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From accessible to inaccessible cardinals

Results holding for all accessible cardinal numbers and the problem of their
extension to inaccessible ones

by
H. J. Keisler (Madison, Wisc.) and A. Tarski (Berkeley, Calif)

Introduction (%). In the recent literature (') various mathematical
problems in set theory and related domains have been discussed which
exhibit the following pattern. Each of the problems consists in determining
all infinite cardinals « which possess a given property P. It has been
known for some time that the properties involved fail for the smallest
infinite cardinal, o (or &,), while they hold for all accessible ecardinals
(i.e., roughly speaking, for all those noun-denumerable cardinals which
can be obtained from smaller ones by means of ordinary arithmetical
operations). The question whether these properties apply to any or all
inaccessible cardinals different from o had been open; it even seemed
plausible that this question could not be answered in either direction
on the basis of the familiar axiomatic foundations of set theory. Quite
recently, however, an answer to this question has been found for large
classes of non-denumerable inaccessible cardinals. Tt has turned out,
contrary to expectations, that all cardinals in these classes possess the
properties involved, and thus behave not like the smallest inaccessible
cardinal o, but like all the accessible cardinals. Actually we do not know
at present any non-demumerable cardinal which is capable of a ‘““con-
structive characterization® (in some very general and rather loose sense

(°) The present paper is an outgrowth of two short articles of the authors [15]
and [48]. (The numbers in square brackets refer throughout to the bibliography at
the end of the paper.) The paper has been prepared for publication during the period
when Tarski, and for a short time also Keisler, were working at the University of Cal-
ifornia at Berkeley on a research project in the foundations of mathematics sponsored
by the U. 8. National Science Foundation (Grants G:14006 and G19673). The authors
express their sincere appreciation to Haragauri N. Gupta who, working on the same
project, rendered considerable help in preparing the manuseript.

(*) See, for example, [4], [23], and [48], where references to the earlier literature
can also be found. In cases important for our discussion we shall restate here results
and occasionally proofs known from the literature.
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226 H. J. Keisler and A. Tarski

of the term) and for which we could not prove that it possesses the
properties discussed. Nevertheless, the straightforward question whether
all cardinals larger than o possess these properties is still open, and it
does not seem very likely that the methods now available will bring
forth an answer to this question.

The results we have mentioned concerning large classes of inac-
cessible cardinals were originally obtained with the essential help of
metamathematical (model-theoretical) methods (3). These methods still
provide the intuitively and deductively simplest approach of the topic
in its full generality. In our opinion this circumstance provides new and
significant evidence of the power of metamathemagtics as a tool in purely
mathematical research, and at the same time does not detract in the
least from the value of resuits obtained. Nevertheless we have decided
to undertake in this paper an exhaustive purely mathematical treatment
of the whole topic avoiding any use of metamathematical notions and
methods. We have been motivated by the realization of the practical
fact that the knowledge of metamathematics is not sufficiently widespread
and may be defective among mathematicians who would otherwise be
intensely interested in the topics discussed, and to a certain extent also
by some (irrational) inclination toward puritanism in methods. As will
be geen from some remarks below, we do not feel that we have been
entirely successful in our undertaking. The final judgement must be
left to the reader.

The authors are planning to publish one or more papers in the future
containing the discmssion of metamathematical problems which exhibit
the same pattern as the problems treated in this work, and embodying
all the related results the authors have obtained (%).

The problems which will be discussed here are formulated in terms
of several branches of mathematics: general set theory, theory of Boolean
algebras, theory of measure, group theory, topology, and functional
analysis. A closer study shows, however, that one can single out a small
number of problems such that each of the remaining ones is equivalent
to one of them. Actually we have found it possible to concentrate upon
three properties of infinite cardinals expressed by the following conditions
(the exact meaning of the terms involved will be explained below):

(a) There exists an a-complete field of sets with at most « generators
in which some a-complete proper ideal cannot be extended to an a-com-
plete prime ideal.

(*) In this connection see [48], where the original proofs are sketched and the
underlying metamathematical results, of Hanf and one of the authors, are briefly
discussed ; of. also [50]. The results of Hanf just mentioned are now presented in full in [9].

(*) The metamathematical results obtained by the authors in this direction are
stated withont proof in [15], [17], [18], [48], [49], [50]
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(b) In the field of all subsets of a set of power « every a-complete
prime ideal is principal.

(e) There exists an «-complete field of sets in which some a- complete
proper ideal cannot be extended to an «-complete prime ideal.

The classes of all cardinals satisfying (a), (b), and (c) will respectively
be denoted by C,. Gy, and G, (*). It will be seen that G, is included in C,
and that C, is included in C,. Tt iz known that o does not belong to any
of these classes and that each of them contains all aceessible cardinals,
but the problems arve open whether any two of these three classes coincide,
and whether any of these classes contain all non-denumerable cardinals.
Among these classes, C; proves to be more closely tied up with mathe-
matical problems outside of general set theory and more readily handled
by mathematical methods. On the other hand, C, and C,, in addition
to their mathematical content, admit of simple metamathematical charae-
terizations, and their study is relevant for metamathematical purposes.

The paper is divided into six sections, numbered § 0 to § 5. § 0 contains
an account of terminology, notation, and some basic results which are
for the most part known from the literature and are stated (with one
exception) without proofs. The main task of § 1 is to provide as much
information as practical concerning the extent of the class C,;. The main
results of this section have the following form: a given “constructively
characterized” class X of cardinals is included in C,. To give an example,
assume that all the inaccessible cardinals are arranged in a strietly
inereasing sequence Gy, 8, 6,, ..., ¢, ..., and let L be the class obtained
from that of all accessible cardinals by adjoining all those 6¢s which are
larger than their index & Then a relatively simple and rather weak result
implied by our discussion is that L is included in C;.

Tith more detail, our procedure in §1 can loosely be described
as follows. We single out a certain family of subclasses of C, to which
we refer as normal classes. It turns out that the class of all accessible
cardinals is normal, while on the other hand the class C, proves to be

*) In a different terminology, these classes have been discussed in [4]. In fact,
C, and C, respectively coincide with the class of all cardinals having the properties
P; and P, of [4]; it will be seen in § 4 of this paper that the class C, is just the class
of all those cardinals which either are accessible or have the property Q. In [23] the
infinite cardinals not belonging to C, are referred to as Ulam numbers. The infinite
cardinals not belonging to C, prove to coincide with those which are referred to there
as Stone numbers and also with those referred to as Tarski numbers. (The definitions
of Stone numbers and Tarski numbers are different, and the author of [23] did not realize
that they are equivalent.) As regards metamathematical characterization, C; coincides
with the class of all incompact cardinals in the sense of [48]; C, consists of all accessible
cardinals and those inaccessible cardinals which are strongly incompact, and under
'f:he generalized continuum hypothesiz simply. coincides with the class of all strongly
incompact cardinals.
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normal if and only if it contains all non-denumerable cardinals and lence,
in view of what we have mentioned before, the normality of C, is an
open problem. Furthermore, we establish several induction principles to
the effect that certain “‘constructively characterized” operations, when
performed on normal classes (or sequences of normal classes), yield new
normal classes. These operations arve of the kind that they lead from
a class X to a new class ¥ which includes X. Actually, under some weak
assumptions on X, e.g. if X contains all accessible cardinals and is properly
included in C;, the resulting class ¥ properly includes X and is still
properly included in C,. Hence, by taking the class of accessible cardinals
a8 the point of departure and by performing repeatedly the operations
which preserve normality, we obtain more and more comprehensive
classes of cardinals which are included in C,. Unless we are able to show
(by = different method) that C, containg all non-denumerable cardinals,
this process will never end, and thus the methods which we use will never
produce a largest ““constructively characterized” class included in G,.

In the development of §1 some traces of ibs metamathematical
origin can undoubtedly be discovered. We believe nevertheless that this
development shows a sufficient degree of mathematical simplicity to
enable the reader, not only to follow the discussion formally, but also
to assimilate it intuitively without depending on a familiarity with the
ideas underlying the origin of the discussion. The notion of normal classes
(which in our development functions as a tool rather than as a goal)
may become an object of interest in its own right, and it may well turn
out that the theory of these classes is better suited to a mathematical
than to a metamathematical treatment.

In § 2 we establish a variety of characteristic properties of cardinals
belonging to C;; in other words, we consider various problems we show
to be equivalent to the problem of determining the extent of the class G,
and to which, therefore, the results obtained in § 1 automatically extend.
Actually, we succeed in gotting more general results by considering,
instead of individual cardinals « in C,, couples of cardinals a, 8 such
that both o and # as well as all cardinals between them belong to C,.
‘We begin with a detailed discussion of problems formulated in general
set theory and abstract Boolean algebras. In the later part of the section
we give an account of related results from other branches of mathematies.
Two of these results are new; they provide a topological and an algebraic
characterization of the clags C,. The remaining results in this account
can be found in the literature, and will therefore be diseussed only briefly.
Strictly speaking, these results concern, not G,, but a related class CJ:
if G, containg all non-denumerable cardinals, then C! coincides with the
class of all infinite cardinals; otherwise Cf is the initial segment in the
class of all infinite cardinals determined by the first non-denumerable
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cardinal not belonging to C;. The mathematieal importance of Cf appears
clearly from the fact that Cj consists just of all infinite cardinals a such
that on no set of power « does there exist a non-trivial countably additive
two-valued measure.

The discussion in § 3 essentially parallels that in § 1, but concerns
the class C, instead of C;. The aim iz to describe ag fully as possible the
extent of G,. We first establish certain upper bounds for the extent of
this class. Not only do we show that C, is a part of C,, but we prove
that the class C, is normal. Hence C, is a proper part of C, (unless the
latter contains all non-denumerable cardinals) (), and of course the same
applies to all larger classes obtained from C, by performing operations
which preserve normality. We then extend to €, the main results es-
tablished in § 1 for G, (i.e. we show that various “constructively defined”
classes of cardinals are included in Gy); since G, is a part of C,, these
extensions are actually improvements of the corresponding results in § 1.
Unfortunately, it turns out that the arguments to be used for obtaining
these extensions, although basically similar to those applied in the case
of G, are technically much move complicated and can hardly be regarded
as satisfactory from the viewpoint of formal simplicity and intuitive
clarity. For these reasons we have decided to apply the following pro-
cedure, which seemed to us to be the best way out of our predicament.
We establish in full detail one rather weak result of the kind in which
we are interested—a result which at any rate implies that the class L
(mentioned above in connection with C;) is included in C;. From then
on the development assumes a very sketchy character: we simply formulate
in proper order the main results with necessary definitions and lemmas,
omitting all the proofs. Our advice for the reader is to skip part of §3
at first reading, making only a mental note of the main results. If after-
wards he wishes to fully convince himself of the truth of these results,
he may attempt to reconstruct the missing proofs by using our outline
and following the lines of the arguments in § 1; we believe that this
reconstruction may require time and patience but presents no fundamental
difficulties nor new ideas. Instead, and this may be simpler, he may use
some sources available in the literature to reconstruct metamathematical
proofs of the main results (5). Or, finally, he may wait for the proposed
paper or papers of these authors which are to contain detailed meta-
mathematical discussion of the results involved.

() The fact that C, is a proper part of C, (but not that G, is normal) was first
stated in Hanf-Seott [11]. The result that C, is normal was obtained by one of the
authors while proving a closely related metamathematical result, announced as Theo-
rem 2 in [18].

() We believe that the recent article [9] of Hanf together with 48] will provide
sufficient tools for the reconstruction of the proofs.
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The discussion in § 4 and § 5 is parallel to that of § 2. The main topic
is the study of characteristic properties of the class G, in § 4 and of the
class G, in § 5. We have found it advantageous, however, to consider,
in addition to the classes C, and G, a binary relation R between cardinals
with the property that « ¢ Gy if and only if «Ra, and « e G, it and only
if there is a § such that «Rf. In this way various theorems on C, and C,
are obtained as immediate corollaries of more general results concerning R.
In the two sections we establish numerous necessary and sufficient con-
ditions for aRp, aeC,, and a ¢ C, formulated in terms of general set
theory, theory of Boolean algebras, and point-set topology.

We do not know and hence do not give any specific results concerning
the extent of the class C, which would be analogous to those stated in §1
for the class C; and in § 3 for the class C,. Since, however, C, includes C,,
the main results of § 1 antomatically extend to C,. Recall that in §3,
in addition to establishing the inclusion between C, and C,, we give some
stronger results concerning the relationship between these two classes;
the problem whether analogous results can also be established con-
cerning the relationship between C;, and C, is still fully open.

§ 0. Preliminaries. We are not committed in this paper to any
definite formalization or axiomatization of set theory. For most of our
purposes the axiomatic system of Bernays is adequate. As is well known,
Bernays set theory can be treated as an axiomatic theory formalized
within first order predicate logic, with the membership symbol e as the
only undefined non-logical constant; we distinguish in this theory between
classes and sets, defining sets as those classes which are members of other
classes. In some portions of our paper however, we discuss notions which,
in the Bernays set theory, either cannot be formalized in a natural way
or cannot be formalized at all; e.g. such notions as sequences of classes
indexed by arbitrary ordinals, operations (functions) defined for arbitrary
classes and assuming arbitrary classes as values, and even operations
on such operations.

Several methods are available which would provide these portions
of our discussion with adequate deductive foundations. Thus we could
}‘epla(-e Bernays set theory by a stronger system which would admit,
in addition to sets and classes of sets, also classes of classes, classes of
classes of classes, ete. Or else, we could formalize Bernays set theory,
not within first order predicate logie, but within a higher order logic,
e.g. within the simple theory of types. Or, finally, we can regard certain
formal statements occurring in our disenssion not as definitions and
theorems but as definition schemata and theorem schemata in which
variables representing operations on classes, etc., are to be replaced in
each instance by well-defined constants.

e ©
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We shall usually use letters X,Y,... to represent classes which
are not assumed to be sets. We employ the usual set-theoretic terminology
and symbolism. Thus, for example, C, ¢ 0, v, |/ denote respectively
the relations of inclusion and membership, the empty set, and the
operations of forming unions of two classes and of arbitrarily many classes.
X~ is the set-theoretic difference of X and ¥. S(X) is the set of all
subsets of X. A symbolic expression of the form {r: @}, where @ is to
be replaced by any formula containing » (as a free variable), denotes
the class of all x which satisfy this formula. {r} is the set whose only
element is @, {z,y} is the unordered pair with the elements z and y,
and <@, > is the ordered pair with & as the first term and y as the second
term. If f is a function and x is an element of the domain D of f, then
the value of / at # is denoted by f(x) or sometimes by f.; thus j is the
set of all ordered pairs {(z,f(x), where x « D. We denote by 7X the class
of all functions on Y into the class X, i.e., all functions with domain ¥
and range included in X (7). If fe¥X and ZCX, we shall write i)
for the set {y: f(y)e Z}.

We assume that ordinals have been introduced in such a way that
every ordinal coincides with the set of all smaller ordinals. Consequently
the intersection of all members of a non-empty class X of ordinals is
again an ordinal, and in fact is the smallest ordinal belonging to X.
Moreover, the union of any set of ordinals is again an ordinal; in partic-
ular, |JO = 0. We shall denote the class of all ordinals by OR, and shall
use the letters &,£, 9, 0, u, v to represent arbitrary ordinals. The formulas
E<t, t>& and £el are equivalent and will be used interchangeably.
The operation -+ of addition on ordinals is assumed to be known. If
a funetion ¢ has an ordinal £ as its domain, it is sometimes called a £-termed
sequence; in that case its values are written in the form ¢ for <&

By a cardinal we shall mean an initial ordinal, i.e. an ordinal whose
power exceeds the power of each smaller ordinal. The power, or cardi-
nality, of a set 4 is denoted by |4]. We shall use the letters a, B, v
sometimes with subscripts, to represent arbitrary infinite eardinals, and
we shall reserve the letters o, e, %, to represent arbitrary (finite or in-
finite) cardinals. The smallest infinite cardinal is denoted by . We shall
denote by C the class {f: f > w} of all cardinals greater than o. For
each cardinal & the symbol &+ denotes the least cardinal greater than 6.
By the closed interval of cardinals between o and f, denoted by [a, f], we
mean the set of all cardinals » such that « < y < 8. Thus, in case a > o,
we have

[, Bl =C ~ (f*~a).

(') We use the notation ¥X instead of the customary notation X* in order to
avoid confusion with other types of exponentiation, e.g. exponentiation of cardinals.
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We shall denote the half-open interval {y: a <
) Tval Wy a <y < B} b .
in case a > w, we have ) PSP L B i,
[@, ) = 0~ (f~a).
We let 85(X) denote the set of 8 ‘ 3 i
S e (X)) e set of all subsets of the set X which have power
S5(X) = {y e 8(X): |y| < 8}.

¢ and x.being arbitrary cardinals, we shall denote by ¢ the cardinal
power with base x and exponent e; thus » is the power of the (set‘. 11:
;“By t.he weak cardinal power, denoted by w2, we mean the earding] U yd.
The intersection of any non-empty class of cardinals, as well as the oion
of any set of cardinals, is again a cardinal. , k aon

An ordinal ¢ is gaid to be confinal with an ordinal £ if there is
quence ¢ ¢! such that ¢, < ¢, whenever n<e<§ and ’

{= Un<5(<pw +1).

The io.nfinalilf/y inder of {, denoted by ¢f (), is the smallest ordinal & such
that { is confinal with & For every ordinal &, of (£) is a cardinal and ef(&) K¢
.We shall §ay that ¢ is a limit ordinal if ¢ =J¢, or equivalently if th\e .
is no ordl‘Jial ’1? such ‘tha;t (=941 Thus ¢ is a non-limit ordinal ff(;
fol)nznll (4itf? s used‘m tl_lis paper as an abbreviation for “if and only if”?)
o It te ea;rdllnal ais said .t-o b(? & Uimit cardinal if f < o implies f+ < aJ
ng bmit cardinal if f< a implies 2 < a, & singular cardinal if cf (a) <’a,

a se-

and a regular cardinal if ¢f(a) = a. We shall denote by SN the class of all -

smgular cardinals. Any singular cardinal
:)nﬁnr s'lte lnm}-lnmt f;a,rdl‘nall i_s regular. « is said to be strongly inaccessible
mply maccesszb%e, if it is a regular strong limit cardinal; otherwise o’t
Is said to be accessible. We denote by AC the class of all ,(infinite) ac-

b ats. 3 b 1
st maceessibl
cessible Ca‘l din Is The malle S e cardinal 1§ obvio usl y o

is a limit cavdinal, and any

SNC ACCCCOR.

i\::r:::}lme that the inaccessible cardinals have been arranged in a strietly
mm-demg sequenfze [/ 6.1,..., Oy ... Thus 6, = and 0, is the first
eﬂstenx(lzsze;able 111accesisﬁriie‘ number. It should be emphasized that the
o onee : e;t ’3, ﬁﬁilha éortwm 1;)f any non-denumerable inaccessible cardinal,
. Shed on the basis of Bernays’ axi \
familiar system of axiomati T question, mowny other
] 3 1e set theory). This questi h
no influence on the present work 5 and cosereatios o
nflue et work. All our results and observati i
volving inaccessible cardinals rovided it neused it
] ] are assumed to be provided if needed witl
@ premise to the effect that the cardi i st
; d ardinals involved actually exist.
By the continuum hypothesis we mean the hypothesis tza.t wt = 2¢,

h g o
B y the 9‘ neralized (;)n tinuum h v )Otheblb we mean the ypothesis
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A set B of sets is called a field of sets if | JB ¢ B and, for all &,y € B,
we have o~y eB and z v y e B. It follows that, for all z,yeB, xnyeB.
B is said to be a field of subsets of u if B is a field of sets whose unit set,
UB, coincides with %. A set & is an atom of a field B of sets if xeB,
x = 0, and there is no set y ¢ B such that y #0, y # 2, and yC . I is
an ideal in the field B of sets if 1520, IC B, and, for all x,y el and
2eB, wehave s wyel and s n2el. An ideal I in a field B of sets is
a proper ideal if I # B, a principal ideal if {JI eI, a prime ideal if I is
proper and, for each ¢ B, either z¢I or | JB~xel, and an a-complete
ideal if X eI whenever X e8(I). Thus every ideal is -complete.
A field of sets B is said to be a-complete if, regarded as the non-proper
ideal, it is a-complete. It is clear that a principal ideal in a field of sets
is a prime ideal if and only if it is proper and contains the complement
\UB~uz of an atom x. A field of sets B is said to be a-generated by the
set X if Bis a-complete, X C B, and there is no a-complete field of subsets
of |JB which includes X and is properly included in B. Thus, for any
set y and any subset X C S(y), there exists exactly one «-complete field
of subsets of y which is «-generated by X, namely the intersection of
all a-complete fields of subsets of y which include X. B is said to be an
a-complete field of sets with B generafors if B is «-generated by a set of
power B but B is not «-generated by a set of power <f. Note that an
a-complete field B is «-generated by some set of power f if and only
if it is of power >p and has at most g generators. It is easily seen that,
for any set oz, 8(z) is an «-complete field of sets for every cardinal a.

A set X of sets is said to be disjointed if v,y ¢ X and z % y implies
®Ay =0. Anideal I in a field B of sets is said to be 8-saturated if every
disjointed subset of B~I has power <d. Notice that an ideal is never
0-saturated, is 1-saturated if and only if it is not proper, and is 2-sat-
urated if and only if it is either prime or not proper. If § < ¢, then every
8-saturated ideal is obviously s-saturated.

An algebraic structure will in general be denoted by a capital German
letter, and it will always be understood that the corresponding capital
Roman letter denotes the set of elements of the algebraie structure;
for example, the set of elements of the algebraic structure 9 is denoted
by A. The direct product of a sequence Uz, £ < &, of algebraic structures
is denoted by Pree;, and the direct power of a structure A indexed
by a set X will be denoted by X For detailed definitions of general
algebraic notions such as algebraic structure, direct produet, and homo-
morphism, see (for example) [46].

