204 J. J. Charatonik

Let h be a homeomorphism which maps F,ys into Fe aceording
to (56), and let F = h(Fmy+s). Putting k= n—i, i.e. Fiy, = Fh,_;, and
Iy =m—7j, i.e. Fpyg, = Fpy—j, we have identically

(66) F v Fppy = W Frnti) © Foyy.

Further, let %, be a homeomorphism of FHM,; v F%,_; defined as
follows: :
Tn(p) = [R(p) when peFgaii,
Ao when peFP, ;.

Therefore we have by (66) F w Fy = hiy(Fanii w I

1 (FEnti © Fpu—;), whence
F O Foy = (D). Thus D; = hi (F v F¥y,) and, by (65), ghfl(’l?’ U P
= Fbr,. In consequence of P2 we then have k, < ky, ie. m—j <'n,-'2
contrary to (64). !
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On the axiom of determinateness *

by
Jan Mycielski (Wroclaw)

1. Introduction. It is the purpose of this paper to study the
consequences of a mathematical proposition introduced by H. Steinhaus
and the author in [17]. This proposition, called axiom of determinateness
and denoted by (A), is inconsistent with the axiom of choice but has
many interesting implications. Several of them are opposite to the ‘sad facts’
following from the axiom of choice such as, e.g., paradoxical decompo-
sitions of the sphere. The actual state of knowledge permits to conjecture
that replacing in the Zermelo-Fraenkel-Skolem set theory (ZFS) the
axiom of choice by (A) we obtain a consistent theory.

The failure of the axiom of choice in this new theory is considered
as a ‘sad fact’ by the author. He believes that the natural models of ZF3
(see e.g. [14]) are real enough to prove the consistency of ZFS. The new
theory does not present any such evidence of consistency. We can only
hope that some submodels of the natural models of ZFS are models
of the new theory (*). In that case (A) may be considered as a limitation
of the notion of a set excluding some ‘patological’ ZFS-sets (3). From
such a point of view (A) seems to be very successful.

Most of the results of this paper have a clear game-theoretical
meaning. They are claiming that such and such constructions permit
constructions of such and such not-determined infinite games with per-
fect information (3). Of course their validity does not depend on the
consistency of (A). ‘

* This paper was partially written when the author was working on. a research
project on foundations of mathematies at the University of California in Berkeley
supported by the U.S. National Science Foundation (Grant G-14006) in 1961/62.

@) Le. a subclass of the class of all sets with the same membership relation.
It would be still more pleasant if such a submodel contains all the real numbers of
the natural model.

(%) Some other general remarks on (A) are given in [17]. Very few alternations
to the axiom of choice were considered in literature. Some propositions of that kind
are given by Church [3] and Specker [30]. Tarski has considered the proposition
“the set of real numbers is a denumerable union of denumerable sets’ (by the results
given below this is inconsistent with (A)). But none of them seem to have so many
interesting consequences as (A).

(*) The definition and theory of such games is exposed in [15]
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In Section 2 some general notations used throughout this paper
are given. In Section 3 there is a table of the logical relations of (4)
and several other mathematical propositions, in Section 4 different for-
mulations of (A) and its velations to the theory of games, in Section 5
some vesults commected with the problems of independence and con-
sistency of (A), in Section 6 some proofs of the theorems formulated
in the preceding sections. In Section 7 we investigate some propositions
generalizing (A). Finally, an appendix contains the proofs of some facts
which are easy to formulate or essentially known but difficult to find
in literature or unpublished.

2. Notation and general definitions. An ordinal number is
identified with the set of preceding ordinals, e.g.

1=1{0}, 2=1{0,1}, ., n=1{0,1, ..., n—1}, w={0,1,..},..;
o, denotes the ath initial ordinal (w, = ).

If f is a function, ie. f={(»,f(2)): #¢Df}, where Df is the do-
main of f, then fIX = {(», f(#)): @ ¢ X ~ Df} for any set X.

For every sets X and ¥, ¥~ denote the set of all functions f: X=¥.

G denotes the set theory ZFS without the axiom of choice (see [14]).

|X| denotes the cardinal number of the set X (see [14] for a treat-
ment of cardinal numbers in B).

A set of sequences X is often treated as a topological space with
the Tychonoff product topology, X being treated as a discrete Hausdortt
space. Hence 2” = {0,1}" is the Cantor discontinuum and o® is the
space of irrational numbers (4).

For every X 520 and PC X“, Gx(P) denotes the following infinite
positional game with perfect information (3): There are two players I
and II. They choose alternatively consecutive terms of a sequence
Doy Byy oo (W3 € X, w2 ave the choices of I and ., the choices of II).
Each player knows X, P, %, ..., #,~, when he is choosing =,. Player I
wins if (29, @y, ...) ¢ P and player IT wins if (, 2y, ...) & P.

G%(P) and GX*(P) are the following modifications of the above game:
It is no longer supposed that @, are chosen by I and @, by II, but
the first choice is still that of player I. In G* player I in each of his
choices can give any finite (may be empty) sequence of elements of X;
in @** both players can choose finite non empty sequences of elements
of X. The sequence (,®,...) is a concatenation of the consecutive
choices (it is always infinite).

Ax(P) stands for ‘the game Gx(P) is determined (i.e. one of the players
has a winning strategy)’. <1%(P) and % (P) have the same meaning per-
taining to the games G%(P) and G(P), respectively.

(*) Ordinal exponentiation will not be used in that paper.

. o0~
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oly stands for ‘cix(P) holds for every P C X oy and <{¥ have
the same meaning concerning ci%(P) and <{¥*(P), respectively.

