf) =(Zmlfal) oo wl L Yo 3 malZe)

where m,(h) is the map of the nth homotopy groups induced by &, and
@ is the isomorphism established in Theorem 2. )

(ii) Theorem 2 remaing true for n = 0, without the group structure
and without the hypothesis that the factor spaces are 7. This specifies
the path-components of L in terms of those of the factors. Explicitly,
if the path-components of ¥, are {¥i e A,}, then a typical path-
component of I is obtained by picking for each a an element 1, of A,
forming the Cartesian product over A of the sets Y2°, and taking its
intersection with L.

(iii) Lemma 7 can also be used to show, without much difficulty,
that if each factor space Y, is T, and n—LC [7] then the product L is
also n—LC.

§ 8. L as a CW complex. Suppose that for each « there is given
a closure-finite abstract cell-complex P,, with basepoint %, a 0-cell
of P,. That is, P, is a collection of “cells” ¢ of specified dimension dime
(& non-negative integer), together with incidence numbers, written as
[e : ¢'] (an integer) such that

(i) [¢ : ¢'] = 0 unless dime = 14 dim¢/,

(ii) for each ¢, [¢:¢'] =0 for abfm cells ¢', and

(iii) for each fixed pair of cells ¢, ¢”,

De:e]c:¢"]=0,
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where the summation is over all cells ¢’ € P,. Suppose also that 4 is linearly
ordered. Then a closure-finite abstract cell-complex is defined as follows.
The collection of cells is the restricted product of the sets of cells of the
P,, with dimensions
dime = Z dime, ,
aed
and with incidence numbers specified by the rule:

[e:¢']= 0 unless ¢y = ¢, for all bur one value of a, and if {a| e, £ 2}
= {8}, then ‘
le: el = (—1)le: 651,
where el = {a, @y, ooy i}, o < g ... < an 0 Lhe ordering of A, dime,,

=di, f=m, and o= 3 {d| i < b}.
For thi sum o we shall use the notation (¢, b), and we shall write
ek for (—1)". We shall also abbreviate [ep 2 ¢p] to [e: ¢ : B].

DEriNITION 5. Let this collection of cells, dimensions and incidence
numbers be denoted by §.

Lmnna 8. 8 is a closure-finite abstract cell-complex.

Proof. (i) is evident.

(ii) For each e, || is finite, and if B lle|} then there are only finitely
many cells ¢; of P; with [6: ¢’ : ] 0.

(iif) If [e: ¢ : ¢''] 5 0, it must happen that ¢, = ¢, for all but
one 'Vé?hle, B, of a, fmd ¢z = ¢ for all but one value, ¥; of a, and moreover
that dimes = 1 +dimef, and dime] = 14+-dime). 8o 3\ Y = [e: ¢'1[¢ : ¢
= 0 unless either

(a) ¢, and ¢ differ for just two values g and y of a, and

dimey = 14-dimey, dime, =1 +dimge),
or

(b) ¢z and ¢ differ for just one value (8, say) of a, and
dime; = 2 +dimey .
We consider the two cases separately.
(a) Then 3 =[c: dl[d : o]+ [e : 6][e : ¢'"], where
da=¢, for a=p and dy=cy,
ba=¢Ca for azyand ¢=d,

for all the other summands are n

ecessarily zero. Suppose now that
llell = fa, ..., an} in order, and : P now tha

ﬁ=ab! Y=4q, b<g.

Wealk products of spaces and complexes o

Then

D =cale,b)e:e’ B eal(c, g)o: e pl+
+eo(e, g)c: e y]-eo(e’,b)[e: ¢ B].

But
cle,b) = o(c,b)—dp+dj, = o(e’,b) -1,
and
alc'yg) = ale, g) .
So
eo(e, b) - eo(c’, g) = —ea(e’, b)-eo(c, g) .
Thus

D =¢ol(e,y)-eo(e’, by (—1+1)[e: ¢ Blle: ¢’ 9] =0.

(b) In this case, [¢: ¢'][¢" : ¢'] = 0 unless ¢ = ¢, for all a except f.
Thus

D= Dec-[c:¢ :f]-e0’-[¢ e : B)

where the sum is taken over ¢ e Ps, and where o = o(¢, b) and ¢’ = o(c¢', ),
§0 that o = ¢'. Thus eo-e0’ =1, and

D =le:c:pllc ¢ :f]=0.

Thus § is indeed a closure-finite abstract cell-complex.