The notion of a Boolean algebra and those of an atom, an ideal,
a prime ideal, a principal ideal, and a subalgebra of a Boolean algebra
are assumed to be familiar to the reader; the same applies to the notion
of a quotient algebra B/I, where B is a Boolean algebra and I is one
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of its ideals. We use the symbols +, -, and — to den. :
Boolean-algebraic operations of additién (join), nlulti;fii;t};lizlfu(if:;l)ental
eor.aplementation, respectively; < denotes the Boolean-algebraic inclu 'fmd
while 3 and [ denote the usual infinite generalizations of -- §110n’
thus [[B, 3 B ave the zero and unit elements of B, respeetivel‘ ii;; .
ever a.. Boolean algebra is represented by a capital German letteslr'. 84, .
we stipulate that B is an ordered quadruple formed by the seé By‘ o
the fundamental operations -+, -, and —. wmd
‘ An ideal I in a Boolean algebra B is said to be «- it M
exists and is in I whenever X ¢ S,(I); hence ever; ?d:glmigl(z?;iﬁ xlefm
In. case the ideal I = B is a-complete, the Boolean algebra ‘Bv itsI;I: i
sa,.ld to be a-complete. The algebra B iy called absolutely complet .
(sgnplx} complete if it is «- complete for every cardinal a. A Boolea,npl 9b01‘
G is said to be an «-subalgebra of the Boolean algebra B if € isa g? ?
algebz’a of B, € is an «-complete Boolean algebra, and any set E?ng (J;
?wth‘power <o has the same sum in § as in B. A Booleajlr algebra
is said to be a-generated by a set XC B if B is a-complete a,fd. ’t]i .
is no a-:s‘uba.lgebra @ of B such that X C ¢ and ¢ # B. A Boolean al ‘ srAe
B is said to be an a-complete Boolean algebra with B generators (ilifg; i
a-gen‘erated by a set of power § but is not a-generated by any set clff
g;v;e;ﬂ; ;91f ;& ;et X%Y ofdelezilents of a Boolean algebra B is said to be
i ed it z, eXanda#y implies -y = 0. An ideal I in a Boolean
};laiebplztwﬁ 1; ;?;)d to be &-saturated if every disjointed subset of B~oT
A Boolean algebra B is said to be «-distributive if it i °(
Zid :3tls§es the'fonow%ng condition: let I be any set i;;ihl?]flléoilljle;:
ang KI‘I)i 181& wgu'ehj assigns a set J; with |[J;] < « to every element 4 e,
o elemem; ;H “E) te;liﬁypzig;c:a}’“ {Ji <, .let o be a funetion which assigns
i ‘ ed pair {i,j, with ieI and jed;: °
gllzsei) rzzilllﬁnpmonsl DyexlTier#ize exists and equals [Tier i’jj::’b:ndf;
B al;elllig:lwx;f 1do not extend the mnotion of «-distributivity to
. provgs use.fu]' ¢h are not a-complete, although such an extension
i éesfeltuillgfzm;s] a Boo%ean 4lgeb1'a B in which B is a field of sets,
operation qel; -a(-i olpera,tlons T and. — coineide with the set-theoretic
e refm.‘re d, t » and complementation with respect to |JB. A set algebra
0 as an a-complete set algebra if B is an a-complete field

8) In ¢ ) . X

used;(;amelzheafg::;n}e‘a slllghﬂy different notion of §-saturated ideals has been

Jenonny Vt},le anotiont is said to be J-saturated if every disjointed set of non-zero

which I -t - 1f\].llgebra B/I has power <d. (See, for example, [43].) An ideal

1 the Doy ebmn;s the second sense is also §-saturated in our sense. Moreover,

denly corean % b ‘wls a-c?mple?e and ¢ < a, then the two notions of § «sqturated,
€; 1t is this case in which we shall be primarily interested. B
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of sets. Notice that any a- complete set algebra is a-complete as a Boolean
algebra, but a set algebra may be a-complete as a Boolean algebra without
being an o-complete set algebra in our sense. We denote by S(X) the
set algebra B such that B = §(X). Thus S(X) is always a-complete
for every cardinal a.

A Boolean algebra is said to be (strongly) a-representable if it is
isomorphic to an «-complete set algebra, and is said to be weakly
a-representable if it i isomorphic to the quotient algebra of some a-com-
plete set algebra with respect to an a-complete ideal. Thus any a-re-
presentable Boolean algebra is weakly a-representable, and any weakly
a-representable Boolean algebra is a-complete.

We assume a familiarity with the notion of a topological space and
such related notions as a discrete space, a continuous function, and an
accumulation point (cf. [19]). By the product of a sequence Ty, £<§,
of topological spaces we mean the least topology I on the Cartesian
product set such that, for all £ < £, the projection function from T onto
T, is continuous.

We shall now state a series of elementary and known results from
the theory of Boolean algebras. We give a proof of one of them, namely 0.8,
since with this generality it cannot be found in the literature. Concerning
the remaining results, consult [4] and [38], where references to earlier
papers can also be found.

TrEOREM 0.1. Let B be an arbitrary Boolean alyebra, let X, YCB,
and suppose that > X, YX exist in B. Then

Siwy: veX, yeX}

(X x)-(X7).

THEOREM 0.2. In every Boolean algebra every proper ideal can be
extended to a prime ideal, and every non-pringipal proper ideal can be
eatended to o mon-principal prime ideal.

Tt may be noticed that the second part of this theorem easily follows
trom the first. In fact, a non-principal ideal I in a Boolean algebra B
can first be extended to a proper ideal I which contaius all atoms of B;
I’ can be defined, for instance, as the set of all elements of the form
z-4-y where 2 el and ¥ satisfies the condition: y-2 = 0 for every ze¢ I.
By applying to I' the first part of 0.2, we obtain a prime ideal J which
includes I and contains all atoms of B, and hence is non-principal.

TrrorEM 0.3. Brery Boolean algebra is - representable.

TeEorREM 0.4. If o is singular, then every «-complete set algebra,
Boolean algebra, or ideal, is an a+-complete set algebra, Boolean algebra,
or ideal, respectively. Ij o s a singular strong limit cardinal, then every
- distributive Boalean algebra is at-distributive.

exists and equals
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THEOREM 0.5. 4 Boolean algebra is o-representable iff it is a-complete
and every principal ideal ogn be oxtended to an a-complete prime ideql.

THEOREM 0.6. Every «-representable Boolean algebra is a- distributive.

THEOREM 0.7. If B is a weakly a-representable Boolean algebra and I
is an a-complete ideal in B, then BII is also weakly a-representable.

THEOREM 0.8. If a is either reqular or is a strong limat cardinal, then
every «-distributive Boolean algebra is weakly a-representable (7).

Proof. By 0.4, we may assume that « is regular. Let B be an
a-distributive Boolean algebra. Let P denote the set of all prime ideals

in B. We define a function g on B into S(P) by the condition that, for
all z¢ B,

(1) g@)={I: I¢P and z¢ Iy.

Let ¢ be the «-complete field of subsets of P which is «-generated by
the range of g. Furthermove, let

(2) J = {eexg(@): X ¢ 8,(B) and | X = 0}

and let K be the a-complete ideal generated by J in C. We shall show
that the function f such that

) =g(@)/K for all zeB

Is an isomorphism of B onto C/K, and thus that B is weakly a-repre-
sentable.

(*} For the case in which « is not a limit cardinal this result is stated in [37];
a proof for that case is carried out in detail in [1], and our present proof uses essentially
the same argument as [1]. In[38] an explicit equational characterization of those Boolean
algebras which are weakly o-representable (for o regular) is announced without proof.

a-distribative Boolean algebra is weakly a-representable; for the proof the reader is
referred to [37]. As mentioned in the text, however, it seems dubious whether the
statement in question can be proved for all singular cardinals (without assuming the
generalized continwum hypothesis), and at any rate the proof in [37] does not apply
to this case. The statement in its whole generality is used on p. 69 in the proof of
Theorem 3.3, part (iv), to show that a certain property of an infinite cardinal 1, P®,
implies another property, P, In ¢onsequence the proof turns out to be defective in
cage 4 is singular. Fortunately, however, the gap can easily be filled since it can be
shown directly that every singular cardinal has the property P{. In fact, P applies
10 & cardinal 2 iff there is g A-complete set algebra % and a A-complete ideal T in 9
such that /7 is not isomorphic to any A-complete set a'gebra. Let now 1 be a singu ar
cardinal, 9 = S(1*), and I = S3#(2+). Clearly, % and T ave A+-complete and a fortior
4-complete. Since 1+ is accessible, every A+. complete prime ideal in U is principal
(see [4], Theorem 2.2, p. 61). Hence, as is easily seen, /7 has no 1+- complete prime
ideals and therefore is not isomo?phic to any 4+.complete set; algebra; since, however,
2 is singular, the A-complete and the 2*-complete set algebras coincide.

icm°®
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It is clear that the range of / «-generates G/K. For all = ¢ B,

(3) g(x) = Pegla),
and therefore, in C/K, L
(4) )y =Jj@).

Let X e8u(B) and y = 3 X. By De Morgan’s law we have
.’I'(nzex?)=0: g¥) ~» Neexg(T) e K.

Since by (3) ’ ‘
MNeex g (T) = F}zex(PNg(‘v» =Pr~{eexg(®),

and hence

we have
(8) 9@ ~Usexg(®) e K.
On the other hand, by (2),
gle) ng(g) e K
for each » ¢ X, and since A is a-complete it follows that
(6) (Usexg(z))~g(y) e K.

We see from (3), (6), and the a-completeness of K that

(1) 1) = (Usexg(@) | K = Srexi(@) -
From (4), (7), and the fact that §/K is «-generated by the range
of f, it follows that f is a homomorphism of B 9nto ¢/K. oo
’It remains to prove that j is one-one, or equivalently that fgc) i;l-ce
implies & = 0. Suppose that # « B and f(z) = 0. Then ¢(x) ;g]} a,n. i nee
« is regular, it follows that, for some f < « and some 2 ¢ . we
(8) Tl<pz(&,m) =0 for all £<p,
and \
9(@) € Us<s Muag (2(€ ) -
By the set-theoretic distributive law,

U$<ﬁ mﬂ<ﬁ g(z(&, 77)) = ﬂviﬁﬁ U5<ﬂ 9(3(53 ‘P(E))) H

and therefore N
(9) 9(@) C Usp gle(£: ()] for all g efp.

From (1) and (9) we see that, for each pe?p and I P, if (€. g(é)) el
for all & < B, then zeI. Then, in view of 0.2,

(10) < Decpa(€, @(f)) forall gep.
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Since B i «-distributive and g < a, we have

(11) et DecsslE, 9(8) = Deap [n<p (&5 m)
and product on the left exists. (8) and (11) imply
(12) [lpets Dese(£,9(8)) = 0.

From-(10) and (12) we conclude that = 0, and thus f is one-one.

Under the generalized continuum hypothesis, every cardinal a has
the property that each «-distributive Boolean algebra is weakly a-re-
presentable, because every singular cardinal is a strong limit cardinal.
We do not know whethér that property can be established for every
cardinal « (and in particular for singular mon-strong limit cardinals o)
without the generalized continuum hypothesis.

THEOREM 0.9. Every weakly (2°)+-representable Boolean algebra is
at-distributive.

THEOREM 0.10. If a¢ AC, then a Boolean algebra is weakly a-re-
presentable iff it is «- distributive.

§ 1. Extent of the class C,. It is well known that in any field
of sets every proper ideal is included in a prime ideal (cf. 0.2). By applying
this result to the ideal generated by the set of atoms (which may be empty)
of a given field of sets, we see that every infinite field of sets has a non-
principal prime ideal. The situation, however, changes radically when
we turn to a-complete fields of sets and «-complete prime ideals in these
fields with a > w. ’

In this section we shall concentrate on the question of whether there
exist non-principal a-complete prime ideals in the field 8(a) of all subsets
of a. This question has not yet been completely answered. By what has
been said before, the answer is affirmative if a = ©. On the other hand,
it has been known for many years that the cardinals « > o for which
the answer is affirmative are very exceptional (if they exist at all), and
in fact are all included among the inaccessible cardinals. (See [4], [51].)
The results of the present section will constitute a further step toward
a complete solution of the problem by showing that those hypothetical
cardinals are very rare even among inaccessible cardinals.

To obtain a convenient notation for the formulation of the relevant
results, we introduce the following

DEerINITIoN 1.1. By C, we denote the class of all infinite cardinals «
such that every a-complele prime ideal in 8(a) is principal.

The main purpose of this section is to provide as much information
as possible concerning the extent of the class C;.

First of all, the known results mentioned above may be restated
as follows.

e ©
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TaEOREM 1.2. (i) G, C C (i.e. wéC).

(i) AC C G,.

e now twrn our attention to inaccessible cardinals. We shall carry
through a series of constructions which will enable us to prove that
various classes which are much more comprehensive than the elass of
accessible cardinals are also inclnded in C,.

Our arguments will have the following structure. We shall define
a certain property of classes of cardinals which we shall call the property
of being normal. It will be clear that any normal class is included in G
and that any subelass of a normal class is also normal, Ve shall next
establish a series of induction principles which enable us to conclude
that, if a given class of eardinals is normal, then certain larger classes
of eardinals are also normal, and consequently are also included in ;.
Furthermore (partly with the help of the induction principles) we shall
prove that the class AC of infinite accessible cardinals is normal. By
combining these results we have a method of obtaining larger and larger
classes of cardinals which are normal and thus included in C;. On the
other hand, we shall see in Theorem 1.14 below that the class G itself
is normal if and ounly if C, = C.

TeyA 1.3. Let ae G and let I be an o+ complete prime ideal in the
jield S(a). Then there exists a unique ordinal 7 and a unigue function @
on 2a onto n such that:

(i) for all f, g €“a,

o) =lg) iff & E<a, {E =g(EVel;

(i) for all f, g e°a,

() <eolg) iff & E<a, f(E)<g@)el

Proof. Since any two distinet ordinals have distinet order types,
it is clear that there exist at most one pair 7,¢ satisfying (i) and (n)

The existence of 7 and ¢ will be established by means of the prime
reduced product construction developed in [6]. For any f.ge%a we

ite f =g if
e =1 £ E<a, flE)=gl)}el.
As is easily seen, = is an equivalence relation on “a. For each [ €%, we
ghall write ;
(f) ={g: ge°a, f=4};
thus (f) denotes the equivalence class of f with respect to the equivalence
relation =. Now let
H ={{f): fe°a}.
For any a, b ¢ H, we shall write ¢ < b if there exist f e a, g e b such that

(£ E<a,[(O<gE)}el.
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It is easily shown that, for all f, ge%a, (f) < (g) iff
{Eré<a, flE)<y(é))el.

To complete the proof of our lemma it is sufficient to show that
the set H is well-ordered by the relation <.

The fact that I is prime implies that for all f, g € %, either (f) = (g)
or exactly one of the two conditions (f) < (g), (g) < (f) holds. Moreover,
it f,g,hea, (f)<(g), and (g) < (h), then

€ E<a, JE <g@En s E<u,g(&) S<W(E}ET,
80
€ E<a, (&) <H(E}eT,

and thus (f) < (h). Therefore < is a simple ordering.
Suppose fy, f1; fay .. € “ and for each 7 ¢ w, we have (Fo41) <€ (f,) and
(fat1) 2 (f,). Since I iy w*-complete, we have

X = {8 E<a,fpulf) <fo(&) for all ew}el.

Therefore the set X is non-empty, and there is an infinite decreasing
sequence of ordinals, a contradiction. It follows that H has no infinite
strictly decreasing sequence with respect to < , and hence < well orders H.

It is helpful to think of the members of T as “small sets”’, and to read

e E<a, f(E) = g(o}e I
as “f and g arve equal almost everywhere”. Similarly,
e E <o, f(8) < g(&)}e I

may be vead *‘f is less than g almost everywhere”, and in general any
statement about an arbitrary element &e o which holds except when &
belongs to some fixed member of I may be thought of as holding “almost
everywhere”.

DEFINITION 1.4. Let a e C and let I be an wt-complete prime ideal
n the field 8 (a). We shall denote by ar and v, the unique ordinal 7 and the
unique function p, respectively, which satisfy conditions 1.3 (i) and 1.8 (ii).
) E”The equation 7;(f) = £ may be read “the type of f with respect to I
is &7,
 The simplest situation in which the hypotheses of 1.3 are satisfied
is when I is a principal prime ideal in § (o) which ig generated, say, by
the set a~{£}. In this case it ig easily seen that a7 = a and, for each f ¢ °a,

7o{f) =f(&) (ef. [8], p. 201). We shall be chiefly interested, however, in
the case in which T is non-prineipal.
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LEmnd 1.5. Suppose that aeC, & < a, f e%a, and I is an a-complete

prime ideal in S{a). We then have
() f €& implies Ti(f) < &

(ii) 7 e “(€} implies wa(f) = &

(i) z1(f) < & iff (&) € I;

(iv) =df) = & iff 7 ({&) € L.

Proof. It is clear that (iii) implies (i) and that (iv) implies (ii).
Let g: = a x {£}. We shall prove by t»ransﬁm"te induction that 7,{gs) = & for
all £ < . This clearly implies (iii) and (iv).

Suppose that { < a and 7;(ge) = £ holds whenever & < . Then Tz(ge) #
for each &<, whence zr{g;) = . If v4(f) < 7(g,) then j7(£) € I, and by
a-completeness of I, f7{£}) ¢ I for some & <i. Hemee (f) = 77(ge)
== & < {. It follows that z;(g;) =¢.

Lemyma 1.6. Suppose a e C and I is an a-complete non-prineipal prime
ideal in S(a). Then a < ay and

a<t{{€, &1 E<al).

.

Proof. Let / be the identity function {¢£,& : &< u} on «. Then,
for each £ < a, we have

FTEN = {&)

and, since I is non-principal, {£} e I. Therefore, by the a~c011'1pleteness
of I and by 1.5, 71(f) # £ for each & < a, and thus 71(f) > a. Since 71(f) < ay,
we have a < qz.

DEFINITION 1.7. We shall say that « is rvepresentable by f iff a «C,
feca, and there exisis an a-complete prime ideal I in S(a) such that
71(f) = a.

A part of the next theorem is due to Dana Scott, who has formulated
1.8 (iii) and proved its equivalence to 1.8 (ii).

THEOREM 1.8. The following four conditions are equivalent:

(i) a e C~Cy;

(i) a is representable by some function g e“q;

(il) « is representable by the identity funetion {<&, & E< a);

(Iv) « is representable by some function h e (C ~ a).

Proof. The faet that (i) implies (ii) follows easily from 1.4 and
1.6. We shall prove in turn the implications (ii)=- (iii), (iii)= (iv), and
(iv)= (i).

Assume (ii), and let I be an a-complete non-principal prime ideal
in S(a) such that 7(g) = a. Let f be the identity function on «. Let

J={x: 2Ca,g N w)el}.

Fuondamenta Mathematicae, T. LIIT 17
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It is easily seen that J is an «-complete prime ideal in S(a). For every
&< a wehave 717(g) #§, 80, by 1.5, g1({£}) € I, and hence {&}eJ. Therefors
J is non-principal. By 1.6 we have 7;(f) > a. Suppose now that 75(f)
< 77(f), and let ¢’ be defined by the condition ¢'(Z) = f'(g(Z)} for each
{ < a. Then
& E<a, f(E) <FE)}eT,

50

THE s<a, fE) <HEY €T
and

L l<a, gy <g@)yel;

therefore by 1.4 we bave 7s(g") < 71(g). Liet 9 =v;(g'); thus n < a. By 1.5,
g"({n}) ¢ I. It follows that g~*(f'({x})) ¢ I, and hence j~*({n}) ¢ J. Then,
by 1.5, w(f’) = #. This shows that ,(f) < «, hence =y(f) = a, and a is
representable by f. We have proved that (ii) implies (iii).

Now assume (iii), and let J be an «-cemplete non-principal prime
ideal in 8(a) such that

T({KE i E<al) =a.
Let 7 be the function defined by the condition
ot it E< ot
16 i eot<é<a.

MS={

By 1.2 (i) and 1.7, we must have ¢ > o and a¢ AC, whence a > w'.
Therefore % e “(C ~ a). Moreover, since w*ed and h(€) < & whenever
£ earvat, we have 7;(h) < a. For each & < o, h7'({£}) C |£[*. Since a¢ AC,
we have |&[* < a and |[* eJ whenever £ < a. Therefore h™'({&}) eJ for
each & e a. By 1.3, (k) = . Thus 7,(h) = a, and a is representable by 7.
This verifies (iv).

It is obvious from 1.1 and 1.7 that (iv) implies (i). Onr proof is complete.

Levma 1.9. If E<a and fe &, then a is not represeniable by f.

Proof. By Lemma 1.5.

DeFmNITION 1.10. X 45 said to be a normal class iff X C C, and no
cardinal « i3 representable by a function f X n a). .

The term “normal class” was chosen chiefly for lack of a better
term, and a more meaningful name would be highly desirable. In what
follows, however, we shall see that normal classes are normal in the sense
that subelasses of C, which are not normal are of a rather exceptional
character and that it is not even known whether “abnormal” classes
actually exist.

TEROREM 1.11. If X 45 a normal class and Y CX, then Y is normal.

Proof. Immediate from 1.10.

e ©
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THEROREM 1.12. 4 sufficient condition for X to be normal is that the
anion of any non-emply subset of X belongs to C,.

Proof. If ue Gy, then, by 1.8, a is not representable by any function.
On the other hand, let « e C~C;. Then | J(X n a)< g, so by putting
£={U(X ~na)+1 we have £ <a and %X ~ ) C “. But then, by 1.9,
a is not representable by any function fe%X n a). Tt follows by 1.10
that X is normal.

e shall see from 1.33 that, if C, # C, then the condition in 1.12
is not necessary for X to be normal.