(A) denotes the proposition of,.

Qi stands for ‘every subset of the real line is Lebesgue-measumb‘le’.
(Let us recall (for the proof see [18]) that 9 implies () the following
self-refinement: for every finite denumerably additive measure p over the
field of Borel subsets of a separable metric space X and every ¥ C X there
are Borel sets B,C Y C B, such that u(B,) = p(B,).)

Q3 stands for ‘every subset of the Cantor discontiuuu-.m has the prop-
erty of Baire (ie. is of the form Gu K,—EK, where G is open and K,
and K, are of the first category). (Let us recall that lmphes.(f') that
every subsel of a separable metric space has the ‘property of l?mrf;. The
proof is analogous to that of the above mentioned generalization of
W7 (6
i ')_7/.)) stands for ‘every non-denumerable subset of the Cantor discontinuum
Fas a perfect subset’. (P also implies () that every non-denumerable sep-
arable metric space contains @ compact perfect set.) _

@ stands for the following weak form of the axiom of e/hogje: for
every family of sets F, such that 0¢é F, |F|<x, and !st’Lr X| <2 there

exists & choice set (7).

3. The main consequences of (A). The following implications
and equivalences can be proved in T

7 %
o <> el ——> Slb—> ¥ > &2

A ]

e W A ‘B
T

v
P

Some of these implications between the propositions ol follow from
the following obvious theorem of G
(31) If YC X then dx—sly, Ax—>AY and A — ¥ .
The remaining implications between the propositions.ﬂ w.mll‘be proved
in Section 6. In view of (3.1) and the first and last implications of the
first line of the above table we get also in T
(3.2) slo<> sly and <3« l3* for every 2<n<w.

¢l,— € will be proved in Section 7 (}).

o () In the theory B & € (see below for the meaning of:séi).
i Baire see [8].
(®) For a detailed study of the property of B o .
(% The axiom of choice for denumerable families of sets, which implies @, is often
ed in literature, see [31], [32]. . . ) .
- ](-:l) This implication was found by 8. Swierczkowski and independently by D. Scott
and the author.
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oly,—N is proved in [18].

5 — P follows clearly from the following theorem of Morton Davig r4]
(valid in B):

(8.8) G5(P) 4s @ win for I iff P has & perfect subset (%) and is a win for IT
iff P is at most denumerable.

of3* 3 follows from the following theorem essentially due to Banach
and Mazur ():

(3.4) G5*(P) is a win for I iff P is residual in some non empty open set
in 2° and is a win for II iff P s of the first category.

Indeed for the implication 9B— off* this is obvious. An easy con-
struction which gives & set P which is nowhere residual nor of the first
category, starting from any set without the property of Baire, yields
si3* P

It would be interesting to get any other implications between the
propositions of that table, but this is probably impossible by the meth-
ods used in this paper. B.g. olf - o* would give P—9P3.

The above table shows what results can be obtained in the theory
T & (A). In particular, © permits to get most of the applications of the
axiom of choice in analysis, e.g., it implies the denumerable additivity
of the Lebesgue measure and of sets of the first category (1), the equi-
valence of Cauchy and Heine definitions of continuity of functions
(see [25]), ete. (2) (Let us recall that the compactness of the Hilbert
cube I®, the Hahn-Banach theorem for separable Banach spaces (3
and the existence of the Haar measure for all locally compact !groups
(see [2]) can be obtained without any use-of the axiom of choice unlike
in the usual proofs by the Tychonoff theorem (which is of course incon-
sistent in B & (A)).)

For any set X, B(X) denotes the Boolean algebra of all subsets
of X and f the cardinal of the factor algebra B(w)\I, where I is the
ideal of finite subsets of w.

{) PC 2% and we have the topology introduced in Section 2.

() The first published proof with a natural generalization was given by Oxtoby [21];
the game was invented by §. Mazur and the theorem conjectured in the Scottish Book;
a solution of §. Banach was announced there in 1935. In our case the proof of [21]
must be modified to avoid the axiom of choice, but this is easy since 2% is a separ-
able space. ’

(") The proofs are given in the Appendix.

() For all these results the supposition of separability of the involved spaces
is necessary. Cf. [25].

. (*) The Hahn-Banach theorem in its general form implies the existence of a non-
negative and non-zero finitely additive measure over every Boolean algebra (and
actually is equivalent in “G to this theorem — see [23]). I do not know if these state~
ments are consistent with (A). :
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Each_of the propositions 93 and 9 implies the following statements
(0) There is no mazimal non-principal ideal in B(o) ().
(i) There are sets X such that there is o maximal non-principal de-
numerably additive ideal in B(X), e.g., if | X| =1 (¥).
(ii) For every 2 <n < o there is a family of sets F, such that
| U X| =% each member of Fy is of potency n! and there is no choice set
XeFy
for Fn (*6).
The proposition ‘93 and YO’ imply
(ii) If G is a metric topological group dense in itself which is not of
the first category onto itself or has a left invariant non-zero jinite Borel
measure vanishing on points and H a denumerable subgroup of G dense
in G then the family G/H has no choice set and the set G/H satisfies (i).
If moreover H is normal and for every ae@, a*<H implies ae_H
then the set of umordered pairs {{aH, o 'H}: acG—H| has no choice
set (7).
The proposition % implies obviously the following statemens
(iv) There is mo cardinal w sueh that s, <mn < X 18y,
(v) There is mo choice set for the Lebesque decomposition of the real
line (**).
Each of the propositions 93, N, ? implies (this is well known)
(vi) There is no well ordering of the real numbers.
Each of the propositions (ii) with n < w obviously implies

(vil) A set of potency T can not be ordered.