The incidence numbers in S depend not only on the complexes P,
but also on the linear ordering of A. The latter is, however, involved
only inessentially.

DEFINITION 6. Two abstract cell-complexes are equivalent if they
have the same cells and dimensions, and their incidence numbers [¢: ¢']
and [e¢ : ¢'l are related by

fe:c¢l=Ac-Ac¢"-[c:c],

where A is a function defined on the cells of the complex and taking
values +1.

LEMMA 9. The complewes S obtained from a given set {P.} of complexes
and two different orderings of A are equivalent. The details of the proof,
which is not difficult, are omitted. The reorientation Ac is given by

A6 = EZdidj

where |¢]| = {ay, ..., an}, dimeg, = di, and the summation is taken over all
pairs i, such that a; and a; are interchanged on passing from the one order
to the other. ’

From now on, we take some fixed linear ordering of 4, and the orien-
tations in § defined by it.
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§ has been constructed as a closure-finite abstract complex from

any closure-finite abstract complexes P,. We now show that if each P,

is realised as a CW complex on the topological space |P,|, then § also

can be realised on the product I |P.|, provided that each P, is locally
aed '

finite.
DEFINITION 7. |P|is @ CW complex realising the abstract complex P if
(i) |P| is a Hausdorff space.
(ii) [P} ds the disjoint union of cells |¢|, one for each cell ¢ of P.
(ili) There is an attaching map f.: K—|P|, where d = dim.c and K is
the Euclidean d-cube

(o<t <1for 1<j<d}.

(iv) If DK denotes the “‘boundary’ of K, that is, its boundary in Euclidean
d-space if 4> 0, and O if d = 0, then

fl (K—bE) is a homeomorphism onto lef.

(v) f takes DK inlo the (d—1)-section | P**| of | P|, that is, the union
of all the sets |¢'] for dime’ < d.

(vi) If 2] denotes f. K, then each set €| is contained in a finite subcomplex
|| of | P|; that is, |F| is the union of finitely many cells of | P|, such that
if lo| C|F| then |8| C|F|.

(vil) A subset @ of |P| is open if and only if G ~|F| is open in [
Jor each finite subcomplex |7l

(viil) There is for each ¢, an orientation of the corresponding cube K
.s»uc:h that the incidence number of two cells |¢| and |¢'| of |P|, as defined by
um@ the‘i;_gtiaching maps and the homology boundary of the triple ]Pd],
1P, | P °| (where d = dime) coincides with the incidence number [e:e]
originally specified in P. :

An orientation of K may be specified by ordering its 4 factors
IxI ...><I.. We shall not use the explicit definition of the incidence
numbers, since the incidence of § is expressed in terms of that of the P,,
‘which we suppose to be known.

The complex |P| is said to be locally finite it

(ix) each point of | Pl is an interior point of some finite subcomples.

We shall need the following fact about OW complexes:

Leyma 10. If [e: ¢'] £ 0, then ]2

Now suppose that each P, is realised as a locally finite CW complex
{Pq|. For each cell ¢ of 8, let le] be the subset of L |P,| defined by

acd

[C! = (Ica[) .

icm°®
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Tf |lo] = {&1; & -y @}, in the order of A4, dime, = di, and 2 di=d,

I<isn
then let 7, be the map of the d-cube defined by regarding it as the product
of cubes K; X K, X ... x Ky, with dim K; = ds, and taking as f, the product,
in order, of the attaching maps of the factor cells ¢,. Finally, let the
orientation of K for the cell ¢ be specified by the order: all factors of K,
first, in the order in which they occur to orientate |¢,|, then the factors
of K,, and so on.

DeriniTiON 8. Let |S| denote the space L [P.|, with the cells,
a€d

attaching maps and orientations described above.

LemMMA 11. |S] is a realisation of S as a OW complex.

Proof. The proofs of (i) to (vi) are straightforward, and do not use
the assumption that the factors are locally finite.

(vii) Let £ denote the topology of L, and © the weak topology on
finite subcomplexes of |S]. Plainly 8 C &, for a union of finitely many
cells of | S| must be contained in a finite subproduct of L. Now let & be
a set open in &, and N a finite subset of A. The subproduct Ly of L is
itself a subcomplex of | S| (not of course in general finite). Consider any
point x e & n Ly. Ly has the product topology of the finite set of spaces
{ Pa]l a € N}; but the product of finitely many locally finite CW com-
plexes is locally finite. Thus, « is in the interior, relative to Ly, of some
finite subcomplex |H| of Ly. As [H| is also a finite subcomplex of |§|,

“and @ € G, it follows that G ~ | H|is open in | H|, and so « is in the interior,

relative to | H|, of G ~|H|. Butif DCECHF, then IntzF ~IntgD CIntrD,
so that # is in the interior, relative to Ly, of & ~|H|, and hence of G ~ Ly.
That is, each point of G ~ Ly is in its interior relative to Ly. Hence G ¢ £.