CoROLLARY 1.13. (i) If > w and X C [B, ¢] C C, then X is normal.

(i) If X is finite and X C Gy, then X is normal.

(i) {o*, a] s normal iff [w*, o] C C,.

Proof: (i) and (ii) follow directly from 1.12. (iii) follows from (i)
and 1.10.

THEOREM 1.14. The following three conditions are equivalent:

M) € =G

(i) G, is normal;

(i) the class {a: [0, a] C G} is normal.

Proof. Assume (i). Then (ii) and (iii) follow by 1.12. Now assume
that (i) is false, and let 8 = N(C~C)). By 1.8 (iv), 8 is representable
by some function g €?C~ f). Therefore C ~ 8 is not normal, However,
it is clear that

Crnp=Cni{u o, adCC.
Hence (iii) fails. Finally,
Cnfe: [07,a]CCHL G,

50, by 1.11, (ii) also fails.

VWe thus see that, in case C, = C, every subclass of C, is normal;
on the other hand, in case G, % C, 1.14 (ii), (iii) give us examples of sub-
classes of C; which are not normal. At present, however, it is not known
which of the two cases actually holds.

We shall now digress for a time in order to give an alternate defi-
nition of normal classes which is essentially due to Seott. Tt will be stated
below as Theorem 1.18, and is included with his permission, The for-
mulation of this alternative definition is simple and throws some light
on the intuitive content of the notion of a normal class. However, the
definition is not as convenient for our purposes as the original one.

DEFINITION 1.15. An ideal I in the field 8(B) 4s said to be strongly
a-complete iff T is a-complete and, whenever X e°I, we have

B E<Bbe s T el

17*
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Notice that any principal ideal in S(8) is strongly «-complete,
LemMMA 1,16, Suppose that a e C and I is o nON-Principal a- complets
prime ideal in S(a). Then I s sirongly a-complete iff

({6, 6 < a}) = «.

Proof. Let f denote the identity function {&,8: £<a) on a.
Suppose that I iy strongly a-complete. By 1.6 we have 71(f) > a.
Let 71(g) < 77{f). Define the function X ¢ “S(a) by the condition

Xy =g({}) for each f(<a.
Y={&¢<a, e X}
Y={& & <a,g(&) <f(8).

Since 71(g) < 74(f), it tollows from 1.4 that ¥ I. Therefore, since I ig
strongly «-complete, we conclude by 1.14 that X ¢ °I. For some ne€a
we have X, ¢ I, s0 g7({n}) & I and, by 1.5, t7(g) = 5. Then 77(g) < a and
hence 7;(f) < «. Thus we have shown that 7(f) = a.

Now suppose that 7,(f) =« and let X € “I. Let

Y={&f<a, e Ures X )
We let ¢ be the function of « into « defined by the condition:

g =N t<a, e X))

and for each I < « we have

gHED C X v ).

Since I is non-principal, it follows that, for each & < a, g~1({}) € I. There-
fore, by 1.5, 74(g) # ¢ for each { < oy and hence t7(g) = 71(f). Then, by 1.5,
we conclude that T = {& £ < «,§(§) <& el By 1.14, I is strongly
a-complete.

It is easily seen that every strongly «-complete prime ideal in 8({w)
is prineipal. On the other hand, we have the following result:

COROLLARY 1.17. Suppose a e C. Then « e C, iff every strongly a-com-
plete prime ideal in S (a) 15 principal.

Proof. Clearly, by 1.1 and 115, a e C; implies that every strongly
a-complete prime ideal in §8(a) is principal.

) Suppose that every strongly a-complete prime ideal in §(a) is prin-
cipal. Then, by 1.16, a is not representable by the function {¢£, £>: & < a}.
By 1.8 we conclude that « < C.

THEEOREM 1.18 (Scott). 4 necessary and sufficient condition for X
to be a normal class is that X C G, and, for each cardinal o and each non-
principal sirongly a-complete prime ideal J in S(a), we have X ~ aed.

Let

Then

icm°®
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Proof. Suppose that X is a normal class. Then, by 1.10, X C .
Let J be a non-principal strongly «-complete prime ideal in § (a) and let

F={& 8 E<a}.

By 1.16 we have w(f) =a. If X A =0, then X ~ aed, as we wish
to show. Suppose that X ~ « =% 0, and let BeXa Let gea be de-

fined by:
[ & # ¢(eXnoa,

1 it fea~X.

Then g e *(X ~ a). Since X is normal, « is not representable by g. There-
fore, by 1.7, 75(9) # w(f) and, Ly 1.4,

(& E<a,g(&) =f(&)}ed .

g(&) =

But
X rnaC{&: E<a,g(8) =f(8),
0 Xr~aed.

To prove the converse, suppose that X C G, and, for each non-
principal strongly «-complete prime ideal J in S(a), X ~ aed. Let I
be a non-principal «-complete prime ideal in 8 (a), Iet g e (X A a), and
suppose that 7/(g) = «. We shall arrive at a contradiction. Define

J={r: 1Ca,ga)el}
F={EEnd<a}.

We have already shown, while proving Theorem 1.8, that J is a non-
principal «-complete prime ideal in S(a) and that z(f) = . It follows
from 1.16 that J is strongly a-complete. Hence, by our hypothesis,
X ~aed. However, since g ¢ %X ~ a), we have 7YX na) =a, and so
we mrrive at the impossible conclusion that o el. It follows that « is
not representable by any function ge %X ~ a). Hence, by 1.10, X is
a normal class.

and let

We now retwrn to our main line of development.
THEOREM 1.19 (FIRST INDUCTION PRINCIPLE). Suppose thai, for each
ordinal pu, X, is normal. Then
{B: B e Uucp X,} s normal.

X ={B: BelUucsXu}-
Since X, C G, for each u, we have X C C;.
Suppose a €C, I is a non-principal «-complete prime ideal on a,
fe*(X ~a), and 77{f) = a. We shall arrive ab a contradiction. Let g %
be the function defined by the following condition:

g(&) = N{u: f(&)eX,} for each £<a.

Proof. Let
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By the definitions of X and g, since fe*(X ~a), we have g(&) < f(&)
for each & <Ca. Therefore 77(g) < wl(f) = @, say, 71(g9) =». Then by 1.5
we have g~i({»})¢I. We may choose function ke*X, ~ a) such that
h(&) = f(&) for all £ e g*({»}). By 1.4, we have 75(f) = v7(h). It follows that
7{h) = a, 80 « is representable by h, contradicting the fact that X,
is nmormal.

CororLAnY 1.20. Suppose thai, for each p <<v, X, is normal. Then
(Un<r Xu)~v is normal.

Proof. For each p <, lot ¥, = X,~v; whenever » < g, let ¥, = 0.
Then each Y, is normal. Moreover

8: BelUucsYu = (Upar X} ~v.

The conclusion follows by 1.19.
CororrARY 1.21. (i) If X and Y are normal, then X oY is normal
(@) If [wt, a] C €, and, for each p < a, X, is normal, then | <o X, is
normal.
Proof. (i) follows from 1.20 with » = 2.
To prove (ii), we note that, by 1.20, (e Xu)~a is normal and,
by 113, [w* o] is normal. Then, in view of (i), U<a X, is normal.
CorOLLARY 1.22. Suppose C ~ aC C,. Then the set

{X: Xe8(B), Cn X is normal}

8 a strongly a-complete ideal in S(B).

Proof. By 1.11, 113, 1.21, 1.19.

CorOLLARY 1.23. Suppose C,  C. Then there is no mavimal normal
class, i.e. any normal class is properly included in another mormal class.

Proof. Suppose that X is normal. By 1.14, X = C,. Let « e C;~X.
Then, by 1.13, {a} is normal and, by 1.21, X u {a} is a normal class which
properly includes X. -

Let F be any (unary) operation which associates a subclass F(X)
of G to each subclass X C C.

DrFINrTioN 1.24. For each ordinal » we define the operation F” re-
cursively, on subclasses X of C, as follows:

FOX) = X;

whenever ¥ = p+1, F”(X) = F(F® (X)) ~v;

for each ordinal v such that 0 <» = | J v,

FO(X) = Upe, F¥(X) .
Moreover, we define the operation F™ by the equation:

FNX) = UpeorF¥(X).

e ©
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CorOLLARY 1.25. If X C C, then, for ecach cardinal a, the jollowing

three conditions are equivalent:
(i) a e F&(X);

(i) e F(X);

(iti) o€ Uuca F¥(X).

DEFINITION 1.26. F is said lo preserve normality iff F(X) is normal
whenever X is normal.

THEOREM 1.27 (SECOND INDUCTION PRINCIPLE). If F preserves mnor-
mality, then F© preserves normality.

Proof. Suppose that X is normal. We shall show by transfinite
induction that, for each ordinal g, F*(X) is normal. Suppose F¥(X)
is normal whenever x<». We shall show that F®(X) is -normal.
First, F”(X) is normal, because F®(X) = X. Now let » = py-+1. Then

FP(X) = F(F¥(X))~»,

whence by 1.11 and in view of the fact that F preserves normality,
F®(X) is normal. Finally, suppose 0 <y = | Jv. By 1.24,

FX) = U F¥(X) o,

and hence by 1.20, F(')(X) is normal. Therefore, by the first induection
principle 1.19 and by 1.24, it follows that F®(X) is normal.

A simple operation which iy easily seen to preserve normality is the
operation L defined by:

L(X) ={Uy: yCX and yw{Uy} is a dosed interval included in cl-

It is not difficult to see that the class L(AC) consists of the access-
ible cardinals together with all inaccessible cardinals 6; such that
0 < &< f; thus C~L(4C) is just the class of all fixed points of the
sequence 0.

It follows from the second induction principle that the operation
L also preserves normality.

We shall now introduce an operation M which is stronger than
the operations L and L in the sense that we always have M(X) 3 L (x)
2 L(X), but which still preserves normality.

DrriNiTIoN 1.28. 4 subclass Y of C is said 1o be closed in C iff the
unton of any non-empty subset of Y belongs to Y.

1.28 defines the usual order topology on Cj it is easily seen that
any intersection of closed classes is closed and so is any finite union
of closed classes. The following are simple examples of closed classes:
finite subsets of C; sets of the form [, a]; clagses of the form C~a.
Notice that, by 1.12, any subclass of C; which is closed in € is normal.
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DEFINITION 1.29. For every X C C, we set
MX)={Uy: yCX and y v {{Jy} 45 a dlosed subset of C}.

The operation M on classes was first suggested by the work of Mahlo
in [26], and may well be referred to as Mahlo’s operation. If X is the
class of infinite cardinals which are either singular or non-limit cardinals,
then M(X) is the class of infinite cardinals which are not g, numbers
in the sense of Mahlo. An operation related to M (and actually dual
to M) in its application to the class of accessible cardinals was implicitly
studied by Lévy in [21]. Thus M(A4C) is the class of infinite cardinals
which are hyper-accessible of type 1, i.e. which are not hyper-inaccessible
of type 1 in the sense of Lévy. More generally, M”(4C) is the class
of cardinals « > » which are hyper-accessible of type »; finally M®?(4C)
is the class of cardinals «e C which are hyper-accessible of type a.

TaEoREM 1.30. Suppose X C C. Then

() XCM(X)C G

(i) i u<v, then M¥(X)~» C M®(X) C M™(X) ;

(iii) if ¥ C X, then M(Y) C M(X);

(iv) X =M(X) iff X is closed.

Proof. The proofs of (i)-(iii) are obvious. It follows at once from
1.28, 1.29 that, if X is closed, then M(X)C X and hence X =M (X).
Suppose X is not closed. Then there is a least « e C~X such that
a = { J(X ~ a). Moreover, (X ~ a) v {a} is closed, because of our choice
of a. Therefore, by 1.29, we have ¢ e M(X).

Notice that M(X) and even M®(X) need not coincide with the
closure X of X (in the natural order topology of C). For example, we
have AC = C, while we can hardly expect to prove that M(4C) —= C,
or even that M (4C) =C.

On the other hand, it may be interesting to notice that M is a to-
pological operation since it can be defined entirely in terms of closure;
in fact, it can easily be shown that

M(X) ={a: for some y C X, 7 =y v {a}}.

TreEoREM 1.31. (THIRD INDUCTION PRINCIPLE). The operation M pre-
serves normality.

Proof. Suppose that X is normal. YWe shall first prove that M(X)
C C,. Suppose that ae M(X)~X, I is a non-principal «-complete prime
ideal in §(a), f €%a, and 7;{f) = a. We shall arrive at a contradiction.
Let y be such that yCX, a = | Jy, and y v {a} is closed. Let g < be
the function defined by the condition:

® & =1J{f: Bey, B<F(&)} for each ¢<a.

° ©
Im From accessible to inaccessible cardinals 249

Since y v {a} is closed, we have g e ({0} uy). It is clear that g(&) < (&
for each £ < «. Hence, by 1.4, 71(g) < 7/(f) = a. On the other hand, for
each B ey we have f < «, whence by 1.5

(& E<ta, B<f(E) e T
By (1), # <g(&) whenever g < f(£), so
$é<a BSg(E))el.

Therefore, by 1.4, p < 71(g). Since e« = Jy and a¢y, a < 77(g) and hence
a = 77(g). But since yQX ~a and ge*({0}wy), there exists a function
hedX ~a) such that 77(h) = 7(g9) = «. This contradicts the fact that
X is normal, and we have verified that M(X) C C;.

Now suppose that a e C, I is a non-principal a- complete prime ideal
in 8(a), fe (M (X))~ a) and 77(f) = «. Again we shall reach a eontra-
dletmn

For each & <« let y: be such that y: C X, (&) = Uye, and y: v

w {f(&)} is closed. If
& s<a, fEeydél,

then f(£) eX for almost all & <a. Hence ti(h)=7{f) =a for some
h e (X ~ a), which contradicts the fact that X is normal. Therefore

{£: E<a,y: CF(EVET.
Let
y=1{Ci<a (& E<a Septel),

that is, let y be the set of all { < « which belong to “almost every” ;.
Sinece each y:C X ~ a, we have y C X ~ a. We next prove that {_Jy =
Obviously | ¥ < a. Suppose ¢ < a. Let ¢ e % be such that g(£) ey, for
all § < a, and g(&) > ¢ whenever f(&) > . Then g(&) < f(&) for almost all
& < a. So, by 1.4, 71(g) < 71(f), and hence 1(g) < a. Let 4 = 77(g). By 1.5,
g {n}) ¢ I; then, since 5 e y: whenever g(£) =», we have ney. On the
other hand, by 1.5,

{f: E<a, L<f(E)rel,
50
{£: E<a, {<g(&)iel

and { <7 It follows that | Jy =a.

It remains to prove that y u {«} is closed. Let # be a non-empty
subset of y. If | J# = q, then J#ey v {a}. Suppose |z < a. Then || < a.
It follows from the «-completeness of I that

{6 f<a, 2Cyel.
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Since ye s closed for each £ < a, we have
{6 E<ta, Useyelel,
and thus | Jzey.
We now conclude, in view of 1.29, that a e M(X). But then « < C,,
which contradicts the existence of I.

COROLLARY 1.32. The operations M™, (M), ote. preserve normality.
Proof. By 1.27, 1.31.

THEOREM 1.33. The class AC is normal.

Proof. Let

X = {f: for some cardinal «, we have w <a <P 2%
For each cardinal § > w, let
X; =[0%,2°]
For each ordinal y, let
Xy i pzo.
We then have

X =8 feUiepXu}-

Sinee X, C AC for every g, it follows from 1.2, 1.12 that X, is normal
for every o, and thus X, is normal for every u. Therefore, by the first
induetion principle 1.19, X is normal.

We shall now show that

ACCM™(x).

I «edC and « is regular, then aeX and so, by 1.30, o e M™(X).

It remains to prove that every singular cardinal belongs to M™(X).
It is sufficient to prove that each ordinal # has the following property:
1) if aeC and ¢f(a) <u <a, then aeM¥(X);

once this is verified, it follows at once that « eM(“)(X) whenever «eC
and of (a) < a.

Suppose that (1) holds for each ordinal u<v let aeC, and let
¢f(a) <» < a. There exists a strietly increasing function ) «“"C such that

2 = Uz<orw #(2) -
Since a € C, ¢f(a) must be a limit ordinal, and it follows that

a = Ut 9{0)* .
Clearly @(¢)*¢X for each < of (o). Let

¥ ={y: ¢f(a) <y and for some positive y < of(a), v =, @(6)+).
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Then « =y and y v {a} is closed in C. If yey, then either yeX or
of(y) < of (@) <y, 0 p e MO (X), Thus

yC M) (X).
By 1.29 we have
o e M (M) (X))
and, since ¢f (a) <» < a,
aeM?(X).

This verifies (1), and thus 4C C M*(X).

From the second and third induction principles, or from 1.32, it
follows that M®(X) is normal. Therefore, by 1.11, AC is normal.

The class 4AC is an example of a normal class which, assuming
C, = C, does not satisfy the simple sufficient condition for normality
given in 1.12; in fact any aeC is expressible as the union of
gsome subset of AC. The same holds for any normal class which
includes AC.

From the point of view of mathematical elegance it would be de-
sirable to prove Theorem 1.33 directly and before the induction prin-ei-
ples. In principle this would be possible, but the direct proof which
is known to us is rather involved and duplicates some portions of the
proofs of the induction principles. i

By combining our induction prineiples with the faet that Ag is
normal, we are able to show that larger and larger classes of cardinals
are included in C,. For example, we see at once that

TaEOREM 1.34.

(i) M(4C) C G;;

(if) M*(4C) C C;;

(iif) M®(M(4C)) C Cys

(iv) (M™)™4C) C C,.

To understand the scope of formula (i), the reader should compare
the remarks which precede Definition 1.28 and concern the extend of the
classes L (4C) and L™ (4C), and the fact that L(4C) C L™ (4C) c M (4C).
Precisely, (i) states that the class C, contains all hyper—ac(:essﬂ.)le cardi-
nals of type 1. By (i), C; contains every cardinal a which is hyper-
accessible of type o; (ili) and (iv) go even beyond this. ‘

The process can clearly be continued, and in a sense w11} never end.
Indeed we have seen in 1.24 that, if C; # C, there is no maximal normal
class. Moreover, if C s C;, and 4CC X C C;, then X cannot be closed,
and hence, by 1.30 (iv), X == M(X); thus, if X is normal, then M(X).
is again a normal class and properly includes X.
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It is possible to formulate even stronger induetion principles than
the three we have given. As a further step, one can formulate prineiples
involving arbitrary operations which, like the operation ), pass from
one operation of the type F in 1.23 to another.

We have not yet heen able to define “constructively” any cardinal
a e C for which we cannot prove « € C,. It has been shown by Scott
in [32] that Godel’s axiom of constructibility (see [8]) actually implies
G = C,. Thus the axiom of constructibility and the hypothesis C # C,
lead to two incompatible set theories.

The question whether the hypothesis C = C, is compatible with the
usual axiom systems of set theory remains open. On the other hand,
from the results in this section it is easily seen that the opposite hypo-
thesis, C = C;, which may be called the prime ideal hypothesis, is cer-
tainly compatible with the usual axiom systems and remains compatible
if these axiom systems are enriched by various “strong infinity axioms”
which guarantee the existence of very large cardinals. (We assume here,
of course, that the axiom systems involved are consistent and remain
consistent when enriched by the “strong infinity axioms™.) It is also
seen that the hypothesis C = C, becomes a provable statement if the
usual axiom systems ave enriched Dby the negations of various “strong
infinity axioms”. Thus, for instance, the prime ideal hypothesis is com-
patible with the Bernays axiom system and remains compatible if this
system is enriched by an axiom to the effect that there are inaccessible
cardinals > o, or that every cardinal is smaller than some inaccessible
cardinal, ie., that f; exists for every ordinal £ On the other hand, this
bypothesis becomes a theorvem if the Bernays system is enrviched by an
axiom stating that there arve no inaccessible cardinals > w, or that there
are no inaccessible cardinals « such that 0. = a. We see thus that the
inclusion of the prime ideal hypothesis in the usual axiom systems of set
theory does not lead to contradictions and does not prevent us from
further expanding these axiom systems by including various ‘“strong
infinity axioms” or their negations.

All these remarks apply also to two related hypotheses, € =C,
and € = G,, which will be involved in our later discussion.

§ 2. Characteristic properties of cardinals in the class C,.
In this section we shall discuss a number of problems from various bran-
ches of mathematics which arige in connection with the elass C,. It will
be seen from our diseussion that it is often more natural and advan-
tageous, instead of dealing with individual cardinals « belonging to C,,
to deal with closed intervals [@, f] included in C,. We shall begin with
< Properties which are of general set-theoretical nature, and then pass to
problems which arise in more specialized contexts.

. DY
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THEOREM 2.1. For any cardinals o and p, the following five conditions
are equivalent:

(i) [a, B1C Cy;

(ii) every a-complete prime ideal in S(B) is principal;

(iii) there ewists an a-complete field of sets of power 2% in which every
«-complete prime ideal is prinecipal; .

(iv) there exisits an a-complete field of sets of power =g in which
ecery a-complete prime ideal is principal; ‘ ‘

(v) in every f[+-complete field of sets every a-complete prime ideal
is ft-complete.

Proof. It is obvious that (ii) implies (iii) and that (iii) imph'es'(iv).
We ghall complete the proof of the theorem by proying successively
the implications (ii)=-(v), (v)=(i), (i)=(i), and (iv)ﬁ(l‘).