(#) 9 (o) has been proved by Sierphiski [28], and 3-»(0) can be obtained
in an analogous way. _ .

(1) A proof is given in the Appendix. If X satisfies (i) then of course every image
Y = f(X), with |/~ (y)] < 8, for every y ¢ ¥, satisfies (i). The axiom of. c]:u?lce me.has
that if a seb satisfying (i) exists its cardinal is much larger than the first mac'cesmble
cardinal (this is a recent improvement of a classical result of Ulam. [35} obtained by
Tarski and his school [7], [84]) and the axiom of comstructibility implies that there
is no such set at all (Scott [24]). ] . .

(2¢) This is essentially known (see [26], [27]), but a proof is given in the
Apper;é;x‘i‘he first part is essentially due to Vitali; for the second part, see Sierpinski
[26], [27]. We supply a proof in the Appendix. It can be seen from further IGS.llItS
that (A) implies that |G| = 2%, but I do not know if |G/H] is constant (sometimes
|G/H| = T—see Appendix). .

(%) Hence # implies the negation of the Cantor hypothesis 2% — §, and of the
Lusin hypothesis 2¥0 = 2% )
(%) This decomposition is given in the Appendix.


GUEST


Jan Myeielski

Let in denote the relation of incomparability of cardinals, i.e. m in
nenon(m <n V1 < m). The conjunction of (iv), (vi) and (vii) implies (20)
the following inequalities and incomparabilities

2““<f;
sy <42 <w 4 F

2R o <ot ool g oot o,

2% in 5 ;

Mot v (Fin 2% in s 4F<2® oy,

These relations show that there are much less one-to-one mappings if
the axiom of choice is replaced by (A). The first inequality shows that
the image of a set can have a cardinality larger than this set. The third
line shows that, in contrast to (iv), there are at least three cardinal
numbers between 2% and 2%, Therefore this theory of cardinal numbers
does not present this interest which the classical one has (21).

4. Some equivalent forms of (A). Let us consider the product
X« X" where X is a non-empty set. Denote by Xy and X? the first
and second coordinate of this Cartesian square. Let ¥, denote the set
of all mappings f: X Xy which are of the form

(4.1) f@) = (fo(@0), f@[1), fo(@]2), ..) (% eX)
and F, the set of all mappings f: X”-» X? which are of the form

(£.2) F@) = (fo(2|1), ffw]2), fo(]3), ..] (2 eX2).

THEOREM 1 (). The proposition cix is equivalent to the following one

Fx. Bvery set QC X°xX” contains by inclusion a function feF,
or dts complement X“%xX®—Q -contains by inclusion a fune-
tion f e Fy.

Proof. Let us consider the mapping p: X% X°—X° defined by

97((‘1'09 &y '-‘)7 (yoy Y1, )) = (‘z'ns Yos T1y Y1y "')
and the game Gx(P), where P = p(Q).
The members of F, represent strategies of player I (the condition
(4.1) means that the mth choice of I takes into account only the first
n—1 choices of II) and the members of F, represent strategies of II

(**) See Appendix.

(1) On the other hand let us recall
tions on cardinal numbers become trivial
[12], [31], [32], [33] and [29].

(**) From now on everything is done in .

that many interesting and deep investiga-
if the axiom of choice is accepted. See e.g.
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((4.2) means that the nth choice of I tgkes into account o‘nly the first
n choices of I). Of course f ¢ Fy is a winning strategy for I iff / C @ and
feF, is a winning strategy for IT iff f( X*xX°—@. q.e.d.
v COROLLARY. (A}« %, for 2 <n < o. ’

Proof. By (3.2) and Theorem 1.

Remarks. 1. All functions satisfying (4.1) or (4.2) are continuous
{for the topology see Section 2). . .

9. Let us consider the usual metrisation of the Cantor discontin-
uum 2° given by the identifieation with the set of real numbers
{g‘ 20i/3f: ¢; € {0, 1}}. Then, for X = 2, the condition (4.1) is equivalent
tc; the Lipschitz condition with constant 1/3 and (4.2) to the Lipschitz
condition with constant 1.

3. It is well known that the existence of a well ordering of the reals
implies the existence of a set Py C 2% % 2% such that neither 1"0 nm:
9% % 2°—_ P, contains a perfect subset. Since the graph of 2 continnous
function over 2 is perfeet, then 7, fails and we get non-cis. .

4. Theorem 1 and Remark 1 suggest the study of the following
proposition weaker than Fx: . . .

Fy. Buery set Q C X" x X contains by 'z»n.cl'usion a continuous jmw

" tion fi X X7 or its complement X” x X~ contains by inclu-
sions a continuous function f: X7 —Xg.

But I do not know any interesting consequence of ‘].3; except that
F: excludes decompositions of 27 into pairs of totally 1mperfec.t sets.

— THEOREM 2 (3). The proposition s{, is equivalent fo the following one

Q. Buvery infinite positional game 1“.(45) = (ﬂ( , 8,J, D) (see [15]),

° where M is at most denumerable, is determined.

Proof. The implication @-><i, is obvious since G,(P) are games
of the form I'(P), where M = w, S = M°,

I it nis even,

(%) J(sln) = {11 if nis odd,

i X rigti jon of P over S.
e §OII’S ;}Ziﬁizmjietigmﬁ; fiinzggl?gh to show on account of .a‘im. that
for everylreal num]:er r the game I'(®,) is determined, where @, is the
characteristic function of the set X, = {s: D(s) >‘r}. o
In the case (x) does not hold it easy tolmodlf.y I(®,) Z:ntb_uctzgeaozza‘):
that (x) is satisfied and the modified game is equivalent (**) to oi

(#) The formulation and proof of this theorem uses notions introduced in [13].
() In a natural sense of these words.
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nal one (by adding an extra element x to M and by a suitable modifi-
cation of § and X, forcing the players to choose # whenever it was not
originally their turn to move).