(viii) Suppose as usual that |¢|| = {a, ..., an} and ¢z = ¢, except for
« = ap. (Plainly, unless this is so, the incidence of |¢’| with |¢| in | S| must
be zero, by Lemma 10.) Then

fe=Ffixfaxfs fo=Ffxfaxfs,

where f, is the product in order of the attaching maps of the factors of ¢
for i < b, f; is the same for % > b, f, is the attaching map of ¢, and f, is
the attaching map of ¢g.

But an incidence number depends only on the two cells involved,
their attaching maps, and their orientations, not on the rest of the complex.
Thus, [¢: ¢'] is the same here ags in the product of three finite complexes.
However, we then have, with the method of orientation adopted,

and

[en X €26 X 0] = edime-[e; : 6]
and '
[ogx e5:6,xc5] =[65:06].
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Hence [c:¢']=edimK,-[¢:¢ :f], where AmK, = {d]i < b}: and
this is the incidence number originally given for S.

Thus we have proved

TeEOREM 3. If each X, is the space of a locally finite CW complew,
then L Y, is the space of & CW complex (not, of course, in general o locally

aed
finite one).

Remarks. (1) This shows that a vector space with Dugundji’s weak
topology [3] is a CW complex. For in specifying the Dugundji topology,
we may take a fixed basis of the space, and, consider only those finite-
dimensional subspaces spanned by subsets of the basis. The space thus
becomes an L-product of real lines; and the real line is certainly a locally
finite CW complex.

(ii} L is not associative. For if each ¥, is the unit interval, regarded
as a CW complex with three cells, B = {0,1}, 4, is of cardinal 8y and
4, is of cardinal e, then the subset

E= {m‘ llz] has one member}

is a subcomplex of the CW complex L =] ¥, (and hence has CW

a€d
topology in it); but as a subset of R = I, ¥, x [ Y., Bis just the Dowker
a€dg a€dy

counter example ([2], p. 563) which does not have the CW topology.
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Sur une propriété des ensembles partiellement ordonnés

par

J. Popruzenko (£6dZ)

Soient F un ensemble quelcondque, p une relation binaire définie
dans H.

On dit que la relation o établit un ordre partiel dans E lorsqu’elle est:

1° non-réflexive (c’est-a-dire gqu’on ait constamment non (zpx)),

2° tramsitive.

On dit que p établit un ordre dans E lorsque, en outre, la condition
suivante est vérifiée:

3° Quels que soient x,y ¢ E, » 5=y, on a soit xoy, soit youx.

N étant un ensemble partiellement ordonné par la relation o, soit
f|B une fonction telle que f(F)CXN.

Lorsque f(x) # f(y) pour x,y e B, 2 #*y et woy—f(x)o/(y), nous
appellerons f transformation isomorphe de B dans N.

Nous dirons alors que les ensembles B et f(H) sont semblables, en
symbole: H~ f(E).

Soit ¢ > w, un nombre ordinal. Désignons par U, Pensemble de
toutes les suites de type ¢ formées de nombres 0 et 1, ordonné d’aprés
le principe de premiéres différences, par U, le sous-ensemble de U, se
composant de toutes les suites de la forme {@g}ic, OU a, =1 pour un
y=0 et a; =0 pour &> .

Larelation qui établit’ordre dans U, sera désignée, comme d’habitude,
par le symbole 3.

Remarquons que, lorsque N = U,, on a la propriété:

(i) 81 f(z) = {a(f)}fq,, wvell et si Uon pose pour uwn v > p: ¢(x)
= e, ol B = af? pour £ < et B =0 powr p<E<y, alors les
transformations f|E, {(BYCU,, et g¢|B, g(B)CTU,, sont simultanément
isomorphes ot Non.

C’est une conséquence immédiate de la définition de la relation <.

Le but de cette Note est de démontrer le théoréme suivant:

(T) Tout ensemble partiellement ordonné de puissance %, est semblable
& un sous-ensemble de U,,.
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