Suppose that (ii) holds, let B he a p*-complete field of sets, and
let I be an «-complete prime ideal in B. Let x ¢ °I. We shall show t‘;hat
Ues@(B) e I. For each &< f let y(&) =a(é)~Ui<e(l). Then, since
B is p+-complete, y e ?I. It is clear that {Jicpy (&) = Us<p(&); more-
over, whenever { <& <pf, we have (&) ~y{{)=0. Wej- novsf define
J = {2: 2 e 8(B), Use-y(€) eI}. Then J is an a-complete ideal in S(ﬁ?.
Since I is prime, we have either zeJ or f~=zeJ whenever zeS(f).
Therefore J is 2-saturated. By (ii), J is principal. If ¢ << 8, then y({) e I,
50 {{} eJ. It follows that J = §(f). This verifies (v). ‘

Now assume (v) and let ye[a,p]. Let I be a y-complete prime
ideal in S(y). Then I is «-complete. Also, S(y) is g+ complete. It follows
from (v) that I is p+-complete. Since y < g and UI = {&: ’;E}el}, we
have (I eI, and thus I is principal. Therefore ;.zeCliand (i) holds.

Asgsume (i) and let I be an a-complete prime ideal in §(f). Let y, be
the least cardinal y such that either y = f+ or I 1<3 n‘ot ;/—CQmplete. @1&}1
a <y, and y, < f*; y, obviously cannot be a“]umt cardinal, so thelée
exists & € [a, B] such that y, = §+. Since § ¢ C;, (i) holds when o = § = .
Therefore by what we have proved above, (v) ]}OldS when a =§ —- c;
Since S(B) is o+ complete and I is J-complete, it follows by (v)‘ mij
a=pf =24 that I is é+-complete, ie., I is yo—c?m.plete. ’I‘he}:efme “c
must have y, = p+. Since I is f+-complete, it is principal, and.(n) follows.

Assume that (iv) holds, and let B Dbe an a—co_mplgte.fleld of sets
of power >p in which every a-complete prime ideal is Pr.melpal. .We may
assume without loss of generality that (B is an 1.nfm1t¢.3 cardinal, say
\JB = B,, and furthermore that every atom of B is a s.mgleton.. él?hletf
BC 8(By), every atom of B is an atom of S(f,), and f, is the unit ele
ment of B. Observe that, for each { e f,, the set
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is an «-complete prime ideal in B. Thus, for every (e f,, {*is a prineipal
ideal in B, and consequently {{} ¢ B. Let I be an a-complete prime ideal
in 8(B,). Set J = I ~ B. Since B is a-complete, J is an a-complete prime
ideal in B. Therefore J is a principal ideal in B, that is, | JJ eJ. Hence
UJ €I. On the other hand, we have

UZ={& @ el}={s: ed)=UJ,

and thus I is principal. It follows that (i) holds when g = g, and, by
what we have shown before, we have [, f,]C C,. Since |B|> § and
2"“>]BI, we have 27> p. By Theorem 1.2, [_'/5’[," ,zﬁ"}g_ C,. Therefore
[e, B]1C C,. This completes our proof.

Notice that conditions (iii) and (iv) in 2.1 are existential statements,
while condition (v) is a nniversal statement. Condition (ii) is & statement
about the particular field S(8) and permits us to pass from the existential
conditions to the universal one. It is obvious that the universal con-
dition (v) implies (ii), (iii), and (iv).

It follows from 2.1 that conditions (i)-(v) always hold when B < a,
for in this case [, ] is empty and is thus included in C,. When B =a,
condition (i) reduces to the condition a e C, as stated in 1.1, while (iii),
(iv), and (v) give necessary and sufficient conditions for e C;. In case
a= o, it iy easily seen, e.g. by 0.2, that each of the conditions 2.1 (i)~
2.1 (v) fails.

COROLLARY 2.2. For any « and y the following two conditions are
equivalent:
(1) [a, 7) CCy;

(Li) in every v-complete jield of sets every a-complete prime ideal is
y-complete.

Proof. Assmme (i). Then condition 2.1 (i) holds whenever g < j.
Eenee, by 2.1, condition 2.1 (v) holds whenever § < v, and (ii) follows
immediately.

If we assume (ii), then, as is casily seen, 2.1 (ii) holds whenever g < 3.
Hence 2.1 (i) holds for all g < y, and thus (i) holds.

Corollary 2.2 is a partial improvement of Theorem 2.1: if we sub-
stitute #* for p in 2.2 (i) and 2.2 (i), we immediately obtain 2.1 (i) and
2.1 (v), respectively.

DEFINITION 2.3. F is said to be « set function on a jield of sets B if
the domain of F is B and the range of F is a sel of sets. In case B is an
a-complete field of sets, a set function F on B is called a-additive, or
a-multiplicative, if, whenever X C B and 0 < | X < q

1"(U J-Y) = UzEX-F('Z") H
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or
F(NX) = Naex Fla),

respectively. In case B is complete, F is called completely additive, or com-
pletely multiplicative, if it is a-additive for every ae C, or «-multiplicative
for every a e C, respectively.

It is known (and can easily be shown) that, for every set 4, F is
a completely additive and completely multiplieative set function on 8(4)
iff there is a set ¢ and a function g with the range included in 4 such that

F(X)y=Cug¥X) forevery XCA.

THEOREM 2.4. For any cardinals « and § the following three conditions

are equivalent: '
(i) [a, B1C Gy

(i) every a-additive and o-multipl.cative set function on 8(f) is com-
pletely additive and completely multiplicative;

(iil) every u-additive and «-multiplicative set function on any f+-com-
plete field of sets is f+-additive and B+ multiplicative.

Proof. We refer to Theorem 2.4 in [4] for a proof that condition
2.4 (ii) above is equivalent to condition 2.1 (ii) in the 'special case when
a = f. With obvious changes the same argument can be used to prove
that conditions 2.1 (ii) and 2.4 (ii) are equivalent for any cardinals « and g,
and that the same applies to conditions 2.1 (v) and 2.4 (iii). Hence, by
referring to 2.1, we conclude that the three conditions of our theorem
are actually equivalent.

From this theorem we can easily derive an analogue of Corollary 2.2,
i.e. we can show that condition 2.4 (iii) with g+ replaced by an arbitrary
cardinal y is equivalent to 2.2 (i).

We shall now pass from the question of the existence of non-princi-
pal a- complete prime ideals to the more general question of the existence
of non-principal «-complete and §-saturated ideals.

DEFINITION 2.5. We denote by C® the class of all a such that every
a-complete and §-saturated ideal in 8(a) is principal.

THEOREM 2.6.

(i) € =M =C U {w};

(i) € =G
(iif) if 62, then C® C Gy;
(iv) if 6 <&, then C*7C C™
(¥) if ot <y, then C¥ £ C,.

Proof. (i), (ii), (iii), and (iv) are obvious. By 1.2 we have o* e G,
hence to obtain (v) it suffices to show that «*¢ C". The set I = S,+{0*)
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is an ot complete ideal in S(wt). Moreover, I is y-saturated because
any disjointed subset of 8(w+) has power <o+ and thus has power <.
But I is not principal, so w*¢ C7.

THEOREM 2.7. SN C C for oll 6.

Proof. Assume «e SN and consider any «-complete ideal I in S(a)
{whether d-saturated or not). By 0.4, I is o*-complete and therefore

U =U{{: (&1 el)el.

Hence I is principal. Consequéntly, by 2.5, aeCm, and the proof is
complete.

TEROREM 2.8. If a <8, then aeC¥ iff a <SN.

Proof. If « is singular, then « e G™ by 2.7. Suppose that « is reg-
ular and let I = §y(a). Then I is a non-principal - complete ideal in § ().
I is d-saturated because any disjointed subset of § () has power <a,
and thus has power <4. Therefore a¢ GP.

Our next theorem is a special case of [43], Theorem 4.15, p. 54,
and the proof is indicated there. For convenience, however, we shall
give a proof here.

TrEOREM 2.9. If o is not a regular limit cardinal and 8 < ay then a e CY.
Proof. If « is singular, then, by 2.7, a ¢ G,
‘ S_uppose that a = y+ and 6 < . Let I be an a-complete §-saturated
ideal in 8(a). We shall prove that I is principal. For each £ < a, let j: be
& one-one funection on & into y. For each ¢ < ¢ and 7€y, let
) ={& L <E<a, fi) =}
Then, whenever 7, < a, { = ¢, and 7 <y, we have
] 2l ) ne(E,n) =0.
For each # <y, let = €
yin) =& E<a, 2y n) e I}.
Since I is é-saturated, we have | y(n)] < 6, and thus |y(y)| < y, for each
1 <y. Therefore

Tet {Uscp vl <.

Soeam~Une, ¥(n).

Since I i3 «-complete and 2(8y, ) e I for each 5 <y, we have
Uq<‘/w(¢07 nNel.

But, by the definition of z(Z, 7),

Un<y ®(Goy 1) = a~(5+1)

SO
a~(Se-+1)eT.
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Let
v=|E<a: (£ ¢1}.

Then 2 C {o-F1. Since I is a-complete, a~(f+1)el, and [§+1]{<
we have a~z € I. But then a~z = I, and thus T is principal. It follows
that « e C%, and our proof is complete.

TEEOREM 2.10. For all a, B, and 0, the following three conditions are
equivalent:

(i) [, F1C €™

(ii) every a-complete and 8-saturaled ideal in 8(B) is principal;

(iil) in every B+-compleie field of sels, every a-complete and é-saturated
ideal is Bt-complete.

Proof. It is sufficient to prove that (i) implies (iii), that (iii) im-
plies (i), and that (i) implies (ii). The proofs of these implications are
entirely analogous to the arguments given in the proof of 2.1 for the
implications 2.1 (i) =2.1 (v), 2.1 (v)=2.1 (i), and 2.1 (i)=2.1 (ii), respec-
tively, with the notion of a &-saturated ideal everywhere replacing that
of a prime ideal. Note that (i), (ii), and (iii) are obviously true when 6 < 1.

COROLLARY 2.11. A mecessary and sufficient condition for [a,y) C c*
is that:

(i) in every y-complete field of sets, every a-complete and d-saturated
ideal is y-complete.

Proof. The proof is analogous to that of 2.2, but refers to 2.10
instead of 2.1.

Notice that the conditions 2.10 (i), (i), and (iii) arve the analogues
of the conditions 2.1 (i), (ii), and (v), respectively, which arise when we
pass from the notion of a prime ideal to the more general notion of
a 8-saturated ideal. It is natural to ask whether the analogues of 2.1 (iii)
and 2.1 (iv) (which will be explicitly stated below as 2.12 (ii) and 2.12 (iv),
respectively) are necessary and sufficient for [a, f1C CY. Tt is obvious
that 2.10 (ii) implies the analogue of 2.1 (iii), which in turn implies the
analogue of 2.1 (iv); hence both of those analogues are at least necessary
for [a, B1C €. On the other hand, by examining our proof of the im-
plication 2.1 (iv) =2.1 (ii), we obtain the following

THEOREM 2.12. Let

fo=y: 2" =2% and p=r: F<2%.
Then the following two conditions are equivalent:
(1) [a, £ C €
(i) there ewists an a-complete field of sets of power 2% in which every
a-complete and 8-saturated ideal is principal.
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Similarly, the following conditions are equivalent:

(iif) [a, f] C C%;

(iv) there ewists an a-complete field of sels of power >p in which
every a-complete and 6-saturated ideal is principal.

In the above theorem note that we always have B, < §, < 4.

CoroLLARY 2.13. If f 4s a strong limit cardinal, or in particular if
f e C~ AC, then each of the conditions 2.12 (ii), 2.12 (iv) is necessary and
sufficient for [a, ] C c,

Proof. We have f =g, =4, in 2.12.

CorOLLARY 2.14. Assume that the generalized comtinwum hypothesis
holds. Then 212 (ii) is mecessary and sufficient for [a, f] C G¥.

Proof. We have 8 =48, in 2.12.

COROLLARY 2.15. Assume that the generalized continuum hypothesis
holds or at least that [T ,B] contains no regular limit cardinals where
B =\{y: B<L2%). Then, in case &< pi, each of the conditions 2.12 (ii),
2.12 (iv) 4s necessary and sufficient for [a, f C C¥.

Proof. By 2.9, [f, ] C C¥. Therefore [a, ] C C* implies that
[a, B1C C™, The result follows by 2.12.

COROLLARY 2.16. Suppose that p is not a limit cardinal and a = § < 8.
Then 2.12 (iv) holds but [a, 81 C C¥ fails.

Proof. If B, is defined as in 2.12, then, since § is of the formx y+,
we have f; < f. Therefore [a, f,] =0, and so, by 2.12, 2.12 (iv) holds.
However, § is regular and hence, by 2.8, f¢C™. Thus [«, f] is not
included in CY.

THEOREM 2.17. Suppose that a is regular. Then the following condi-
ton (i) is necessary and sufficient for [a, f]C C*:

(1) if X dis any set of sets which covers B, i.e. BC\JX, and for which
8(B)~X has no disjointed subset of power 8, then there is a set ¥ « S8(X)
which also covers p.

Proof. We shall prove that 2.17 (i) is equivalent to 2.10 (ii). Assume
2.17 (i). Let I be an «-complete §-saturated ideal in S8(B). Let

X=Iu{g~UI}.
Then {JX =§. By 2.17 (i), there exists Y € 8,(X) such that JY¥ = 4.
But then
XA =UI.

Since I is a-complete, we have | JI €I, so I is principal. This verifies
.10 (if).
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Now assume 2.10 (ii). Let X be a set of sets such that BCI}X and
8(p)~X has no disjointed subset of power 5. Let o

I ={m: xe8(B) and there exists T e 8(X) such that zCUUYy.

From the fact that « is regular it follows that I is an a-complete ideal
in §(B). Since )
S(B)~IC 8(p)~X,

I is 0-saturated. Because § C | JX, every singleton of 8 (B) belongs to I,
and hence = | JI. It follows from 2.10 (ii) that I is prineipal, and thus
peI. Therefore there exists ¥ e S,(X) such that AC L ]Y. This veri-
fies 2.17 (i).

The condition 2.17 (i) has been dealt with in the ‘“‘covering theorems®
in [40]. It has the pleasant feature that it is formulated entirely in basic
set-theoretical terms, without involving the notion of an ideal.

The hypothesis that « is regular cannot be vemoved from 2.17.
In fach, if a is singular, « =8, and « < 6, then [e, 1 C c¥ holds, but
2.17 (i) fails, e.g. for X equal to the set of all singletons of §(a).

Leava 2.18. Suppose 28 < a. Then any a-complete non-principal
d-saturated ideal in S(B) may be extended to an a-complete non-principal
prime ideal in S(B).

2.18 is simply a restatement of [43], Theorem 4.12, p. 53, to which
we refer for a proof. We shall see that 2.18 is also a direct consequence
of Lemma 4.23 which will be proved in § 4.

TerOREM 2.19. (i) If 6 >1, then C¥r(29)t = C,~(29).

(i) If 6 > 1 and 2° < a, then the formulas [a, F1C C* and [a, F1C C,
are_equivalent for every cardinal B, and so are the formulas [a,y) C C¥
and [, y) C G, for every cardinal y.

Proof. (i) By 2.6 (ili) we have € C C;, so C¥~(29)+ C C,~(23)+.

Suppose « e C;~(28)*. Then, by 2.18, every a-complete non-princi-
pal d-saturated ideal in S(a) can be extended to an «-complete non-
principal prime ideal. Since a ¢ C;, every a-complete prime ideal in 8(a)
is principal. It follows that every a-complete §-saturated ideal in §(a)
is principal, and hence « ¢ GY,

(ii) follows directly from (i).

By applying 2.19 to various results which have been stated above
or will be stated below in this section, we immediately obtain conelu-
sions of the type in which we are primarily interested here, namely theo-
rems providing necessary and sufficient conditions for [a, f] CcGC, or
[a, ) C C,. For instance, 2.10 and 2.19 (ii) imply at once that, under
the assumptions 1 < 6 and 2< a, the formula [a, 8]C C, is equivalent
to each of the conditions 2.10 (ii) and 2.10 (ii).

18*
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COROLLARY 2.20. If 1 <6 < w, then C™ =C;.

Proof. Since 6 < w, we also have 2°< m, and hence C~(2¢)+ — ¢,
The result follows by 2.19.

CoROLLARY 2.21. (i) If 6 > 1 and [3, 291 C C", then C¥s =, s,
(i) If [0%, 2°]1 C €Y, then C*" = (.

COROLLARY 2.22. (i) Assume that 8 4s not a vegular Wmst cardinal and
the generalized continuum hypothesis holds, or at least that [8, 2°1 contains
no regular limit cardinals. Then, if 6 > 1, 0V~p = 0;~4.

(i) Assume that the continuum hypothesisﬁolds or at least that [o™, 9°]
contains no regular limit cordinals. Then C*" =(,.

Proof. By 2.9 and 2.21.

The results 2.8, 2.9, and 2.19-2.22 may be summed up as follows.
Asgsume that 6 is any cardinal greater than 1. In cage & < o, we have
aeC™iff ¢ C,. Also, in case 2% < a, we have aeCY® iff 4« C,. On the
other hand, in case « <4, we have aeC™ iff aeSN. In case « is not
a regular limit cardinal and 6 < a, we have oeC?,

Thus the only situation in which we have not settled the question
of whether a given cardinal « belonging to C, also Lelongs to G ariges
when 6 <a<<2 and « is a regular limit cardinal. The following are
among the most natural open problems in this direction:

(1) Is 2° e C*"12

(2) Is [0, 2°] C C™*"1e

(3) If « is the first uncountable regular limit cardinal, is « < C*?
(4) Is 6,eCP9

(6) Is aeC™ for every ae AC?

(6) Is 2°¢ C™ for every uedC?

(1) Is aeC" for every aeCp?

Of course, by 2.22 the continuum hypothesis implies that 2° ¢ G

and [0*, 2”1 C €, while the generalized continuum hypothesis implies
that a eC™ and 2%« € for every a¢AC.

However, even if we assume the generalized continuum hypothesis,
the questions (3), (4), and (7) remain open, although in this case the
questions (3) and (4) clearly hecome equivalent to each other.

We shall now consider some problems which arise in the theory
of Boolean algebras.

) ‘THEOREM 2.23. For any cardinals a and B, the following condition
(1) 48 necessary and sufficient for [a, B1C Cy:

() in every p*-complete Boolean algebra, every a-complete prime ideal
8 f+-complete.
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Proof. By 2.1, the condition 2.1 (ii) is equivalent to [a,1CC;.
It is obvious that 2.23 (i) implies 2.1 (ii); we shall show that, eonve;sely
2.1 (ii) implies 2.23 (i).

Our proof of the implication 2.1 (i) =2.23 (i) will closely resemble
the proof we have previously given of the implication 2.1 (i) =2.1 (v).
Let B be a p*complete Boolean algebra and let I be an a- complete
prime ideal in B. Let z "I For each & < g, let

Y(E) =a(8)— Dics(0) .
It follows from 0.1 that

2e<p¥(§) = Dicp(f).
Let

I =le 2 e8(B), Drecy(®) eI}

Then J is an «-complete ideal in §(p). It z,2' e 8(f) and z &' =0,
then, by 0.1,

(Z&z"/(f)) : (Zeez’y(f)) = 256:‘,.‘55’ (f'/(f) y(é—)) =0.

Therefore J is 2-saturated. By 2.1 (ii), J is principal. If { < 8, then
y() e, so {{} eJ. Therefore J = §(B). This verifies that T is f+-com-
plete, and thus 2.23 (i) holds.

COROLLARY 2.24. The following condition (i) 4s necessary and sufficient
for [a,7) C Cy:

() in every y-complete Boolean . algebra every «-complete prime ideal
is y-complete.

Proof. The proof is entirely analogous to that of 2.2.

THEOREM 2.25. For any cardinals « and B, the condition (i) below
is equivalent to the inclusion [a, B] ca:

(i) in every complete Boolean algebra of power <2° every o-complete
prime ideal is principal.

Proof. It is seen at once that 2.25 (i) implies 2.1 (ii), in view of the
fact that the set algebra &(B) is a compléte Boolean algebra of power
<2. By 2.1, it follows that 2.25 (i) implies [a, B1C C;.

‘Agsume that [a, f]C C,. By 1.2, we have [+, 2°]C C,, and there-
fore [«,2°]C C,. Applying 2.23, we see that in every (2°)+complete
Boolean algebra every o-complete prime ideal is (2°)+-complete. In
each complete Boolean algebra of power <2° every (2°)*-complete
ideal I contains its sum J'I, and thus is principal. Therefore 2.25 (i)
holds.
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THEOREM 2.26. For any cardinels o and B, the following three conds.

tions are equivalent: :
() e, FIC Gy

(ii) every a-complete set algebra which is B*-complete as a Boolean
algebra is o p+-complete set algebra;

(iil) sn every a-complete set algebra which is a complete atomistio
Boolean olgebra with f atoms the unit element is the union of all atoms.

Proof. The implication (ii)=-(iii) is obvious. We shall prove that
(i) implies (ii) and that (iii) implies (i).

In order to establish the implication (i)=(ii), it suffices, by 2.23,
to prove that 2.23 (i) implies (ii). Let B be an a-complete set algebra
which is a g+ complete Boolean algebra. Suppose that X C B and | X] < 8.
We must show that } X C | JX. Suppose a e 2 X. Then the set

I ={x: 2eB, a¢x}

is an a-complete prime ideal in B, since B iy an a-complete set algebra.
It follows from 2.23 (i) that I is g+ complete. If X C1I, then D Xel,
contradicting @ e} X. Therefore it is not true that X CI. It follows
that ae|J X, hence B is a f+-complete set algebra, and 2.26 (ii) holds.
To show that (iil) implies (i) we may, by 2.1, assume (iii) and de-
rive 2.1 (ii). Let I be an a-complete non-principal prime ideal in §(B).
We shall arrive at a contradiction. Let 7 be the set function on B de-
fined by the conditions:
€T if
zu{f} it

" Let B be the vange of F. From the fact that I is a prime ideal it follows
that B is a field of subsets of #+1. Since I is a-complete, B is an a-com-
plete field of sets. Let B be the set algebra determined by B. B is an
atomistic Boolean algebra, and since I is non-principal, the atoms of B
are exactly the atoms of (), and lLence ave g in number. Therefore,
the unit element, f+1, of # is not equal to the union, B, of all atoms

of B. Furthermore, it is easily seen that % is a complete Boolean algebra,
because

zvel;

R
Pl l wel.