‘ Now assume (%) and let f be a one-to-one mapping of M into o
(it exists since M is at most denumerable). For every sef and neow
let Ty, be the set of all elements of M possible as choices after the
sequence of choices s{n, i.e. Ty, = {: @ ¢ M and there is an s’ ¢ S such
that s'{n = s|n and s, = #}. The following rules will define a game of
the form G,(P): (1) the first player who chooses a natural number
such that f~'(wg) ¢ T'(f (), wes I (@p—1)), Wheve (i, ..., mp_y) is the se.
quence of previous choices, looses; (2) if (1) does not apply then player I
wins it (f7(ao), 7wy}, ...} « X, and player IT wing if o), M@y, .)€ X
Clearly this game G,(P) is equivalent to I'(®,) and by <, we gef. l’rhar‘t
it is determined, g¢.e.d. ’

COROLLARY (%). (A) implies that I'(P) = (M, 8,d,0) is determined
whenever 1 s at most demumerable.’

Proof. By the equivalence (A)«s 4, and Theorem 2.

5. The problem of independence and consisteney of (A).
Of course the independence of (A) from the axioms of G follows from
thfs consistency of the axiom of choice with these axioms (see [6]). But
using more refined results of Godel-Addison-Novikov [5], [1], [20] we
get more iniorma,tlion, e.g., that the proposition ‘s{,(P) holds for every
an.a.lytle set’ P C 27 ig independent. The axiom of constructibility (s7@) (26)
being consistent with B (see [5]), our best result of that kind is the
following}

TEEOREM 3. <@ implies for every 2 <n < o that

(i) £lu(P) fails for some séts Pe A (27);

(i) <la(P) and <IH(P) fail for some sets P «CA;

(i) $ii*(P) fails for some sets P e PCA ~ CPCA.

This theorem is proved in the next section.
) The problem of consistency of (A) with € is very difficult since
it would give the independence of the axiom of choice, but until today
there is no result indicating the independence of £{C in 6.
~ On the other hand one can try to prove in G that a possibly large
class of sets P C 2” satisfies sl3(P). This has been done for a long tirze
and .by several authors. The best result actually known is due to Morton
Davis [4]. An easy modification of his argument gives the generalization

(*) Stated without proof in [15] ¢ iti
’ proposition (B*)).
(*) See [24] for a short formulation of <fe. )

. { PCae; 4 Jenotes th z .
ete. (se:a 8. e class of analytic sets, CA—complement of analytie,
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of his theorem mentioned in [15] (proposition (A*)). If we suppose more-
over that M (a set involved in (A*)) is well ordered, then the axiom
of choice is not needed in the proof. Finally (A*) with this supposition
gives the following theorem of G.

TuaEOREM 4. If there exisis a well ordering of X (e.g. X = w) then
dAx(P), sT%(P) and UX(P) hold for every P e Fyu Gy (B).

Remarks. 1. On account of Theorem 3 the best possible class of
sets P C 2" for which <l,(P) could be proved is the class of Borelian sets
(and this is ‘perbaps the main open problem related to the subject of
this paper).

2. Analogous conjectures about oln(P) (2 <n < o) are all equi-
valent (**), and they would imply the same about &li{(P) and <3*(P).

3. I do not know if <{@ implies the negation of proposition F, with
a set ) e PCA ~ CPCA (*). Such an example for some # would give
the same for every 2 <n < o.

We add here the connections of (A) and other propoesitions contra-
dicting the axiom of choice introduced and studied by Church [3]. Then
a result of E. Specker [30] is applied to show some corollaries, which
are relevant with respect to the problem of consistency of (A).

Church [3] has introduced three necessary but mutually exclusive
possibilities A, B and C which present themselves in the set theory G
without the axiom of choice. These possibilities can be stated as follows.

A. There is a choice set for the Lebesgne decomposition of the
real line (). )

B. There is no choice set for the Lebesgue decomposition of the
real line but o, is a regular ordinal. s

C. o, is not regular.

We know already that (A) implies s, £ 2% and a weak form of the
axiom of choice C. Now C implies the regularity of o, (see Appendix).
Hence
(5.1) (A) implies B.

As shown by Specker ([30], § 2.32)

(8.2) B implies that o, is constructibly inaccessible (i.e. w 15 a regular
initial-limit ordinal in the universe of comstructible seis).

) Le. P= FS) 8 Fy or P= ‘S 5 Gy, where all Fy; are closed and all Gy; are open,
=1 J=1 =1 f=1
the topology in X® being that of Section 2. The axiom of choice being not supposed
we assume that this double sequence {Fi} or {Gi} exists.
{#) The proof of these equivalentnces can be obtained by the methods used in
the next section. o
() Cf. Section 4, Remark 4, and Section 6, Theorems (6.2) and (6.3).
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Therefore it is impossible to prove the consistency of the theory 6 & B

or B & (A) by a relative interpretation of these theories in 8 as Godel

did in [8] for G & (the axiom of choice).

Let O denote the axiom of existence of inaccessible ordinals (the
fact which follows would be also valid for being the axiom of existence
of strongly inaccessible cardinals). Let us prove the following corollary
to Specker’s result.