FUX) = Joex ()

for each X C §(8). This contradicts (iii), and our proof is complete.

FL‘heorem 2.26 leads naturally to the interesting question: s the
condition thai every a-representable and Bt-complete Boolean algebra is
ﬁ*"--represenmble necessary and sufficient for [a, fC C,? This question is
still:-open, although it is easily seen from 2.26 that the condition is
necessary for [a, p]C C,.
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COROLLARY 2.27. The following three conditions are equiralent for any
cardinals a and y:

(1) [a,7) C Cy;

(ii) every a-complete sel algebra which is y-complete as a Boolean
algebra ¢ a y-complete set algebra;

(iii) in every a-complete set algebra which is a complete atomistic
Boolean algebra with fewer than y atoms the unit element is the union of
all atoms.

Proof. We see at onee from 2.26 that implications (i) = (ii), (ii) = (iii),
and (iii)=-(i) hold.

THEOREM 2.28. The following condition is necessary and sufficient
for [a, f1C C*:

(i) in every p+-complete Boolean algebra every a-complete and §-sat-
urated ideal is p*-complete.

Proof. It is obvious that 2.28 (i) implies 2.10 (ii), and hence, by 2.10,
[a, ] C C™ follows.

By a straightforward modification of our proof of 2.23, with the
notion of a d-saturated ideal everywhere replacing that of a prime ideal,
we ghow that 2.10 (i) implies 2.28 (i). Thus, by 2.10, [¢,]C C? im-
plies 2.28 (i).

COROLLARY 2.29. A necessary and sufficient condition for the inclusion
[a,7) CC* is:

(i) #n every y-complete Boolean algebra every a-complete and 6-sat-
urated ideal is y-complete.

Proof. The proof is analogous to that of 2.2.

THEOREM 2.30. The following condition is mecessary and suffictent
for [a, B]1C G;:

(i) for some sequence of discrete topological spaces, each with <o points,
there exisis a set of B points in the product space which has no accuwmu-
lation point.

Proof. Assume [«, ] C C,, and consider the set

A= U&<a 5.

We choose a sequence f whose range is 4; let £ be the domain of . For
each { < &, let T, be the discrete topological space whose set of points
is the range of the function f,; thus each of the spaces T has fewer
than « points. Let T be the product space of the sequence Tp, { <&
Whenever 7 < 8, let , be the point of T defined by the condition:
t,(8) = f;(n) for all £ < & We shall show that the set

U={t;: 5<p}
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of § points of 7' has no accumulation point in 7. Suppose, on the con-
trary, that U does have an accumulation point % in 7. Let

D ={f"(tu(®)}): ¢ < &)

or, in other words,
D ={we8(B): for some { < § w= {5<p: 8(0) = u(l)}} .

Then, since » is an accumulation point of U, each finite subset of D hag
an infinite intersection. Moreover, for any xze8(f), either zeD or
B~ €D, because the function

(@ {0}) u ((B~a) x {1})

belongs to *2 and thus belongs to A and oceurs in the sequenece f. It follows
that the set

I =R8(f)~D

is a non-prineipal prime ideal in the field 8(p). I X eSa(S(ﬂ)) and
X =4, then there exists ¢ < & such that

X ={fi*({e}): o erange of f};

consequently some member of X belongs to D, and hence X is not in-
cluded in ; This shows that I is a-complete and, by 2.1, contradicts
our assumption [a,B]C C,. Therefore U has no accumulation point,
and (i) holds.

. If, on the other hand, [a, 8] is not included in C,; then by 2.1 there
eXists an a-complete non-principal prime ideal I in S(8). Let Ty, ¢ < I
be‘ an arbitrary sequence of diserete topological spaces each with <a
points, and let U be a set of g points in the produet space 7' of this
sequence. We wish to show that U hag an accumulation point in 7.
Choose & one-one f-termed sequence ¢ whose range is U. Then, for each
¢ <§, there is exactly one point o or T% such that

1) M<p:t(0)=g}él.

Co.nsider the point % of 7' guch that, for each ¢ < £, %({) is the unigue
point g of 'T; such that (1) holds. Then, since I is non-principal and prime,
the following condition holds for all 2 e 8,(£): the set

{n <B: () = u(¢) for all fex}
i_s infinite. Hence w is an aceumulation point of U, and (i) fails. Our proof
1s complete.

W_e WlSh now _to consider the. algebraic notion of a field, i.e. a com-
mutative division ring (not to be confused with the notion of a field of gets)

icm°®

From accessible to inuccessible curdinals 265

DEFINITION 2.31. © 45 said to be a quotient field of the field 3 if
6 = (%)M for some non-empty set X and some maximal ideal M in the
ring *F. We shall say that the quotient field & = (5®)/II Teaves the subjfield
%, of & fiwed if each function h e @, is equivalent modulo I to some constant
function ¢ e XF,.

LEMMA 2.32. For any field § and non-empty set X, there is a one-one
correspondence I from the set of mawimal ideals in the ring =% onto the set
of prime ideals in S(X) such that, for each mazimal ideal M in Xi}, we have

M ={f *F: f({0) e I(2D)],

where 0 is the zere of §.
The proof of 2.32 is given in [18], Theorem 36.
THEORBM 2.33. The following conditions are equivalent:
(i) [a; f1C Gy;

(i) § being any field of power B, every quotient field of § which leaves
each subfield of § of power <a fiwed also leaves § fimed;

(iii) there is a field ¥ of power § such that every quotient field of § of
the form (°F)/ I which leaves each subfield of & of power <a fived also leaves
& fizved.

Proof. It is obvious that (ii) implies (iii).

In what follows we consider a correspondence I between the maximal
ideals of ¥ and the prime ideals of §(X) which satisfies the condition
in Lemma 2.32. Assume (i), let § be a field of power g, and let & = (¥F)/M
be a quotient field which leaves each subfield of § of power <a fixed.
We shall show that the ideal I(M) in §(X) is prinecipal; from this it wilt
follow at once that ® leaves §§ fixed and hence that (ii) holds. To show
that I(M) is principal, it suffices by (i) to prove that it is a-complete.
Let Y be an infinite disjointed subset of the ideal I(3) of power <a,
and choose a subfield §, of § of power |Y|. We may then choose a function
f ¢ *F, with the property that

(1) 7o) =X ~UY
and, for each r e Fy~ {0},
(2) i e Y.

By (2), f cannot be equivalent modulo M to any non-zero constant function
in XF[,; since ® leaves &, fixed, we must have f equivalent to the zero
function modulo M, and hence, by (1),

X~UT =77{0) e I(M) and UY I(N).

This shows that I(3) is «-complete.
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Assuming (ifi), we consider an arbitrary a-complete prime ideal
in 8(8). Let M be the maximal ideal in *§ such that J = I(M), and let
be the quotient field (’g%)/M, For any subfield &, of § of power <a and
any funetion f ¢, the set :

D r e By}

is a disjointed set of fewer than a subsets of g whose union is §; hence,
for some 7, ¢ Fy, we have
17 o) ¢ T

and therefore f is equivalent modulo M to the constant function ¢ ¢ °F,
whose range is {r,}. We have verified that & leaves fixed every subfield
Fo of §F of power < a. Therefore & leaves §& fixed. Let us choose a one-one
function g on # onto F. By (iii), g is equivalent modulo M to some constant
function on f into F; let & be the unique ordinal < g such that {g(£))
is the range of this constant function. We then have ‘

& =0"9E}ed,
and therefore J is principal.

DEFINITION 2.34. We denote by Ci the class {: [w+, B C Cy}.

CoROLLARY 2.35. (i) If C, =C, then Ci is the class of all infinite
cardinals, 1.e.

Ci=Cvu{w}.
(i) If G+ C and g =\ (C~GC,), then
Ci=(Cnp)u v} =[0,p).

Proof. By 2.34.

CoROLLARY 2.36. (i) w e C{;

() € C G {o};

(iii) if peCi, then [o, B]1C C..

Proof. By 2.34.

Notice that, when we set u = o*, the results 2.1, 2.4, 2.20-2.23,
2.25, 2.26, 2.30, and 2.33 yield necessary and sufficient conditions for
B € Ci. Moreover, we have

COROLLARY 2.37. Suppose ¢4 = [w, p). Then

(i) every w*-complete set algebra which is B-complete as a Boolean
algebra 4s a B-complete set algebra;

) (i) in every B-complete Boolean algebra every w*-complete prime ideal
is B-complete.

Proof. By 2.27, 2.29, and 2.36.

PR . . .
The clgss C{ arises frequently in various branches of mathematics.
We shall give a few examples here.
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DEFINITION 2.38. m s said to be a (normalized countably additive
non-trivial) measure on a set X if the following four conditions are
satisfied:

(1) m is a function on S(X) into the non-negative real numbers;

(if) m(X) =1;

(iii) ¢f Y s a disjointed subset of S(X) and |Y|< o, then m(lJY)
= Dyerm(y);

(iv) m({z}) =0 for every »eX.

If in addition the range of m is {0, 1}, m 4s said o be two-valued.

THEOREM 2.39. 4 necessary and sufficient condition for p e Gy is that f
have no two-valued measure (°).

Proof. If m is a two-valued measure on g, then m~1({0}) is
a non-principal w*-complete prime ideal in S§(B). Conversely, if I
is a mnon-principal w*-complete prime ideal in S(B), then the funection
m = (I x{0}) v ((S(ﬁ)NI) X {1}) is a two-valued measure on 3. The result
follows by 2.1.

It may be mentioned that we could formulate conditions stated in
terms of measure which are necessary and sufficient for a cardinal g
to belong to the whole class C;, and not only to the subelass Ci. For this
purpose we would have to use the not quite natural notion of «-additive
measure (cf. [51]).

By the abstract measure problem we mean the following problem:
determine the cardinals « such that every set of power a has a measure.
We may restrict our attention to those sets which are themselves infinite
cardinals. By 2.39, i a ¢ C{, then « has a measure. It is not known whether
there is any cardinal o e Ci which has a measure.

The more specific question: does there ewist a measure on the set of
real numbers? is also open. However, in view 1.2, we know that 2° ¢C{
and thus, by 2.39, there is no two-valued measure on the set of real
numbers.

THEORTM 2.40. If f has a measure, then e C~C".

We refer to [43], p. 60, for the proof of 2.40. Notice that in particular
2.40 tells us that o has no meagure.

THEOREM 2.41. Suppose that 2° has no measure. Then the following
three conditions are equivalent:

() peCi;
(i) B has no two valued measure;

(iii) B has no measure.

(1) Theorem 2.39 above is established in [41], page 164.
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Proof. The conditions (i) and (ii) are equivalent by 2.39. The im-
plication (iii)—(ii) is obvious. The proof that (ii) implies (iii) is dne to
Ulam and is given in [51], Theorem 3.4, p. 149.

THEEOREM 2.42. Suppose that [0, 2°]1C €Y. Then the conditions
2.41 (i)-(ili) are each equivalent to the jollowing condition:

(iv) [o", BT C C*".

Proof. By 2.40, the hypothesis implies that 2 has no measure.
Hence, by 2.41, conditions 2.41 (i)-(iii) are equivalent. The equivalence
of 2.41 (i) with 2.42 (iv) follows from 2.21 (ii).

In connection with this theorem we recall that, by 2.10, the formula
2.42 (iv) i3 equivalent to the condition that every o*-complete and
o*-saturated ideal in S(f) is principal. By 2.40, this formula implies
2.41 (iii) for every £ (and hence, in particular, the hypothesis of 2.42
implies that of 2.41). The problem is open whether 2.41 (iii) and 2.42 (iv)
can be shown to be equivalent without any additional hypothesis. From
2.42 we easily conclude that, if 2.41 (iii) and 2.42 (iv) are equivalent
for g =2° they ave also equivalent for every g > 2°.

COROLLARY 2.43. Assume that the contimuum hypothesis holds, or at
least that [w", 2°] contains no regular limit cardinals. Then the conditions
241 (i), 2.41 (ii), 2.41 (iii), and 2.42 (iv) are all equivalent.

Proof. By 1.2, 2.22, and 2.42.

CoROLLARY 2.44. dssume either of the hypotheses of 2.43. Then there
is no measure on the set of real numbers.

Proof. By 2.43.

This result is again due to Ulam; see [51], Theorem 3.4, p. 149.

From 2.43 we see that, under either of the hypotheses of 2.43, the
abstract measure problem is closely related to the problem of whether
C,=C.

We shall now mention briefly various other mathematical conditions
which are known from the literature to be necessary and sufficient for
feCi.

Let B denote the set of real numbers. We consider the vector lattice
*R of all veal-valued functions on B with the operations of pointwise
addition, scalar multiplieation, pointwise maximnm, and pointwise min-
imum. The terms linear functional and operator homomorphism on R
into R may be used interchangeably. A linear functional F is said to be
positive if F(f) > 0 whenever f ¢ °R and f = 0. A linear functional is said
to be bounded if it maps any bounded subset of “R into a bounded subset
of R. The projections I, on ’R into R, defined for each £ < f by

) = 1(8) ,

are clearly bounded linear functionals.
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THEOREM 2.453. The following ihree conditions are all (‘Q'l»li';i(lle)li:

(i) peCi;

(ii) every positive linear functional on "R into R is a finite linear
combination of projections;

(iil) every bounded linear functional on *R into R is a findte linear
combination of projections.

Theorem 2.45 is established in [25]. The equivalence of .45 (ii)

. and 2.43 (iif) follows from the fact that a linear functional on #R into R

is bounded if and only if it can be represented as the difference of two
positive linear functionals.

We assume familiarity with the basic notions in the theory of (ad-
ditively written) Abelian groups. Let € be an infinite cyclic group, e.g.
the additive group of integers. By the weak direct product of a B-termed
sequence ® of Abelian groups, in symbols P{%®,, we mean the subgroup
of the direct product Py<;®; whose elements arve just those functions f
which satisy the formula 7(£) = 0 for all but finitely many £ < g. In case
all the groups ®; coincide with a given group $ the weak direct product
P(g'i),a ©; is called the g-th weak direct power of § and will be denoted by
P4, (In additive terminology direct products are sometimes called
direct sums and are denoted differently; see e.g. [7].)

THROREM 2.46. The following condition is necessary and sufficient
for BeCi:

(i) every homomorphism on *C into € is a fénite linear combination
o projections.

This vesult is stated in [5].

® is said to be a slender group if G is a torsion-free Abelian group
with the property that every homomorphism on the direct product “C
into ® maps all but finitely many factors of the product into the zero
of ® (for more details see [7]).

It is known that the group € is slender. In fact, a torsion-free Abelian
group is slender if and only if it does not have a subgroup isomorphic
either to the additive group of rationals or to the group “C or, finally,
to the group of p-adic integers for any prime p (see [29]).

THEOREM 2.47. For any non-trivial slender group ©& and any B, the
following three conditions are equivalent:

(i) BeCis o
(ii) the only homomorphism on b into G which Maps 6™ Gnto the
zero of ® is the zero homomorphism;

(iii) for every p-termed sequence $ of torsion-free Abelian groups,
the only homomorphism on Pses$e into © which maps P $s into the
zero of ® is the zero homomorphism.
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The notion of a slender group and Theorem 2.47 are due to X.of.
Theorem 2.46 is an easy consequence of 2.47, while its formulation is
analogous to that of 2.45. For historical references concerning 2.46, 2.47
and for a proof of 2.47 see [7].

If T is a topological space, we denote by C(T, R) the ring of all
real-valued continuous functions on 7' with the operations of pointwise
addition and pointwise multiplication.

THEOREM 2.48. The following condition is necessary and sufficient
for BeCi:

(i) the only completely regular spaces T' such that C(T, R) is isomorphic
to the ring °R are the discrete spaces with exactly B points.

Theorem 2.48 is established in [13], Theorem 68 (subject to Remark 1,
p. 175, in [14]).

Let 2 denote the discrete topology with the two points 0 and 1, and
for any « let ®3 denote the product topology of an «-termed sequence
of copies of the space 3. Let B denote the usual topology on the set of
real numbers. A function f on a space T, into a space T, is said to be
sequentially eontinuous if, whenever the denumerable sequence @, @, £y, ...
of points of T, converges in 7 to the limit x, then the sequence f(=,),
fl@,), f(2y), ... converges in 7, to the limit f(x).

THEOREM 2.49. The following condition (i) is necessary for [w*, B]
to contain no regular limit cardinal and is sufficient for B to have no measure:

(i) every sequentially continuous,fumetion on °2 into R is continuous.

Furthermore, the following condition (ii) is necessary for [w*, B] to
contain no regular Umit cardinal and is sufficient for B to belong to Ci:

(ii) every sequentially continuous function on *8 into 2 is continuous.

Theorem 2.49 follows from results which are formulated in a much
more general and abstract context in [27]. In both parts of 2.49 the
sufficiency of the condition is easily seen; it is also obvious that 2.49 (i)
implies 2.49 (ii). The essential part of 2.49 is the necessity of (i).

A number of problems naturally arise in connection with 2.49: is
2.49 (i) equivalent to the condition that A has no measure? is 2.49 (ii)
equivalent to e Ci? does 2.49 hold whenever [+, ] C AC? can results
analogous to those of §1 be obtained for the class of cardinals which
satisfy 2.49 (ii)? All these problems are open.

To conclude this section we retwrn to the prime ideal hypothesis
C = C,. In view of the remarks made at the end of § 1 it may be interesting
to sum up the main implications of this hypothesis in general set theory
and related domains. This will be done in the next three theorems, which
are simple corollaries of various results previously stated in this section.
All the consequences of the hypothesis C = C, formulated below are
actually equivalent to this hypothesis. Since we are interested primarily
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in implications in one direction, we state these consequences in the
strongest and most general form which we know (omitting various
weaker and more special formulations which arve still equivalent to
the hypothesis discussed). In formulating the next theorems we use
the terms “countably complete”, “countably additive”, ete., instead of
“p+-complete”’, “ot-additive’, ete.

THEHEOREM 2.50. The hypothesis C = C; implies (and is implied by)
each of the following statements:

(i) In every f-complete Boolean algebra every countably complete
prime ideal is f-complete.

(i) In every complete Boolean algebra every countably complete prime
ideal is principal.

(i) [end (ii)] In every B-complete [or complete] Boolean algebra
every (2°)*-complete and a-saturated ideal is B-complete [or principal,
respectively].

(iii) [and (iii')] Bvery countably complete set algebra which is - complete
[or complete] as a Boolean algebra is « f§-compleie set algebra [or a complete
set algebra, respectively].

(iv) [and (iv')] Bvery countably additive and couniably multiplicative
set function on a B-complete [or complete] field of sels is f-additive and
B-multiplicative [or completely additive and completely mulliplicative,
respectively].

(v) If a set X of sets covers @ set b (i.e., b C\JX) and every dis-
jointed subset of S8(b)~X has power less than a, then there is a set Y C X
of power at most 2° which also covers b.

(vi) There is no two-valued (countably additive non-trivial) measure
on any set.

(vil) [and (vii')] Buery positive [or bounded] linear functional on °R
into R (where R is the set of real numbers) is a finite linear combination
of projections.

(vili) The only completely regular topological spaces T such that the
ring of all real-valued continuous functions on T is isomorphic to °R (where
R is the ring of real numbers) are the discrete spaces with exactly B points.

(ix) For every p there ewists a sequence of discrete topological spaces,
each with countably many points, such that not every set of p points in the
product space of this sequence has an accumulation point.

(x) Bvery homomorphism on *E into € (where € is an infinite cyclic
group) s a linear combination of projections.

(xi) If G is a slender group and § is a §-termed sequence of forsion-free
Abelian groups, then the only homomorphism on PecsH: tnto & rwhich maps
P2 $: into the zero of @ is the zero homomorphism.
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(xii) If a guotient field of a field § leaves every denwmerable subfiold
of § fized, then it leaves § fiwed as well.

THEOREM 2.51. Assume that the continuum hypothesis holds or af
least that [w', 2] contains no vegular Wmit cardinal. Then the hypothesis
C = C, implies (and is implied by) each of the following statemenis:

(i) [and (I')] In every B-complete [or complete] Boolean algebra every
countably complete and countably saturated ideal is f-complete [or principal,
respectively].

(i) If a set X of sels covers « set b and every disjointed subset of S (b)
~X dis at most denumerable, then ihere is an ol most denumerable set
Y C X which also covers b.

(iii) There ds no (countably additive non-irivial) measure on any set.

This theorem holds under weaker assumptions: the hypothesis C = C,
is equivalent to each of the statements 2.51 (i)-(iii) under the assumption
that every countably complete countably saturated ideal in S(2°) is
principal; it is equivalent to 2.51 (iii) under the assumption that 2° has
no measure.

THEOREM 2.52. dssume that the generalized continuum hypothesis holds
or at least that every regular Wimit cardinal is inaccessible. Then the hypothesis
C = C, implies (and is implied by) each of the following statements:

(i) [and ()] If « is an accessible cardinal, then in every B-complete
[or complete] Boolean algebra every a-complete and a-saturated ideal is
B-complete [or principal, respectively].

(ii) If a set X of sets covers a set b and every disjointed subset of 8(b)~X
has power less than am accessible cardinal o, then there is o set ¥ CX of
power less than o which also covers b.

While many portions of 2.50-2.52 follow directly from our earlier
results, the derivation of the remaining portions also presents no difficulty.

Among papers in the literature containing other results which concern
in some way the classes C; and Cf we mention [3] (set theory), [31] (group
theory), [22] (group theory and topology), [14], [34], [52] (funetional
analysis), [85] (Boolean algebra and topology), and [2], [16] (theory
of models). The classes C; and C! also play a role in 4 number of the meta-
mathematical papers which we have alveady cited, specifically in [11],
[15], [17], [18], [32], [48]. The results stated in these papers yield in
particular various metamathematical statements which are equivalent
to the prime ideal hypothesis (or to one of the related hypothesis, C = Co
and C = G,, which will be discussed in later sections).

3. Extent of the class C,.In § 1 we considered a problem which
was motivated by the well-known result that, in any field of sets, every
proper ideal can be extended to a prime ideal. In this section we shall
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concentrate on another question which originates with the same result.
As is seen from the results of § 1, most cardinals « have the following
property: (i) there is an «-complete field B of sets in which some «- com-
plete proper ideal I cannot be extended to an a-complete prime ideal
in B. In fact, every cardinal « which belongs to C, has this property;
to show this we take S(at) for B and S,+(c«*) for I. We shall show in this
section that for most cardinals « we can find an a-complete field of sets B
which satisfies (I) and has no more than « generators. (Instead of con-
sidering the numbers of generators, we could consider the total number
of elements of a field of sets; this would compel us, however, either to
state some theorems in a less general and more complicated form or to
make their validity dependent on the generalized continuum hypothesis.)

DEFINITION 3.1, We shall denote by Cq the class of all eardinals a such
that there is an «-complete field of sets with at most a generators in which
some a-complete proper ideal cannot be extended to an a-complete prime ideal.

The main purpose of this section is to provide as muech information
as possible concerning the extent of the class G,. First we have, by
Theorem 1.3,

THEOREM 3.2. G C C (i.e. we ).

A more interesting limitation on the extent of C, ix given in the
following

TasoreM 3.3. G, C C,.

Proof. Suppose aeC,. By 3.2, a e C. If a e AC, then aeC; by 1.2.
Suppose a e C~AC. Then there exists an a-complete set algebra B with
at most « generators which has an «-complete proper ideal I not included
in any a-complete prime ideal. By 0.3, B/I is an «-distributive Boolean
algebra. Moreover, it is easily seen that $B/I is a-generated by a set of
power <a, and that B/I has no a-complete prime ideals. By 0.5, it follows
that B/I is not «-representable, since {0} is a proper principal ideal.
Thus we have shown the following: (1) there exists an a-distributive
Boolean algebra which is «-generated by a set of power <« but is not
a-representable. It is shown in [4], Theorem 4.4, that (1) implies « <« C,,
and with this reference the proof of 3.14 is complete.

THEOREM 3.4. G, is normal.

Proof. Suppose that f e %G, ~a) and « is representable by f. Let I
be a non-principal «-complete prime ideal in S(a) such that 7:(f) = a.
Since 4C is normal by 1.33, there exists a function 7’ such that

f e ((CymdAC) na)  and  wlf) =7lf) = a,

and we may as well assume that [ ="

Fundamenta Mathematicae, T. LTI N 19
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If B e C~AC, then, as is easily seen, every fi-complete field of sets
with at most g generators has power < f. Hence, for each & < a, we may
choose an f(£)-complete field of sets B; of power <f(&) and an f(&)-com-
plete proper ideal K; in B, such that K, cannot be extended to an f(£)-com-
plete prime ideal in B.. For each £ < a, let F; be a function on f(&) onto
the set B;; let G be a function on f(&) into {JB; such that, whenever
< f(&) and Fe(C) # 0, we have Gy¢(l) e Fe(Z). For each ¢ < a, let

o ={E<a: f(&) >},
Then, in view of 1.4,
(1) z.¢ I whenever (<a.
For each { < a, let
2) Ful) ={n<a: {feaynag Geln) eFelO)} ¢ I} 5

intuitively n e F,({) means that G(n) ¢ F(£) for almost all & < «. It follows
that, for all 7 < a, either Fu(n) = 0 or 5 e Fu(n).

Let B, be the range of F,. Clearly we have |B,| < a. We wish to
show that B, is an a-complete field of subsets of a. Let { < « and ¢ ¢ fa.
We shall show that

Url<c Fa(‘Pr;) eB,.
We put

0 =Cw Uneoy.
Then, whenever £ e2,, we have
Un<t Felpy) € By

Choose a function g ¢ such that, whenever &ewz,, g(&) < f(&) and

(3) Fg(g(f)) = U<t Fele) -
Then it is easily seen, in view of (1)-(3) and the «-completeness of I,
that 77(¢9) < ¢ and

Fa(fl(!])) = Un<t Falpy) 5

Un<£ Fu(%) eB,.

By a similar but simpler argument we show that y € B, implies a~y € B,
and that a € B,. Consequently B, is an a-complete field of subsets of a
with <a generators.

Let

whence

B, ={Fu0): L <aand {& <a: Fyl) e K} ¢ I} ;

Fo() €« K, expresses the fact that Fy(() ¢ K, for almost all £ < a. It can
be shown (by an argument similar to that used above to prove that

e © -
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5

B, is an a-complete field of sets) that K, is an «-complete ideal in B,.
We shall omit the details. To show that K, is proper in B,, it suffices
to prove that « ¢ K,. Suppose £ < a and Fu(l) e K,. Then, since K, is
a proper ideal in B; for all £ < a, and since

U<a Fll)eKeje I,
we have
{6 <a: Fe(l) # UBsy¢ I,
Let t e be such that, for each &ex,, we have
HE) <f(§) and  Fyt(§) = UB~Fyl).
Then 71(t) < «. Furthermore, whenever & e »; and Fy(¢) = U B;, we have
Gilt(8)) e UBe~F(0) -
Therefore
{6 < Gt(8) e FelO)} ¢ I
and
{6 < a: Gefuilt) e FuD)} ¢ I,
and econsequently
wx(t) ¢ Foll) .
Thus Fo(l) # ¢, and a¢ K,.
By 1.8, a e C~C;, and thus by 3.3 we have a ¢ C~GC,. Therefore,

by 3.1, K, can be extended to an a-complete prime ideal J, in B,. For
each £<Ca, let

(4) Jy = {Fe(l): ¢ <f(§) and Foll) e o} -
We shall show that
{§ < a: J; is an f(£)-complete prime ideal in B; and K¢ C J¢}¢ I,

and thereby, since fe*Cyn ) and 0el, we shall arrive at a contra-
dietion. It is sufficient to verify each of the following conditions:
) <o K. CJe}él;
6) {f<a: yeds 2Cy, and ze By imply zeds} ¢ 1;
) {¢& < a: for all y e Bg, either yeds or | JBe~y e }él;
) [ < a: for all X eSyg(Je), UX eds}e .
We shall carry through the proof only for (8). (The other three con-

ditions can be established in a similar manner, but the proofs are some-
what easier.) Let

y={f<u for some X ES](;)(J;), UXEJ;} .
19%*


GUEST


276 H. J. Keigler and A. Tarski

Suppose that (8) is false, i.e. that y ¢ I. For each £ey, choose 3 set
X e 8y (J:) such that | J Xp¢J;. Choose a funetion g e%a such that, for
each £ ey,

g(&) =X .

Then, by 1.4, v7(g) < a. Let
e={Eey: gl§) = wlp)}.

By 1.4, we have z¢ I. We may now choose a function b with domain
71(g) & such that, for all £ e, we have

Xe = {Feln(C, &): & <1eg))

For each { < 77(g), we may choose a function h e“a sueh that, for all
£e2, we have

hef§) =g, &) .

Since F7Y(X;) C f(£) whenever &ee, it follows by 1.4 that, for all
¢ <ilg),

17(ly) < a.
Sinee I is a-complete, the set

w = {&ez: for all {<7i{g), he(&) = ta(he)}

does not belong to I.
Since, for all & ew and £ < 17,{g), we have

Felrr(y)) ¢ X C T,

it follows by (4) that, for all ¢ <71(g),
Fofrs(hy)) e, .
Let ¢ be the unique element of « such that
Fo(0) = Ur<rsio Falrr(he)) .
Since J, i3 «-complete, we have
Fo(g) e
It is easily seen from the a-completeness of I that
{€ cw nay: Fi(o) = Uscup) Felhel®))} e T,

and that consequently the set

w={fewn z,: Fyo) = {JX;}

@ ©
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does not belong to I. However, since Fo(g) eJ,, we see from (4) that,
for all £em,,

Fe(o) eds .
Since wé I, we may choose & e, and we have

FEn(Q) = LJ XEB EJé'o .

This is a contradiction, which completes the proof of (8) and hence also
the whole proof of our theorem.

Theorem 3.4 implies 3.3 and is indeed stronger, for it leads to the
conclusion that, in case Cy # C, the least cardinal in C~C, belongs
to C, and, in case C; s+ C, there are many other cardinals which also
belong to C; but not to G,. These conclusions were first obtained using
a different method by Hanf and Scott and were stated in [11].

To derive the conclusions from our results we combine 3.4 with
the induction prineiples of § 1 and begin an inductive process taking
the class €, instead of AC as a starting point. In this way we obtain
the following improvement of 1.34:

THEOREM 3.5.

(1) M(Gy) C Cy;

(1) M(m)(Co) C G

(iii) MM ) C Gy

(iv) (M®)(G) C €.

Proof. By 3.4 and 1.32 ().

The remaining theorems in thix section will show that certain classes
of cardinals are included in C;.

LEMMA 3.6. Assume that B is a yt-complete field of sets and there
exists xe"'B such that the following two conditions hold:

(3) for each & <y, U<, (£,8) =UB;

(ii) for each @ evy, My ®(&, @(8)) is either empty or an atom of B.

Then every y+-complete prime ideal in B is principal ().

(1) Theorem 3.5, which improves a result stated in abstract [11] and which is
derived here in a purely mathematical way, can also be obtained by means of meta-
mathematical methods used by the authors of that abstract. On the other hand, 3.5
is a direct consequence of two metamathematical theorems recently announced in [18].
(It should be pointed out, however, that Theorem 1 of [18] can also be derived directly
from the results stated in [11].)

(%) This lemma is established in [41], Theorem 2.16. It follows directly from
Lemma 3.6 that, by means of the simple construction nsed in the proof of Theorem 3.7
below, we obtain for each regular accessible  a weakly a-representable Boolean algebra
with at most a generators which is not a-representable. Cf. [41]. Theorem 7.13, and
also Theorem 4.16 below.
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Proof. Let I be any y+-complete prime ideal in B. Since I is proper,
it follows that, for each &<y, there exists { <y such that x(&,¢)¢ I.
We may therefore choose a function ¢ e¥y such that, for all & < y,

#{E, (&) ¢ 1.
Then we have
Y= ﬂ5<rm(§7 ‘P(f)) el

But, by (ii), y is either an atom of B or the empty set and, since 0 ¢ I,
4 must be an atom of B. It follows that I is principal, and the proof
is complete.

THEOREM 3.7. AC C G,.

Proof. Suppose first that « e AC~SN. We may then choose a cardi-
nal f < a such that a < 2°. We shall construet an a-complete Boolean
algebra B with at most § generators in which some «-complete proper
ideal cannot be extended to an «-complete prime ideal, and thus establish
that « e Cy.

For each &, n <, let

2(&,7) = {p: ¢ e’p and @(&) =1} .

Let B be the a-complete field of subsets of #8 which is «-generated
by the set

{w(&,n): &E,m < B}

of power 8, Then B iy a g+ complete field of sets such that conditions
3.6 (i) and 3.6 (ii) are satistied when y = 8. By 8.6, every g+ complete
prime ideal, and hence every «-complete prime ideal in B is principal.
Moreover, since f < a <2° and o is regular, the set S,(%f) is included
in B and in fact is a proper a-complete ideal in B. S,(°f) cannot be ex-
tended to an a-complete prime ideal in B, because it cannot be extended
t0 any proper principal ideal.

If o«e¢SN, then afe AC~SN, and o< at< 2% The above con-
struction gives an at-complete field B of sets, with at most generators,
in which some ot-complete proper ideal cannot be extended to an
at-complete prime ideal. But, by 0.4, every «-complete ideal is o*- com-
plete. Hence we have again a ¢ G,, and our proof is complete.

In view of Theorem 3.7, Theorems 3.4 and 3.5 are improvements
of Theorems 1.33 and 1.34, respectively.

The entire development of § 1 can be modified to obtain, in place
of results which state that certain classes of cardinals are included in C;,

stronger results stating that the same classes of cardinals are included
in C,.
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We shall establish in detail the result that M(AC)C C,; this will
at least show that many inaccessible cardinals belong to C,. It will be
evident that our methods are similar to, but technically more com-
plicated than, the methods of § 1.

DEFINITION 3.8. For any non-emply subset A of a, let B(4) be the
a-complete field of subsets of a which is a-generated by the set

{01g: 1,94},
where Cpg = {& < a: f(§) <g(&)} for any f, g <%a

Notice that the cardinal a is determined by any non-empty subset
4 of °a, so that B(4) depends only on the set A.

If 0 # A C @0, then, for any f,ged, the sets {&<a: (&) = g(£)},
&< a f(5) #g(8), and {£<a: {(§) <g(§)} doearly belong to B(A),
and the unit of B(4) is a. If 0 = A C A’ C °q, then B(4)C B(4’). B(4)
is an a-complete field of sets with at most [A| w o generators.

LemmA 3.9. Suppose that aeC, 0% A C %, and I is an wr-com-
plete prime ideal in B(4). Then there exists a unique ordinal n and a unique
function ¢ on A onto n such thai:

() for frge 4, @(f) =op(g) iff

{8 E<a,f(5) =g(&)e I

(i) jor 1,9 <A, of) <olg) if

{6 &<a, fE) <g(O}el.

Proof. The proof of 3.9 is the same, word for word, as the proof
of 1.3, except that we everywhere replace “a by A.

DEFINITION 3.10. Assume the hypotheses of 3.9. We shall denote by
a1 ond T4,1 the unique ordinal n and the unique function @, respectively,
which satisfy conditions 3.9 (i) and 3.9 (ii).

Notice that if 4 =, then ay7=oa; and 747 =77, as defined
in § 1.

‘We are principally interested in subsets A C *a and ideals I in B(4)
which satisfy certain very stringent conditions, which we shall now
congider.

DerFINITION 3.11. By the formula P(a, A, I) we shall express the fact
that the following conditions (i)-(vil) are satisfied:

(i) a> w;
(i) 0 5= 4 Cou;
(iif) I is a prime ideal in B(4);
(iv) I is a-complete;
(v) I is non-principal;
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(¥i) jor each &< u, the constant function a x{} belongs to A ;

(vil) the identity function {{&, &): & < a} belongs o A.

The next two lemmas, 3.12 and 3.13, have exactly the same proofs
as Lemmas 1.5 and 1.6, except that the symbol 77 is everywhere rve-

placed by 7,7, and the references to 1.4 are replaced by references
to 3.10.

Leava 3.12. Asswme Pla, 4, 1) and suppose that &< a and fe A.
Then
(i) f €°E dmplies v44(f) < &;
(ii) f (&} implies v41(f) =&;
(iif) va1(f) <& iff FHEET;
(iv) vadlf) = & 6ff [7({E) €.
Lemna 3.13. Assume Pla, A,I). Then o < ayy and

a LT f{{¢€, & E<al).

Lemas 3.14. M(AC) = AC © M(SN).
Proof. Clearly,
M(AC) D AC L M(SN).

Let a belong to M(AC) but not to AC. We shall show that « belongs
to M(SN). There exists a subset y of AC such that a = | Jy and ¥ {a}
is closed. For each cardinal 8, let p* be the least strong limit cardinal
which is not less than 8; thus p’ = § in case § is a strong limit eardinal,
and g’ is the union of 8, 2%, 2%, ete. otherwise. Furthermore, let

¥ =1{p:Bey}.
Clearly, f € AC implies f’ ¢ SN. Then, since ae AC,
a=Jy and gy CSN.

Finally, making use of the fact that the wnion of strong Limit cardi-
nals is a strong limit cardinal, we show that ¥ {a} is closed.
TEEOREM 3.15. M(4C) C C,.

Proof. By 3.14 and 3.7, it iy sufficient to prove that

M(SN)C C,.
In view of 3.7 we have
SNCC,.
Accordingly, suppose
ae M(SN)~SN .

In order to show that aeC,, we shall construct a particular subset A
of “a of power a for which we shall be able to establish that B(4) cannot

©

From accessible to inaecessible cardinals 281

possibly have any non-principal «-complete prime ideals. From this fact
it will clearly follow that the set S.(a) is an «-complete proper ideal
in B(4) which cannot be extended to an «-complete prime ideal; hence
we will have shown that « e C,.
To begin with, we shall introduce some auxiliary functions.
Consider first a set y such that ¥y C SN, a =y, and y v {a} is
closed; such a set y exists in view of 1.29. For each & < a, let

p(&) =U{yn(E+1)) v Ny
Then we have
ey,

and indeed ¢ (&) is always the greatest member of y which is <&u M y. Next,
let us choose, for each £ < a, a funetion u: on ¢f(£) into & such that

& = Ule<entn (ws(0) +1) -

Finally, for all &,{ < «, we put
&, L

8&,0) :{ N 05 < of (8) amd £ <)), i £ <£.

Thus, whenever (<& <a, 0(£) is a member of ef(£) such that
L<y0(&,0). o

We now take for 4 the least subset 4’ of *« which satisfies, for all
{<aand feAd’, the following conditions:

(1) ax{l}ed';

(2) {K&, & E<ajed’y

(3) if gi(&) =o(f(8)) for all £ <a, then ged’;

(4) if gy(&) = ef(f(£)) for all £ < q, then goed’;

(5) i, for all £ <a,

well)  whenever ef(f(&) >,
Ga.t(E) = e .
7(&) whenever  ¢f(f(£)) <¢,

then gs;ed’;
(6) if gus(&) = B(f(£),¢) for all £<a, then foged’.

It is clear that |A| = a. Therefore B(A) is an «-complete field of
sets with at most o generators. Moreover, by (1), (2), and 3'.8, every
one-element subset of « belongs to B(A). Since a is regular, it follows
that the set Su(a) is a proper a-complete ideal in B(A). Suppose that
8.(a) can be extended to an a-complete prime ideal I in B(4). We shall
arrive at a contradiction, and thereby show that a e Go.
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Since S(a) C I, I i3 non-principal, and thus, in view
C s view of (1) and
(2), we see that P(a, 4,I) holds. By 3.13 we have a < o, an(g ilence
we may choose a function fe A such that ,
Talf) = a.

Consider the function ¢, defined in (3). We have Ghe%y, gped, and

Ta4,1{g1) < Tax(f).
Moreover, for each {ey and £ < g,

<al®) i <iE oy,
It follows by 3.9 that ¢ < wver . -
T ol y ab { <14,1(g,) whenever £ ey, and thevefore a < 1.4,1(gy).

74,1(61) = Ta1(f
and thus, by 3.9, ' (1)

E<a f(&) =q(8)}eI.
Since g; ey and y C SN, we have
(E<a: f(£) eSN}¢T.
Consider now the “confinality function” g, defined in (4). By (4), goe 4
Moreover, since g,(&) < f(&) whenever & € SN, we have ) A

Tt T41(fs) < .

=1 .
Then by 3.12, f = e

{e<a of(f(&) =B)eI.

It follows from (5) that, whenever ¢ < B,

the funetion defi: in (5
belongs to 4 and satisfies the condition oz dofined I (3)

{€ <oz gau(8) =ypgl)} ¢ 1.

Then, for all { < 8, we h: 5 i
m 01,3 for %Epa.ﬂ, ave 74,1(¢s;z) < a and, by letting ,(¢)

We shall show that
7
(7 a = U<z [val(0) +1)
and hence that ¢f(a) < g and «eSN. 8
- . Since 3
this contradiction will complete our proof. e have assumed « ¢ SN,

< & N
(:E)OI eVer i a, the fﬂncblOn g4, deﬁﬂed n (6) belongs to 4

=74,1(¢s,z2),

Ta,1{guz) <
and for brevity we write b <

Nt =7T4,7{fsz) -

e ©
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It is clear that, whenever { <f(&) < a, we have

¢ < viol9ac(®) s

but

{§<a guil8) =il
so that ) »

& <ar & <pnalng) = gonlé)} el
and thevefore
& <o) -
Consequently,
UES Un<£ Wﬂ(n) )

and hence, since v, € 7a, the equation (7) follows. This completes our proof.
From this point on the development becomes very sketchy, for the
reasons explained in the introduction. Ve hLere wish to reiterate our
advice to the reader: skip the remaining portion of § 3 at first reading,
making only a mental note of the main results. Notice particularly the
last result of this section, Theorvem 3.36, which improves Theorem 1.32
by replacing G, by C,, and thus shows that G, is already very large.
LevMMA 3.16. The following condition is necessary amd sufficient for
aeCy: there is a set A of power « sueh that 3.11 (i), (ii), (vi), end (vii)
hold but P{a, 4, I) fails for all I
3.16 follows easily from Theorem 4.14, which we shall prove in § 4.
DEFINITION 3.17. Let 5 < o and let F be an n-ary function on u,
that is, F « wa. We define the function T* on "(*a) info *a by the condition

F¥(fyy woos J)(8) = F(F1(E), ovr; 1))

jor all fi,...,fye°a ond &< a. We shall say thai the subset A of “a is
P-closed if, for all fi,...,fne A, we have F¥(fy, ..., f;) e 4. Let F be any
set of finilary functions on a, that is, FC 1 J{"a: ne o} 4 subset A of “a
is said to be F-closed if it is F-closed for every F e F. By the minimal
F-closed set we mean the intersection of all sets A which are F-closed, are
included in “a, and contain the identity function on o and all the constant
functions on a into .