(8.3) If B& I has a well founded model (i.e. a model in which the order
of ordinals is a well ordering relation) then it has such a well founded
model which satisfies AC and no submodel of which satisfies € & B.

Suppose that (5.3) fails. Then we get an infinite descending sequence
of well founded models

MO PO DODED WD MED ...

where all M; satisfy T&9I and all MiF satisfy B&B (Myr: is always
the maximal submodel of M which satisfies «AC). By (5.2) the w, of M;
is always larger than the w, of M;..; hence there would be an infinite
descending sequence of ordinals in 9y, which contradicts the well
foundedness of this model.

6. The remaining proofs. On account of (3.1) only the following
implications between the propositions ¢ of the table of Section 8 remain
to be proved
(6.1)

Ay o, —> ol — c{** < of3* .

Proof. gly,—of,. It is enough to show that for each game G, (P)
there exists an equivalent (%) game of the form Gy(@). Let @ be defined
by the following three conditions:

(1) If player I chooses 0 only finitely many times then the choosen
sequence s¢€ Q.

(2) If (1) does not apply and player II chooses 0 only finitely many
times then se@.

3) I (1) and (2) do not apply then we define a function
11(8) = (ng, Ny, ...) € w®, where %, is the number of consecutive choices
of I which are 1’s (at the begining of s); %, is the number of consecutive
1's choosen by II after the first 0 choosen by I; n, is the number of
consecutive 1’s choosen by I after the first 0 choosen by II following
the first 0 choosen by I; etc. Let be FNP)C @ and filo®—P)~Q =0.

This completes the definition of Q and it is obvious that G,(P) and
Gx(@) are equivalent, q.e.d.

slo~>ciy. It is enough to show that for each game G%(P) there
exists an equivalent game @,(Q). Let Gy, @y, ... be a sequence of all finite
sequences of natural numbers (with the empty sequence), let — be the
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operation of concatenation of sequences and (n) denotes the sequence
with a single term n. We put

]‘2(;)1(., Ny o) = gy (M) 7 @y, T (g) T . (Rie o)
and

Q@ =1:(P).

It is obvious that Gi(P) and G.,(Q) are equivalent, q.e.d.
sl —ola*. It is enough to show that for each game Gi*(P) there
exists an equivalent game G4(Q). Let ay, ay, ... be a sequence of all finite

sequences of natural numbers (without the empty sequence). We
put
faPgy ey o) =y — Uy T py T . (Biew)
and
Q=1(P).

Clearly G&¥(P) and G%(Q) are equivalent, ¢.e.d.

oAs*—ol2*. It is enough to show that for each game GE¥(P) there
is an equivalent game G3*(Q). Let @ contain all sequences s e 2” which
have only finitely many 0s. If s has infinitely many 0% }et
f8) = (19, My, ...), where n, is the number of consecutive 1’s at the begin-
ning of s, n, the number of consecutive 1’s after the first 0 in s, n, the
number of consecutive 1’s after the second 0 in s, etc.

Let be

ffAP)CQ and [ —~P)nQ=0.

This completes the definition of @ and it is easy to see that GL*(P)
and G3*(Q) are equivalent, q.e.d.

Proof of Theorem 3. The conclusions (i) and (ii) are based on
the following theorem announced by Godel [5] (3%).
(6.2) sI@ implies the ewistence of a set P C.2°, P e« CA of potency 2™ without

perfect subsets.
Now (ii) follows from (3.3), (6.2), the fact that the mappings ]’1 and f,
in the proof of (6.1) are continuous and an analogous analysis of tl_l.e
proofs of (3.1) and (3.2). (i) can be proved by means of the part of (ii)
pertaining to si,(P). It is enough to use the fact that in the games Gu(P)
the role of the players is almost symmetric (we modify tht‘a examl?le
construeted for the proof of (ii) in such a way that after the first choice
of player I the position of I7T is the same as was the position of I at the
beginning in the original game).

(2) The first published. proof is due to Novikov {20]. .In the original form P was
supposed to be a set of reals, but on account of that it is easy to get P S 2%
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For proving (iil) we apply the following theorem essentially due
to Godel [5] (*2).
(6.3) <lC implies the ewistence of a set P C 2°, P ¢ PCA ~ CPCA, which
is not residual in any open set nor of the first category.
Then (iii) follows from (3.4), (6.3), the fact that the mapping f, in the
proof of (6.1) is confinuous and an analogous analysis of the proof of
(3.1) and (3.2).

7. Miscellaneous propositions generalizing (A). Let G%(P),
where a i3 any ordinal and P C X°, be a modification of Gx(P), where
the two players are alternatively choosing the terms of an a-sequence
s e X% the limit choices being done by player I (hence Gx(P) = G%(P)).
And let ¢ix(P) and <% denote the propositions corresponding to «{x{P)
and «ix respectively (hence ¢lx(P)+«> #i%(P) and olx <> oA%).

(7.1) The proposition ‘ei% holds for every set X’ is equivalent to the awiom

of choice. .

Proof. Let F be a family of sets and 0 € F # 0. Let @ be the follow-
ing game: I chooses any 8 e F, then II chooses any tsSUF 8. Player I

€

wins if ¢ 8 and player 11 wins if ¢ ¢ 8. It is clear that there is no winning
strategy for player I in this game. It is easy to construct a game of the
form G%(P) equivalent to &. Hence ok implies the existence of a winning
strategy for player II in @. Clearly this is a function f such that Df = F
and f(8) e 8 for every SeF, ie. a choice function for F.
On the other hand the following tautology which is a consequence
of the rule of de Morgan
V A (g ) € P v AV (g5 11) € P

wpeX ueX ueX upeX
and the axiom of choice clearly imply of%(P), q.e.d.

Remark. In the same way as in the second part of the above proof
the following consequence of the rule of de Morgan

(1] 1 '
™ (tgy vy Un) e PV
Uge Xy Uy € Xy U € Xy, iting)

~ ey o~ . e
v Q Q Qn ('"/03 A '"’ﬂ) 13 P
we X, “1‘X(uo) ‘ll“‘x(uo ..... tn—1)

(@ s Q" is any sequence of guantifiers and \~/ = A, A= V) and the
axiom of choice imply the theorem of Zermelo-von Neumann [37], [19]

(*) P is also non-measurable with respect to the product measure in 2®. In the
original form P was supposed to be a set of reals but on account of that we easily
get P C 2° For convenience of the reader we give in the Appendix a derivation of (6.3)
from the results of Godel-Addison [1], based on an idea of Kuratowski which is briefly
mentioned in [1] (see also Kuratowski, Sierpifski [9]). .

icm® :
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on the strict determinateness. of finite games with perfect informa-
tion (®).

The last implication of the table of Section 3 which remains to be
proved (#) is the following
(7.2) slo—C.

Proof. Let be F= {X,, X,, ..} (F is the family appearing in @).

o

We can suppose without loss of generality that HUO ApCo?and X # 0
for n e w. Let Go(P) be defined as follows. Player II is winning if and
only if, n, being the first choice of I and (ny, %, ...) being the sequence
of choices of II, we have (g, %, ...) € X, . It iz clear that the sets X,
being non empty there is no winning strategy for player I and that
a winning strategy for player IT is a choice function for F, q.e.d.
(7.3) Each of the propositions <l and <{z* is inconsistent.

Proof. Concerning the first part it is clear that «f;, — (A). We will
define a game of type G.(P) such that there is no winning strategy
for I, but the existence of a winning strategy for II implies the existence
of a set of real numbers of power x;. This (by Section 3, 2% iy xy) will
give an inconsistency with (A).

Let be 2° = |J X,, where X, ave disjeint and non empty (¥). Sup-

a<wy
pose that player IT is winning if and only if, a, being the first choice
of I and (ay, as,...) being the sequence of choices of II, we have
(e, ey +o.) € X It is clear that, X, being non empty, player I has no
winning strategy, and the existence of a winning strategy for player I1
implies the existence of a choice set for the family {X,}oca, (*).

Concerning the second part it is clear that <{5'—(A). We have also
P =" due to the fact that the ordinal product o- w; = w;. Now
we define a game G;’;(P). According to (A) every sequence § = (Si)oce,
(8. €2%) has repetitions; let s, be the first repeating term in s. Let be
s ¢ P if and only if a, is odd. The situation of the two players in this game
is essentially symmetric, i.e. the existence of a winning strategy for one
of them would imply the same for the other, which is inconsistent, g.e.d.

Remarks. 1. In contrast to (7.3) it seems that the proposition

A <5 may be congistent in 6. This proposition implies A %, where

a<ay a<ay

(®) The connections of positional games and formulae with a long prefix of inter-
changing quantifiers has been observed by Ulam [36], pp. 24-25 (see also p. 23 for
other remarks of which the present paper may be considered as a development).

(%) See footnote (¢).

(%) This is the Lebesgue decomposition—see Appendix.

(%) This proof is a modification of an argument of D. Scott quoted at the end
of this section.
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[Bl =2%, and a strengthening of C where the condition [F| <8y s
replaced by |F| < 2% (the proof of the last fact would be almost the
same as that of (7.2)),
2. The statement «l%, where |X| =¥ is inconsistent in G ().

.The first idea of the axiom of determinateness proposed by prof.
St.emhaus (see [17], footnote on p. 1) was ‘every infinite positional game
7v1th perfect information (%) is determined’. By (7.1) this proposition is
inconsistent. I have tried to modify the proposition «fx in such a way
_to‘obtaiu an infinitistic rule of de Morgan which would not imply the
axiom of choiee. But this also gave only incomsistencies. Nevertheless
let me mention these rules and the counter-examples.

) Let;‘cb(E, U,=,X,P), where EAU=0%Fuv U, < is an order-
ingof E0U, X #0 and PC XE"’U, denote the following formula
=k e
V. ALLAT =0 A J(@) e P(fla) ] <P},

where fla is an abbreviation for fl{w: seBuw U A 224} and F runs
over arbitrary functions with DF = {fla: fe X"“Y A a ¢ B} and whose
values are subsets of X,

The above definition is justified by the following theorem of G

(T4) If BOoU=10,..., n~1} and i 2 jesi <y for 1,7 <n then

n—1

PE,U,<3,X,P)e Q° ...

(hgy vory Up—) € P
weX Upge X 01 3 1) ’

where Q' =\ if i e B and ¢ = A if ieU.

) Hence @ isix a generalization of a formula with a prefix of quantifiers
which are relativised to X and determined by (B, U, 3) (¥). The following
theorem of B shows the connection of these formulas with games of
type Gx%(P).

(7.5) If there evists a well ordering of X and E v U = a, B is the set of
even and U of odd memger%of aand a 3bea<b, then (B, U, <, X, P)
m.ul @(U,E, 3, X, X*U_P) are equivalent to the existence of a win-
ning strategy for player I and jor player IT respectively in the game

G%(P).
Proof. (B, U, <3, X, P) is equivalent to
) YV A AT@ = gfia) -+ e ),

abor e()“7) The proof is given in [16] (it is an argument of D. Scott inentioned

. (*) Some generalizations and properties of such formulas are stuﬁied in
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where ¢ runs over functions with Dy = {f{a: f ¢ X* Y A a ¢ B} and with
values in X. In fact we can define g putting

g(fla) = min F(f|a)

(learly (x) expresses the existence of a winning strategy for player I.
The proof of the other case is analogous, g.e.d.
Let ¥(®,U, <, X, P) denote the following generalization of the
rnle of de Morgan

~®(E, U,=, X,P)®(U,E, =3, X, XV_p).