The notation introduced in 3.17 could have been used in the proof
of Theorem 3.15. In fact, in the proof of 3.15, we have ¢; = ¢*(f) and
gs = ¢f*(f); moreover, if for all § <a we write

Pe(£) = { wll), i ef(6) >,
¥ g, it ef(e) <¢
and 0,(£) = 6(&,¢), then we have ga; = 9¢(f) and g = bx(p)- I F con-

sists of the set of functions ¢, ¢f (restricted to a), 9 for all £ < 4 and
8, for all £ < a, then F C “a, |F| = a, and 4 is just the minimal F-closed
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set. We did not use the notation of 3.17 in the proof of 3.15 becauge
it would not simplify the statement of the proof very much. Howerver,
317 will be seen to be necessary for the introduction of the notion of
a strongly normal class in 3.23.

Cleatly ®a is F-closed for any set F of finitary functions on «.

Levma 3.18. Suppose that F is a set of findtary functions on ¢ and A
is the minimal F-closed set. Then A has the following properties:
(i) 4 4s F-closed;
(ii) A contains the identity function on « and all the constant fune-
tions on o info a;
(i) e<|4d| < a v |F|.

Lemars 3.19. Assume that Plu, 4, 1) holds, and furthermore that
N< o, Fetag, and 4 is F-closed. Then whenever Fiv s Fuy 91y oes gy A and

Torlfh) =varg), oy Taalfy) = vaslgy),
we have

TA,I(F*(fn >fr1)) = TA,I(F*(.(/M ---)gn)) .

DEFINITION 3.20. Asswme the hypotheses of 3.19. We denote by Fur
the function on Wo4,7) o gz determined by the condition

Farleadlh), o tadlty)) = vad(F* 4y, ..., 1a))
Jor all fy, ..., f,e A,

Notice that, under the hypotheses of 3.19, F, ; properly includes F.
In the proofs of the theorems which follow the fact that many properties
possessed by F can be carried over to Fur plays an important role.
However, the notation ¥ 4.1 will never appear in the statements of those
theorems.

The notation F; could have been used in the proof of 3.15; in fact,
we have § = cf 4 1(a), p() = (Pe)4,1(a), and 5, = (Pr)az{@) for each ¢ < a.
(Cf. the remark following 3.17.) The proof of 3.15 actually depends on
the fact that enough properties of F are carried over to F; to insure
that w, is a function on B into « such that « is the union of the range
of y. and thus that o is confinal with B.

‘DEFINITION 3.21. « is said 1o be F-representable by | if Fis a set
of finitary functions on a and there exist I, A such that P(a, T , 4) holds,
A is F-closed, fed, and v14(f) = a.

Notice that if a is representable by f in the sense of § 1, then « is
F-?epresentable by f for every set F of finitary functions on «. Also,
@ 18 never F-representable, in view of 3.11 (i).
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LeMyA 3.22. Let a e C. Then a necessary and sufficient condition for
« € Cy s that there ewists a set F of finitary functions on o such that |F|<a
and o is not F-representable by any function | e°a.

DEFINITION 3.23. X s said to be a strongly normal class if X CC,
and, for each cardinal o, there is a set F of finitary junetions on « such
that |F| < a and a is not F-representable by any function fe%X A a).

Notice that any strongly normal class is normal in the sense of § 1.

TEEOREM 3.24. If X s a strongly normal class and ¥ C X, then
Y is strongly normal.

THEOREM 3.25. A sufficient condition for X o be strongly normal
is that the union of any non-empty subset of X belongs to GC,.

In particular it follows that any finite subelass of C, is strongly
normal and furthermore, if X C[a, #]1C G,, then X is strongly normal.

THEOREM 3.26. The following three conditions wre equivalent:

(i) G =C;

(ii) G, s strongly normal;

(iii) the class {a eC: [o*, a] C Gy} is strongly normal.

TaEOREM 3.27. Suppose that, for each ordinal u, X, is strongly normal.
Then {B: B e Uncs Xy} 15 strongly normal.

3.27 is the analogue of the first induction prineciple, Theorem 1.19.

COoROLLARY 3.28. Suppose that, for cach p <w, X, is strongly normal.
Then (\Upcy Xu)~v is strongly normal.

CoroLLARY 3.29. (i) If X, Y are strongly normal, then X oY i
strongly normal.

(i) If [0, «] C Gy and, for each u < a, X, is strongly normal, then
Up<e X, 18 strongly normal.

COROLLARY 3.30. If C, 5= C, then there is no maximal strongly normal
class.

DEFINITION 3.31. F is said {o preserve strony normality if F(X) 4
strongly normal whenever X s strongly normal.

THEOREM 3.32. If F preserves strong normality, then F> preserves
strong normality.

THEOREM 3.33. The operation M preserves strong normality.

Theorems 3.32 and 3.33 ave the analogues of the seeond induction
prineiple 1.27 and the third induction principle 1.31, respectively.

COROLLARY 3.34. The operations M, (M"Y ete. preserve strong
normality.

THEOREM 3.35. The class AC is strongly normal.

3.38 ig an improvement of Theorem 1.33.
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THEOREM 3.36.
(1) M(4C) C Gy;

(ii) M™(AC) C Cy;

(iil) M®(M®(4C) C Cy;

(iv) (M*)*(4€) C G,.

Theorem 3.36 should be compared with the analogous vesults 1.34
and 3.5.

Ag in the case of 1.34 and 3.5, the process indicated by 3.36 can be
continued indefinitely. In fact, if X is strongly normal and AC C X,
then M(X) i3 a subelass of C, which is strictly larger than X. We thus
see that the class G, already extends very far into the hyperinaccessible

cardinals, although it is included in C,.

§ 4. Characteristic properties of cardinals in the class Gy
This section performs for the class C, exactly the same task which has
been performed in §2 for the class C;. In fact, we shall state here
& number of conditions, formulated in terms of set theory and related
branches of mathematics, whieh will prove to be necessary and sufficient
for a cardinal a to belong to C,. Actually, we shall discuss a more general
problem involving two cardinals « and g; we shall investigate the con-
ditions under which there is an «-complete field of sets B with at most
# generators in which some «-complete proper ideal I cannot be extended
to an o-complete prime ideal in B. To obtain a convenient notation for
the relevant results, we formulate the following

DEFINITION 4.1. We shall say that « is in the relation R o B, in
symbols aRp, if there exists an a-complete field of sets, with at most f
generators, in which some a-complete proper ideal cannot be extended to an
a-complete prime ideal.

From definitions 3.1 and 4.1 we obtain at onee

COROLLARY 4.2. ueC, iff aRa.

We shall begin with some elementary properties of the relation R.

THEOREM 4.3. There is no 8 such that oRp.

Proof. By 0.2 and 4.1.

TomoreM 4.4. If «Rp and B <y, then aRy.

Proof. By 4.1.

THROREM 4.5. Suppose that o is singular. Then aRB iff «=Rp.
Proof. By 0.4 and 4.1.

LEMMa 4.6. If 28 < o, then aRB does not hold.
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Proof. Suppose that B is an «-complete field of sets which is
a-generated by a set B, of power <f. Let I be any a-complete proper
ideal in B. For each subset C of B, let

wg = (0 v {UB})~U (By~0).

It is easily seen that | J{we: € C B} = {JB,. Moreover it follows from
the a-completeness of B that ¢ e B whenever ¢ C B,. In fact, for each
subset O of B,, ¢ is either the empty set or an atom of B. For some
subset O, of B, we must have xg,¢ I, for otherwise, by the a-comple-
teness of I, we would have U{we: C C B} = |UB, e I, contradicting the
assumption that I is proper. Now let J = {y e B: xg,~y #= 0}. Sine_e
0 ¢ I, we have @, # 0, and hence x¢, is an atom of B. Therefore J is
an a-complete prime ideal which includes I, and it follows that aRp
does not hold.

Luyva 4.7. If a is reqular and f < a < 2P, then aRB.

Proof. We have already established this fact in the proof of 3.7.

The results established so far provide us with a full answer to the
question: for which cardinals « and f does a«Rp hold in case f < af
In fact, the results 4.3-4.7 imply directly

THEOREM 4.8. In case B < a, we have aRp iff either a is regular
and o < 2%, or o is singular and a < 2°.

As an immediate consequence of 4.8, we obtain

COROLLARY 4.9, Assume the generalized continuum hypothesis. Then,
in - case B < a, we have aRp iff a = p*.

COROLLARY 4.10. The following two conditions are equivalent:

(i) a is not a strong limit number;

(i) aRB holds for some f < a.

Proof. If a is regular, the result follows at once from 4.8. Suppose
that o is singular. Then, by 4.8, there éxists f<a sugh that oRf
iff there exists y such that y <a<2'. But if §<a<2® and we sef
y = U ¢f(a), then we have y < a < 2. This completes .the proof.

For a given cardinal g, the smallest cardinal § for which ’I"heore.m 4.8
does not give any answer to the question whether aRp holds is obviously
B = a. Moreover, the whole problem is completely solved for those
cardinals o for which, in the particular case § = ¢, aRf actually lolds,
i.e. which belong to C,; for, as an immediate consequence of Theorem 4.4,
we have

THEOREM 4.11. If «eC, ond a < B, then aRp.

Thus, for example, in view of Theorem 3.36, the problem of Whit‘iltlzer
aR g holds is settled whenever a belongs to any of the classes AC, M(4QC),
M(4C), M(M(AC)), (M™)(AC), ete.
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In the next three theorems we shall consider conditions which are
clogely related to the one formulated in Definition 4.1.

TarorEM 4.12. The following condition is necessary and sufficient
for aRpB:

(i) there evisis an a-cvmplete field of sets, with at most g generators,
whose power is at least f and in which some «-complete proper ideal cannot
be extended to an a-complete prime ideal.

Proof. Condition (i) is obviously sufficient for aRp.

Suppose aRp. Then there exists an «-complete field B of sets which
is a-generated by a set B, of power <{f and which has an a-complete
proper ideal I that cannot be extended to am a-complete prime ideal.
Let X be o set of power p which is disjoint from | JB. Let B’ be the
a-complete field of subsets of X U ({JB) which is a-generated by the
set {{JB} v Byu {{2}: we X} of power f. Let I' = {: yeB, y~nUBel\.

Then I is an a-complete proper ideal in B’. If J' were an @-com-

Dlete prime ideal in B’ which includes I’, then J’'~ B would be an
a-complete prime ideal in B which includes I. Therefore I' ecaunot
be extended to an a-complete prime ideal in B’. This proves the nec-
essity of (i).

THEOREM 4.13. Suppose that either « is regular and o < p, or a i
singular and o < 8. Then the following condition is necessary and sujficient
for aRp:

(i) there exists an a-complete field of sets with B generators in which
some a-complete proper ideal canmot be extended to an a-complete prime
ideal.

Proof. Condition (i) is obviously sufficient.

Suppose that « is regular and « << f. Let ¢ be the a-complete
field of subsets of  which is a-generated by the set {{£}: & < B}. Then we
have

V= {r: 2 C B, and either a] < a or {B~ie| < a}.

Suppose that ¢ is «-generated by X. We shall prove that | X| =8 We
may assume without loss of generality that every element of X has
power <a. If |X|< 8, then ||JX|< §, and thus ¥ could not possibly
generate C. Thus |X|> g, and ¢ is an a-complete field of sets with g
generators. In case aR}p, the field B’ constructed in the proof of 4.12
Is therefore an o-complete field of sets with f# generators, and 4.13 (i)
follows.

Suppose « is singular and « < B. Then ot is regular and o+ < 8. If
aRf, then by 4.5 we have a*Rp. Condition (i) thus holds for «* and B
and, by 0.4, it also holds for « and f. Our proof iy complete.

° ©
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THEOREM 4.14. If 8 = B, then the following three conditions are equit-
alent:

() «Rp;

(ii) there is an a-complete jield of seis B of power g in which
some «-complete proper ideal I cannot be extended to an a-complete prime
ideal;

(ii) there is an a-complele field of subsets of B which includes Su(B),
is of power B, and in which some a-complete proper ideal cannot be extended,
to an a-complete prime ideal.

Proof. The implieation (iii)= (i) is obvious.

The implication (i) = (ii) follows from 4.12 and the fact that, since
§ = p°, any a-complete field of sets which is a-generated by a set of
power § has power f.

Assume (ii), and choose a function jeB(UB) such that, for each
z e B~{0}, f() e .

Let

Y ={f(#): 3 e B~{0}} .

COlearly, ¥ C {UB and | Y| = 8. For each # B, let
O =5~Y, B ={":2eB}, and I =i wel}.

It is then easily seen that B’ is an a-complete field of subsets of ¥ , and
in fact that the mapping 2—’ is an isomorphism on the set algebra B
onto the set algebra B’. Therefore I’ is an a-complete proper ideal in B’
which cannot be extended to an «-complete prime ideal.

We now consider the field B’ of subsets of ¥ which is a-generated
by the set B’ v S,(Y). Since f=p2 and |B'|=|Y]| =48, B is of
power f. Let

I'"={yeB"”: yCx for some zel’}.

Then I" is an «-complete proper ideal in B'. Moreover, I'" cannot be
extended to an «-complete prime ideal in B"’; for, if J” were an a-com-
plete prime ideal in B’ including I’, then the set J' =J”’ ~ B’ would
be an a-complete prime ideal in B including I’. We have shown that (iii)
holds when § (in its first two occurrences) is replaced by a set ¥ of power B,
and it follows that (iii) itself holds.

Conditions 4.14 (ii) and 4.14 (iii) are each sufficient for aRp even
it B+ B8 If a << f and f is inaccessible, then we have § = %, s0 4.14 (i),
(i), and (i) are all equivalent. Moreover, if we assume the generalized
continuum hypothesis, then g = 2 holds, and thus 4.14 (i), (ii), and (ii)
are equivalent, whenever a < 8 and g is regular.

The next phase of our discussion involves Boolean algebras.

Fundamenta Mathematicae, T. LIIT 20
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DerINITION 4.18. We shall denote by Wy the class of all wealkly
a-representable Boolean algebras with at most B generators.

THEOREM 4.16. The following siz conditions are equivalent:
(i) aRp;
(i) there exists B e Wop which has power >1 and has no a-complete
prime ideals;
(ili) there ewists B eWap which is not o-generated by ils atoms and
in which every o-complete prime ideal is principal;

(iv) there emists B e W,z in which some a-complete proper ideal
cannot be ewtended to an a-complete prime ideal;

(v) there exisis B eWops in which some a-complete proper ideal is
not the intersection of all a-complete prime ideals including it;

(vi) there exists B e W, which is not a-representable.

Proof. We shall successively establish the implications (i)=-(ii),
(if) = (iii), (iil) = (iv), (iv)=(¥), (v)=(vi), and (vi)=(i).

Assume (i); then there is a set algebra B which is a-complete and
a-generated by a set B, of power <p and which has an «-complete proper
ideal I that is not included in any «-complete prime ideal. The quotient
algebra B[I is weakly a-representable. Moreover, B/l is «-generated by
the set {#/I: @ eB,} of power <, where x/I = {yeB: (x—y)+(y—a) eI}
Since I is a proper ideal in. B, B/I has power >1. If J were an
a-complete prime ideal in B/I, then {x ¢ B: /I e¢J} would be an «-com-
plete prime ideal in B which includes I. Therefore B/I does not have
any a-complete prime ideals. Hence (ii) holds.

Assuming (ii), we see at once that B has no atoms. Since |B| > 1,
B is not a-generated by its atoms. Hence (iii) holds.

Now assume (iii). Let I be the a-complete ideal which is a-generated
by the atoms of B. Then I is proper, and any prime ideal which includes
I is non-principal. Hence I is not included in any «-complete prime ideal,
and thus I is equal to the intersection of all a-complete prime ideals which
include I. This verifies (iv).

It is obvious that (iv) implies (v).

Now assume (v), let B, be a set of power < which a-generates B,
and let I be an «-complete proper ideal in B which is not equal to the
intersection I’ of all a-complete prime ideals including it. (We assume
I' = B in case no a-complete ideal includes I.) Clearly IC I'. By 0.7,
the quotient algebra B/I is weakly o-representable. Moreover, B/I is
a-generated by the set {n/I: x e By} of power <8, so B/I ¢ W,s. Choose
an element x, e I'~1I, and let

J={ylI: yeB and y <%} ;
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that is, J is the principal ideal in B/I whose sum is %,/I. If J could be
extended to an «-complete prime ideal K in B/I, then the set

{xeB: /I ¢ K}

would be an a-complete prime ideal in B including I o {&}. But this
would contradict our hypothesis that every a-complete prime ideal in 8
which ineludes I also contains #,. Therefore J cannot be extended to
an «-complete prime ideal in B/I. J is clearly a proper ideal because
@y ¢ I, and hence

ST = a1 £ 3(B]T).

By 0.5, B/I is not u-representable. This verifies (vi).

Assuming (vi), we consider a set By of power < 8 which «-generates 8.
Since B e Wup, B is isomorphic to €'/I’ for some a- complete set algebra
¢’ and some «-complete ideal I' in €. By 0.5, there is a proper principal
ideal J in B which is not included in any «-complete prime ideal. Let f
be an isomorphism on €'/I' onte B. Choose a function g € 0" such that,
for each element y € By, f(g(y))/I' = y; the range of g is clearly of power
<pB. Let € be the «-complete subalgebra of ¢ which is «-generated by
the range of ¢g. Then

€I = {wfI's xeC}.

The set

K ={x: xeC and f(x/I')ed}
is a proper a-complete ideal in €, and I' ~ ¢ C K. If L were an «- complete
prime ideal in € which included K, then the set

{f(z/I'): xeL}

would be an a-complete prime ideal in B which included J, and this is
impossible. Therefore K cannot be extended to an a-complete prime
ideal in @, and (i) follows.

DEFINITION 4.17. We shall denote by D,z the class of all «-distributive
Boolean algebras with at most f generators.

THEOREM 4.18. The following three conditions are equivalent:

(i) aRf;

(ii) there ewists B eD,y in which some a-complete proper ideal
cannot be extended to un «-complete prime ideal;

(i) there ewists B e Doz in which some a-complete proper ideal is
not the intersection of all a-complete prime ideals including it.

Proof. It is obvious, by 4.1 and 0.6, that (i) implies (ii), and we
see also at once that (ii) implies (iii).

Assume that (iii) holds. Tf « is rvegular, then D.s C W.s; by 0.8,
and therefore 4.16 (v) holds; hence, by 4.16, we have «R§f, i.e., (i) holds.

20*
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If a is singular and « < §, then a e G, by 3.7, and thus by 4.11 we have
aRB. If o is singular and g < a <2’, then aRf follows by 4.8.

It remains to consider the case in which « ¢ SV and 2° < «. In thig
case B iy fr-distributive, and it follows by a familiar argument that B
is an atomistic Boolean algebra with at most 2° atoms (cf. [4], proof of
Theorem 4.5, or [36], p. 82). Let I be a proper a-complete ideal in B
and let 2 e B~ I. By 0.4, I is (2°)+-complete, and hence there is an atom
a< o which does not belong to I. The principal ideal J of B generated by
@ is then an a- complete prime ideal such that I CJ and # ¢ J. But we have
thus eontradicted (iii), and with this contradiction our proof is complete.

By comparing Theorems 4.16 and 4.18 we see that 4.16 remains
valid if W, is replaced by Das in conditions (iv) and (v). The problem
naturally arises whether 4.16 in its entirety remains valid when W is
replaced everywhere by D,s. Let us denote by (ii*)-(vi*) the statements
which are obtained form 4.16 (il)-(vi), respectively, by replacing W, by
D.g. In case a is inaccessible, we have W.; = D,5 by 0.10, and hence
all the conditions (ii*)-(vi*) are equivalent to aRp. We shall show later
that, as a consequence of Theorem 4.31, (iii*) holds whenever « is 3 regular
accessible cardinal and a < f. On the other hand, it can be seen from the
proof of Theorem 4.5 in [4] that, if « is a singular strong limit cardinal
and o = B, then (ii*) and (vi*) fail, even though aRp holds. Aside from
the special cases we have just mentioned, the problem of which Dairs
a, B of cardinals satisfy the conditions (ii*), (iii*), and (vi*) is, as far as
we know, still open.

DerFINITION 4.19. Let B = (B, +, -, ~> be a Boolean algebra and I
@ principal ideal in B. By the Boolean algebra induced in B by I, denoted
by Bz, we mean the algebra (I, +', -, ~"> such that, for all z, y € I, we have

o'y =n+y, w'y=xvy, and F=z1.

THEEOREM 4.20. The following four conditions are equivalent:

(i) aRp;

(ii) there ewisis B eW.; which has a principal ideal I such that
I >1 and By is not isomorphic to any o-subalgebra of B;

(iil) there ewists B eW,, which has a proper principal ideal J such
that BJJ is not isomorphic to any a-subalgebra of B;

(iv) there ewists B ¢ W, which has o direct factor of power >1 that
is not isomorphic to any a-subalgebra of B.

Proof. The equivalence of (i), (iif), and (iv) follows from two well
known facts about Boolean algebras: if T and J are principal ideals in B

such that Y'J = 3 I, then B/J is isomorphic to By; € is a direct factor
of B iff there is a principal ideal I in B such that By is isomorphic to €.
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We wish to show that (i) is equivalent to (ii). In view of 4.16, it suffices
to prove that 4.16 (ii) implies 4.20 (iv), and that 4.20 (iii) implies 4.16 (vi)
Assume 4.16 (ii), and let © be the direct product

€ =B S({0)).

It is easily seen that €eW,s. By 4.16 (ii) we have |Bj>1. Moreover,
there is no isomorphism on the direct factor B of G onto an a-subalgebra
of @, for, if f were such an isomorphism, then the set

7B > {0})

would be an a-complete prime ideal in B, contradicting 4.16 (ii). This
verifies 4.20 (iv).

Now let us assume 4.20 (iii). We shall show that B is not a-repre-
seutable. Indeed, suppose that B were a-representable. Then, by 0.5,
J could be extended to an a-complete prime ideal K in 8. But then we
could define an isomorphism g on B/J onto an «-subalgebra of B by
putting, for each xe B,

g(@)T) — - d if xek,
2+3J i xe K.

This contradiction completes our proof.