Let ¥.. and ¥, denote the left and right implications of this equivalence.
On account of (7.5) and from the fact that (x) implies @, we get

the following theorem of G

(7.6) On the supposition of (7.5) we have

V(B, U, <, X, P)e s{x(P)

and the left implication of this equivalence is valid without supposing

the existence of a well ordering of X,

Let ns mention that if < is a well ordering of type « then the gen-
cralization of W. with respect to its free wvariables is equivalent to
a principle of dependent choices of order a (**). Hence for a = w, this
is already inconsistent with (A). On the other hand there are instances
of ¥._ which may be disproved in © (already in the case when the order
type of < is w* ().

There are also instances of ¥, which may be disproved in T. This
follows from (7.3) and (7.6). Another such example, historically the first,
was given by D. Scott. Inhis example |X|=F and < has the order
type of o (%).

(min with respect to a fixed well ordering of X).

Appendix

1. C implies the denwmerable additivity of the Lebesgue measure and
sels of the first eategory (analogous results are valid for separable spaces
and regular measures).

Proof. The standart definition of the Lebesgne measure, the meas-
urability of open sets and the proof of the lemma if T, Uy, ... 18 a se-

0 S - -
quence of open sets then mes( | J Ur) < hZ' mes(Uy) and equality holds if
k=0 ;=0

Ui~ Ty =0 for all i§ are done without using the axiom of choice
(%) Such a principle of order o is formulated in [81], [13].
{#0) I.e. that of the negative integers; see [16].
() See [16].
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(for an analogons construction in general locally compact gr

H. Cartan [2]). In the remaining part of the theoiy thepaxiofl ﬁpsl,m?z:
is applied several times but always in the following form given a sequence
Xoy Xy, ... of nom empty families of open sets there emists a sequence
Vu,.V,_, . with Vi e X; for each i e . For a space § having a denumerable
basis of open sets {Gy, Gy, ...} this follows from ©. In fact to each open
set U corresponds a unigue subset of w namely {i: @& C U}. Therefore
the elass of open sets has potency <2¥ and we can ap_ply C.

o0
Let = 3 : irst i
et be X "L;}o Xy where X, are of the first category, i.e. for every
X, there is a sequence of closed nowhere dense sets (Yni)iew such that

0
X.CU Yu. e for re exists
n ~1‘L=J0 i~ Hence for every X, there exists a double sequence (Mi5)i g0

such that f ) v ‘
such that for every iew the set ()G, is dense in space § and
=0 N

) o0
X, C iyﬂ (8 —};Jo Gny). Let R, denote the set of all such double sequences.
Then, by €, there exists asequence (s, 5, ...), Where s, = (15)igew € B (k€ o).

It is clear that
oo 00 00
xeUU®-U 6w,
and X is of the first category, q.e.d.

2. Proof "of the statement (i) of Secti
) on 3, Let C; be the
cyeclie groupm)of order |2| and €% the complete direct sum of s: coppies
(32 0, a,nc: 0’§1 the weak direct sum of &, coppies of 0,. Then we consider
2 28 a topological group (with the natural compa ¢
It s opaioiogien pact product topology).
() 05087 =%

Iéei(:: fmbg(m)the nat}:ra,l mapping f: 05 —03/C¥. Clearly for every set
X C C2/Cs” the reciprocal image j™(X) is C-invariant in €2. Hence
by the Oljlavzv (sef.z [22]) every set of the form f~*(X) which has the prop-
erty oleaxm? is residual or of the first category. Let be I = {X: X C ¢, /0.
:ggl giv é;z) is of' the fllrs; category}. It is clear that [ is a (1enun—m—erz:blvz
on principal ideal in the algebr: 108 ar 3 implies
pldisive maﬁmal.l in the algebra B(C5/0§”). Clearly 93 implies
e 'Usn‘;g the product measure in Y, an analogous 01-law for meas-
ﬁlf; an the, property ‘mes (f‘l(I)) =0 in place of /7 (X) is of the
st category’ we can get on account of 9 the same result
3. Proof of the statement (i) i ¢
. > of Bection 3. Let us define
1(121 in aia.logous way Cp and )Ué“’), where O, is the cyelic group of order |n|
Le? ;nb\ @). Let @, = C3/C and 7 be the natural mapping f: Cp—G,.
't ¢ be a generator of Cn, ay= (¢, 0,..) e (2 and A, the cyclic sub-

-
I
o
~
il
o
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group of Gh generated by f(a,). Let Fn be the factor group Ggld, (*2).
Hence each member of Fy, is of potency [n]. It is easy to see that

1G] < 16l <Gl -
Every b e (i, is a subset of ©x(C, and this easely gives |G| <. By (*)
we have |Ga] = f and by the Cantor-Bernstein theorem |G| = f. Therefore

| U X|=1% forevery 2<<n<an.
XeFp

Now suppose a contrario that there exists a choice set Z for Fn. Then

clearly i .
U 1 (aZ) = Cu,

aedp

where f M@, %) ~ [ (@:Z) = 0 for ay, ay € 44, @ # a,. Moreover the sets
i HaZ) are 0. invariant and congruent in (5. Hence by <3 and the
01-law they are all of the first category of all residual in Cy. But this
is inconsistent since A, i8 at most denmumerable.

An analogous proof would give the same on account of M, q.e.d.

4. Proof of the statement (iii) of Section 3. Suppose that
7 is a choice set for G/H, then G = hUH RZ. But this is inconsistent with

€.

the measurability or the property of Baire of Z respectively.

A proof that G/H satisfies (i) is analogous to the argument of point
2 of this Appendix.

For proving the second part let us remark that aH o' H=10
for every a « G—H; indeed otherwise we get ah, = a"‘h, with by, hae H
and a® = hhl ' € H which contradicts the supposition. Let Z*be a choice get
for the family {{aH, a " H}: & ¢G—H} and Z = XL%‘ X.Hence ZAZ =0

€

and ZuZ'=G-H It is clear that Z and Z™' are H-invariant
and hence, by 93, both of the first category or both residual in @, and
all this is inconsistent if @ is not of the first category onto itself. An anal-
ogous argument would give the same on account of the measure sup-
position and M, q.e.d.

5. The Lebesgue decomposition (see [10]). We make any 1-1
identification of the reals with all subsets of the set of rationals. 8 is
the set of reals which correspond to such sets of rationals which are not
well ordered (by <); S (¢ < o) is the set of reals which correspond
to well ordered sets of rationals of type a. Clealy this is a partition
of the whole real line into &, non-empty sets.

(Note that the sets 8, are Borelian and the set 8 is analytic—see [11]
or [8], § 35, VIIL)

() T do not know if |Fs| depends on n, but Fs is an image of a set X with |X}{ =1
by a mapping satisfying the condition formulated in footnote ().
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6. @ implies the regularity of o, (see [3]). Suppose that o, is not
regular, i.e. there exists a denumerable set 4 C o, such that 1.4.5 li .
By C there exists a choice set for the family {8.}ze.q. Givejn.“m ?0?;11{"
Pa€ 8, we get & 1-1 mapping f, of the ordinal « into the set of J'zm‘tic}nql*"
We take a decomposition of w, into denumerably many disjoint infi U’th-
sets {Tolees and we modify each fo to get a 1-1 111&1)1)iﬁg fE: a—>n’_;’e
Let De f=UJ (fAI(Dfz— Seynu.ng‘)); clearly f is a 1-1 mapping of :;l

ag_ 1
into @, which is a contradiction.
~ oR
it AOROQ "f<§1 Ele setf of ﬁealfnumbers bging orderable we get by (vii)
at 27 = f. Taking a family of potency 2% of ‘almost digjoi
of B ) () o sct-abo oy ) most disjoint’ elementy
8y < 8, 4280, By (vi).
s§+2“°<xl+f. Since 2% < F and by (vii).
2N°<2“°+sl. By (iv).
‘ 2 °+Pf1 < 9% By (iv) we have 2% < 9% Now it is enough to
the following theorem of Tarski (%) which is valid in ©:
(T) I]; m +]&= m then 2" —m exists and 2™ —m = oM
1 4 2™,
fs < ;_JN n‘—}—f. Sn}}ce a set of 1)Q’Gelflcy 2% can be ordered and by (vii)
“ == 0 " [ 2 Si ;
. 2 By 20t we get 2°> 2% Since ¥ is the cardinal of
a aafr)xé}y of dJE]OHlt sets of real numbers we get 27 < 22%
o R a2y P - = . !

» i< 2, Buy1 (vii) Jwe h%ve o8 oz of, By the Lebesgue decompo-
;;) .10(1;j )WS, have % <2 (=2). Sinee 2™ <f we have F-r1 —F and
¥ —I=2. These facts already i : ited inequali

A se fa Iready imply the require rqualit;
i v By in) sl (o) y quired inequality.
) ) . .
‘i 3& <t 2}{1 (EFin ™ in yLE< 2%y, Suppose that 2% < % Then
o .&) a‘ngi 2 % w+F ];y (vii). Suppose that 2% <, ¥ then we get
o an ]u T%f t-ha:t&2 ‘.<f which contradiets the main supposition.
s w;gx _;e;\ eJr }zjdso 2% in w+E Of course N, -+FC2Mif Suppose
1 = ; the v } " onee ‘
g ron ; then we get by (T) that f=2% % and once more
Remark. The equalities ¥ =¥, 2% — of .54 IVl =f
the f‘aet.or group of the reals by the rationals ' ’
of Vitali), are theorems of B (*9). 7

existseixc‘]zrgfozfl “(')efll (c?ézl(fﬁ)- ?l; lsf l])ll’oved in [1] that <@ implies the
: ring of the real numbers which i

e | 'l is of type o

;?(t. }:glehlafilati;he set W= {(w,9): aWy} ¢ PCA, in the usual tvopologx;

7/1171-1‘ pD, & R%. Let D be the diagonal of R:. Since R—TW — ( ?/5:

yWeapw D, it follows that W e PCA ~ CPCA. Now every line in Re’im-

(*) See e.g. [29], p.77.
" : .
(*) The first published proof is due to Sierpiiski; see e.g. [29].

apply

where V is
(i.e. the decomposition

{*%) Cf. footnote (7).
(%) Ses footnote (32).
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vallel to the axis @ contains only denumerably many peints of W and
every line parallel to the axis y contains only denumerably mauy points
of R:—TW. By these properties and an analogue of Fubini’s theorem
(see [8], § 24, VI) we get that W is nowhere residual nor of the firgt
category. The same argument is valid if the plane R® is replaced by
9%+ 9 (which is homeomorphie to 2°), g.e.d.
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