We shall now generalize some portions of Theorem 4.16 by considering
J-saturated ideals in place of prime ideals.

Lenona 4.21. Suppose that 6 < w, B is an a-complete Boolean algebra,
and I ds an u-complete and §-saturated proper ideal in B. Then there is
an a-complete prime ideal J in B which includes I; if, moreover, I is non-
principal, then J can also be assumed to be non-principal.

Proof. Since I is proper, there must be an element x, e B~I with
the property that, if y e B and y <x,, then either y eI or zy—y el
otherwise we would have a countably infinite disjointed subset of B~I.
Set J ={y: yeB and @,-y I}. Obviously ICJ and w,¢J. If 2 eB
and 2 <L yed, then oy 2 < ay-yel, 50 xed. I ye Bod, then zy-y ¢ I,
80 wy—yel and thus Fed. Finally, if ¥ CJ and |¥|<aq, we put
X = {®-y: y« ¥} and find that X CT and |X| < a. By a-completeness
and 0.1, Y X =g,-}Y, and since %X I we have DY eJ. Therefore’
J is an a-complete prime ideal in B.

If 7 is non-principal, we can first extend I to a proper a-complete
ideal I' containing all atoms of B (cf. the remarks following 0.2), and
then embed I' in an «- complete prime ideal J by the method indicated
above. Since the prime ideal J thus obtained contains all atoms, it cannot
be principal.
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TEEOREM 4.22. Suppose that 2 < 0 < o. Then Theorems 4.16 and 4.18
remain valid if the phrase “a-complete prime ideal(s)” is replaced in
them everywhere by “a-complele and §-saturated proper ideal(s)”.

Proof. This is an easy consequence of 4.16, 4.18, and 4.21, in view
of the fact that for 6 > 2 every prime ideal is a d-saturated proper ideal.

Wotice that Theorems 4.16 and 4.18 are special cases of Theorem 4.22
obtained by letting 6 =2.

LiEvma 4.23. Suppose that 28 <a, B is an a-dishibutive Boolean
algebra, and I is an a-complete and d-saturated proper ideal in B. Then
there is an a-complete prime ideal J in B which includes I; if, moreover,
T is non-principal, then J can also be assumed to be non-principal.

Proof. We shall show that there is an element x, e B~I with the
property that, if y e B and y < @, then either y e I or @,—y e I. Suppose
there is no such element z,. Then by the axiom of choice we can correlate
with each element # e B an element F(z) ¢ B such that F(z) < and,
it @¢ I, then F(z), 2—F(x)¢ I. Assuming ¢ < <6 and ¢ %2, let ¢¥
denote the restriction of ¢ to g, i.e., the function ¢ ~ (¢ % 2). By transfinite
recursion on ordinals & < 6 we correlate with each sequence ¢ e ‘9 a certain
set x, by stipulating as follows:

=28 for @e2

(2 has only one member, the empty sequence);

it @e® 2 then m, = F(z®) or z, =rm—F(2), according as
g =0 or g =1;

if &£ is a limit ordinal then z, = | [rcempe.

It follows by induction on & that if ¢<&< 6 and ¢e2, then
&, < Typ € B. We wish to show that for each ordinal £ <{ J the following
formula holds:

(1) 2B = stfﬂ‘x‘w .

It is clear that (1) holds when & = 0.
Sinee ™2 — {(p U {(E, 00} pe 52} v {(p u {<E, 10 ge 52}, we have

Dectaity = Dlpeta(Tpoige,0n + Tpoice 1) = Dpe@ia by .

Thus it (1) holds for & it also holds for &-1. Finally suppose that
0< & <4, &is a limit ordinal, and (1) holds for every ordinal [ < &.

Then
ZB = []:<52¢e¢133q .
By the o-distributivity of 8 and the fact that 22 < a, we have

(2) 2B = v lrce 2y, where K = P.:%2.
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Among the summands of (2) appear all products of the form [ics 20
where (;0552; these terms arise when o; = ¢@ for each ¢ < & We shall
show, however, that all other summands of (2) ave equal to zero, and
therefore may be omitted from the sum. To this end, suppose that
n<i{<é gel, g =0y, v =0y, and ¢ =y Let ¢ be the smallest
ordinal for which o, # @,; accordingly w@ = ¢?. Furthermore 7. =0
and y, =1, or wice versa. In the first case, since p+1 < 9 < ¢,

&y By < gler - Tyern) = (g0 F(2y00)) - (20 —F (2,0)) = [] B,

and the second case is similar. Therefore

[,[’;<$$a§ =0.

The formula (2) thus reduces to
_: B = 29552n§<§$4(5),

and hence & satisfies (1). Consequently (1) holds for every & < 6.
Now put
X =TI~z gellecs}.

Then |X| <28 <« and it follows that ) X ¢ I. For each ¢ e’2 there
exists &< 8 such that z,e e I, for otherwise

{#pe) — Xern: & < 0}

would be a disjointed subset of B~1I of power §, and I is 6-saturated.
Therefore for each e %9 there is an element y ¢ X such that T, < y. It
follows that

EB=E¢552%=2X:

and hence ) B e I. But this is impossible because I is a proper-ideal.
We therefore conclude that there is an element #, ¢ B~I with the
desired property that, if y ¢ B and ¥y < 2, then either y eI or
#—y e I. To complete the proof, we now argue exactly as in the proof of
Lemma 4.21.

It may be noticed that, in case § < w, 4.21 is stronger than 4.23,
because in 4.21 B is only assumed to be a-complete, while in 4.23, B
is assumed to he a-distributive.

Lemma 4.23 (as well as 4.21) is essentially known from the literature.
With some restrictions concerning either the cardinals or the Boolean
algebras involved, the result was stated and established first in [43] as
Theorem 4.12 and later in [38] as Theorem 3.1. However, just because
of those restrictions, it seemed to us desirable to outline here a proof
of the lemma in its whole generality.
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THEOREM 4.24. Suppose that 6 =2 and 2% < a. Then the following
condition is necessary and sufficient for aRp:

(i) there emists an a-complete field of sefs, with at most § gemerators,
which has an a-complete proper ideal that is not included in any a- complete
and 0-saturated proper ideal.

Proof. This is an easy consequence of 0.6, 423, and 4.1.

THEOREM 4.25. Suppose that 8 >2 and 2% < «. Then Theorem 4.18
remains valid if the phrase ‘‘a-complete prime ideal(s)” is replaced in
it everywhere by the phrase “a-complete and 8-saturated proper ideal(s)”.

Proof. By 4.18 and 4.23.

The next two theorems, 4.27 and 4.29, are proved in [28] and will
be stated below without proof. They essentially provide characterizations
of the relation R. i

Although the first of these results is formulated in topological
terms and the second in terms of abstract set theory, the two results
are closely related to each other.

DEFINITION 4.26. A {fopological space T is said to be a-complete
if the intersection of any set of fewer than a open sets in T is itself open
in T. T is said to be a-compact if every open covering of T includes an
open covering of power <a. By the a-product space of the sequence
Ty, <& of topological spaces we mean the least a-complete topology T
on the cartesian product set such that, for all < &, the projection function
on T onto T, is conlinuous.

THEOREM 4.27. The following condition is necessary and sufficient for
uRp, unless ¢ e« SN and a = 9°:

(1) the a-product space of a B-termed sequence of two-point discrete
topological spaces is not a-compact.

Notice that, if the generalized continuum hypothesis holds, then
is never singular, so that condition 4.27 (i) is always equivalent to
aRp. In case « = o the notions of a-produet and «-compactness coincide
with the ordinary notions of product and compactness, and it is well
known that 4.27 (i) fails.

2H

DErINITON 4.28. A binary relation R is said 1o be separable over
a set ¢ if RC 8(c) x 8(c) and there exists a set x C ¢ such that

B~ (8(2) x 8(e~m) =0.

Two sets of sets A and B are said to be separable over a set ¢ if 4,BC8(e)
and there exists o set x C ¢ such. that

A4 ~8@®) =0=Bn8(e~i).
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THEOREM 4.29. FHach of the following two conditions is equiralent io
the condition 4.27 (i) and moreover, unless o« ¢ SN and o = 2-’3, it is alse
equivalent to aRp:

(i) there is a relation B C 8u(f) < 8op) such that every relation r e So(R)
is separable over B, but B is nol separable over f;

(ii) there are two sets A, B C Su(f) such that any two sets a e Sy(4d)
and b € So{B) are separable over B, but A and B are not separable over p.

The negations of the conditions 4.29 (i) and 4.29 (ii) are called
respectively the first and the second separation principle. The two con-
ditions, and especially 4.29 (i), are distinguished by their simple for-
mulations involving only elementary notions of general set theory.

From each of the theorems 4.12, 4.13, 4.14, 4.16, 4.18, 1.20, 4.22,
4.24, 4.25, 4.27, and 4.29 we obtain necessary and sufficient conditions
for a € G, by everywhere replacing f by «. We shall state below some
further necessary and sufficient conditions for « e G, which have not
yet been generalized to conditions for aRp.

DEFINITION 4.30. A ramification system is an ordered pair (X, <)
such that the set X is partially ordered by < and, for each x e X, the set
Pa)={y:yeX, y<a and y = x} is well ordered by <; the type of
the well ordering of P(x) is called the order of x, and the least ordinal greater
than the orders of all elements of X is called the order of the ramification
system.

TarEOREM 4.31. The following four conditions are equivalent:

(i) eeCy;

(ii) either a e AC or there is a ramification system of order « such
that, for every & < a, the set of elements of order & has power <a, and every
well-ordered subset has power <<a;

(iii) there is an o-complete field B of subsets of a which includes Su(a),
has at most a generators, and in which every a-complete prime ideal s
principal; .

(iv) there is an a-complete field of sets with at most « generators, whose
power is at least a, and in which every a-complete prime ideal is principal.

Proof. For the proof that (i) implies (ii), we refer to [4], Theorem 4.3.
The implication (ii) = (i) was first established in [28]. However, we shall
present here a different argument. We shall first outline a proof that
(i) implies (iii) by a method which is in part a modification of the proof
of a weaker result in [4], Theorem 4.2; we shall complete the argument
by showing that (iii) implies (iv), and (iv) implies (i)

Suppose that (ii) holds. Assume first that « is singular. Then the
field §(a) is a-generated by the set S.(«) of power o, and by 1.2 every
a-complete prime ideal in §(a) is principal. Hence (iii) holds.
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If a is a regular accessible cardinal, then there exists f < « such
that « < 2% For all £,y < f let

Y&, n) = {p: p’f and (&) =9} .

We choose a subset 2 C %8 such that |2 = a, and for all £, 7 < 2 we lot

2(€,m) =2y, ).

Let B be the «-complete field of subsets of z which i a-generated
by the set

(&, n): &9 <p}
of power . Clearly we have
Su(#) C B.

Moreover, B is a p+-complete field of sets such that conditions 3.6 (1)
and 3.6 (ii) are satisfied when y = f. Therefore, by 3.6, every +-complete
prime ideal, and hence also every a-complete prime ideal, in B is prineipal.
We have shown that (iii) holds whenever « e AC.

Now assume that « is inaccessible. Then there is a ramification sysfem
{a, <) such that for every & < « the set of elements of « of order & has
power <la, and every subset of a well ordered by < has power <<a. Let
B be the a-complete field of subsets of « which is «-generated by
the set

So(a) v {F(§): £ <a}, where F(&) ={<a: £<C and E=5).
We may then argue exactly as in the proof of Theorem 4.2 of [4], but
with B in place of 8(a), to show that any a-complete prime ideal in B
is prineipal, and thus verify (iii).

It is obvious that (iii) implies (iv).

It remains to prove that (iv) implies (i), and this is very easy. Suppose
that B is an o- complete field of sets which is «-generated by a set of power
« and in which every «-complete prime ideal is principal. If « is accessible,
then aeC, by Theorem 3.7. Assume that « is inaccessible. Then B
cannot be the union of fewer than « atoms of B, for otherwise B would
have power < a. Let I be the set of all elements of B which are unions
of fewer than « atoms of B. Then I is a proper «-complete ideal in B.
Any prime ideal which includes I i non-principal, for it must contain
each atom of B. Therefore I is not included in any o-complete prime
ideal. Thus a ¢ C, and (i) holds. The proof is complete.

As indicated in the proof above, the implications 4.31 (i) = 4.31 (ii)
and 4.31 (ii) = 4.31 (i) were established in [4] and [28], respectively. The
fact that 4.31 (iii) and 431 (iv) are necessary and sufficient conditions
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for a € C, was first arrived at through metamathematical considerations,
and independently of 4.31 (ii).

In [4] a cardinal is said to have the property Q if it satisfies the
condition 4.31 (ii) with the phrase ‘‘either « iz accessible or” deleted.
The property Q is discussed there for accessible as well as for inaccessible
cardinals; we refer to [4], pp. 76-77, for an account of known results
(of Specker and others) as well as open problems concerning the question
of which accessible cardinals have the property Q.

In the discussion following Theorem 4.18 it was mentioned that,
if ¢ is a regular accessible cardinal and « < f, then condition 4.16 (iii*)
holds. We can now give a proof of that fact. It is obviously sufficient
to establish 4.16 (iii*) in case « = f. Since a € AC, we have a e G, by 3.7.
Hence 4.31 (iil) holds. Since B is a-representable and has at most a
generators, we conclude by 0.6 that B e Dy.. The set 8y(a) is a non-prin-
cipal a-complete ideal in B because a is regular. Thus Si(a) cannot be
prime in B, and consequently B cannot be a-generated by its atoms.
Therefore 4.16 (iii*) follows from 4.31 (iii).

In connection with 4.31 (iii) we mention another relation between
two cardinals whose formulation is similar to that of aRp.

We shall say that «R’S holds if there is an «-complete field of sets,
with at most § generators, whose power is at least f and in which every
a-complete prime ideal is principal.

Tt follows from 4.31 that aRa is equivalent to aR’u. In case ¢ > f
we always have aR’p. On the other hand, if « < f, then it is easily seen
that aR’f implies aRB. Theorem 4.4 states that aRp and f <y imply
aRy; the relation R’, however, exhibits to a certain extent the opposite
behavior, and in fact one can show without difficulty that «R’f and
8> 2" imply «R’y. It follows from Theorem 2.1 that, for any cardinals «
and y, we have aR'% iff [a,y]C C;.

THEOREM 4.32. If a = af, then the following condition is necessary
and sufficient for a e Cy:

(i) for some a-termed sequence of discrete topological spaces, each with
< o points, there ewists a set of a points in the product space which has no
accumulation point.

Proof. Assume « e Co; then, by +.31, condition 4.31 (ili) holds for
some feld B. Since « = af, B has power «. Consider the set

A ={g: g e Usza"s and, for all 5 < g ¢7({n}) e B}.

Using the equation « = af, it is easily seen that |4| = a, and hence We
may choose an a-termed sequence f whose range is 4. For each {<aq
let T be the discrete topological space whose set of points is the range
of the funetion f,; thus each of the spaces T has fewer than « points.
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Let T be the product space of the sequence 77, ¢ < «, and for every
i <« let t, be the point of 7' defined by

L) =fln) forall ¢<a.

We may now argue exactly in the proof of 2.30 (except that we replace &
and f everywhere by a, and replace §(8) by B), to show that the set

U={t: n<a)

of « points of 7 has no accumulation point in 7.

For the converse, suppose that «¢ C,, let T be the product Space
of an arbitrary «-termed sequence Tey <a, of discrete topological
spaces, each with <« points, and let U be any set of « points of 7. We
wish to show that U has an accumulation point in 7.

For each { <« and each point i in T, let

@, d) ={telU: (0) =1).
Let B be the a-complete field of subsets of U which is a-generated by

the set
{w(g,i): { < a, 1Ty}

of power <a. Since |U] =a and « is regular (because « = «f, or alter-
natively because a¢ C,), the set I = B ~ 8.(U) is a proper a-complete
ideal in B. Hence, by the hypothesis a € Gy, I can be extended to an
a-complete prime ideal J in B. For each ¢ < « we have

ljfe:(’; (L, d) =T ’
and, because each T, has fewer than « points, we may choose for each
{ <« a point u(f) of T; such that

z(Z, u(l)) e B~1I.

It follows that the point % of T determined by the points w(), ¢ < «,
has the property that, for every y € Sy{a).

Dleew (5, w(2) e B~T.

Since each member of B~T is an infinite subset of U, we conclude that
% is an accumulation point of U, and our proof is complete.

The hypothesis « = % of the foregoing theorem holds whenever
«¢ AC, and under the generalized continuum hypothesis it holds whenever

a¢ SN. Both the formulation and the proof of 4.32 exhibit a close sim-
ilarity to 2.30.
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DEFINITION 4.33. By « graph we mean any sei of unordered pairs
{w, y} with & %= y. By a complete graph on a set X we mean the set of all
two-element subsets of X.

THEOREM 4.34. The following three conditions are equivalent:

(i) aeCy;

(i) there is a velation =< which simply orders o én such a way that
every subset of o which is well ordered by < or by ihe converse relation &
has power <u;

(iii) the complete graplh G on a can be divided into two disjoint graphs
whose union is G and neither of which includes the complete graph on any
set of power a. :

In the paper [4] the property of a cardinal which consists in satis-
fying (ii), or (iil), is denoted by P,, or P,, respectively. In that paper
it is shown that every accessible cardinal satisfies (ii) (Theorem 1.1),
that (ii) implies (ili) (Theorem 1.2), and that (iii) implies 4.31 (ii) (Theo-
rem £.1). Combining this with Theorem 4.31, or with the results of [28],
the implication (iii) =(i) follows. The third implication, (i)=(ii), was
recently announced for the case « ¢ 4C in [10], and the whole Theorem 1.34
was thus established.

In the next theorem (which is the last theorem in this section) we
shall concern ourselves with the hypothesis C = C,. We wish to do for
this hypothesis what has heen done in Theorems 2.50-2.52 for C = C,,
namely to sum up its main implications in general set theory and related
domains.

THROREM 4.35. The hypothesis C = C, implies (and is implied by)
each of the following statemenis:

(i) For every « > o there is an a-complete field of subsets of « which
includes S,(w), is a-generated by o set of power a, and in which every
a-complete prime ideal (more generally, every o-complete and &-saturated
ideal with 25 < a) is principal.

() If o <a<p, then there is an a-complete field of sets which
is a-generated by o set of power S and in which some a-complete proper
ideal cannot be extended to any a-complete prime ideal (more generally,
to any a-complete and 5-saturated proper ideal with 28 < a).

(iii) For every a > o there is a weakly «-representable Boolean algebra,
with at least two elements and at most a generators, which has no a-complete
prime ideals (more generally, no a-complete and 6-saturated proper ideals
with 0 < w) and which therefore is not strongly «-representable.

(iv) For every a > o there is a weakly a-representable Boolean algebra
B, with at most a generators, which has a proper principal ideal I such that
BIT 4s not isomorphic to any o-subalgebra of B.
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(v) Bvery non-denumerable set o can be simply ordered by some
relation 3 in such a way that every subset of a which is well ordered by <
or by the converse relation & is of power smaller than a.

(vi) The complete graph @ on any non-denumerable set a can be
divided into two disjoint graphs whose union is G and neither of which
includes the complete graph on any set of the same power as a.

(vii) For every inaccessible a > o there is a ramification system of
order o such that, for every & < a, the set of elements of order & has power
<a and every well-ordered subset has power < ao.

(vill) If o < a <2, then there are sels A, BC 8p) such that any
two sets « e 8u(A) and b e 8u(B) are separable over B, but A and B are not
separable over f.

(ix) If o < a < 9% then the a -product space of a f-iermed sequence
of discrete topologwal spaces, each with two points, is not a-compact.

(x) If o <a =al, then there is an a-termed sequence of discrete
topological spaces, each with less than o points, such that mot every set
of a points in the product space of this sequence has an accumulation
point.

This theorem is esseutially a simple corollary from other results
of this section. In deriving 4.35 (viii), (ix) we make use, of course, of
4.27 and 4.29; however, in order to include the case « =27« SN, we
have to apply in addition a result from [28].

From 4.14 (iii) we see that the conclusion of 4.35 (ii) can be
strenghened when restricted to those cardinals B for which g = .

Assuming the generalized continuum hypothesis, various portions
of Theorem 4.35 can be improved and simplified. Thus we can replace
22 < by 6 < ea in (i), (ii). Moreover, applying certain results from the
literature (cf. [4], p pA 76—77), we can extend (vii) from inaccessible cardi-
nals o > o to all cardinals a > » which arve not of the form a = p+ where
8 is singular. Finally, (x) extends to all regular cardinals « > w.

It follows from 1.2 (i) and 3.3 that the hypothesis C = C, implies
C = C, (while the problem is open whether the implication in the opposite
direction also holds). Hence C = C, implies all the statements equivalent
to € = Gy, thus in particular the statements 2.50 (i)-(xii) and also, under
additional assumptions, 2.51 (i)-(iii) and 2.52 (i), (ii). As further con-
sequences of both C = C; and € = C, we may mention the statements
.12 (i)-(v) which will be formulated in the following section.

§ 5. The class C.. In this section we shall study a class of car-
dinals which arises naturally in connection with the relation R, and
which is at least as large as, and may prove to be even larger than,
the class C;.
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DEFINITION 5.1. We shall denote by C, the class of all cardinals o such
ithat aRp for some B (i.e. such that there ewists an a-complete field of sets
in which some a-complete proper ideal cannot be extended to an - com-
plete prime ideal).

TrEoREM 5.2. G, C C,.

Proof. By 4.2, 5.1.

TaEoREM 5.3. G, C C.

Proof. By 4.3.

In particular, it follows from 5.3 that o ¢ C,.

LeMMA 5.4, If aeCy, then aR2"

Proof. Suppose that aeC;. If a is singular, then aeC, by 3.7,
s0 «Ra by 4.2, and aR2® by 4.4. Suppose that « is regular. Then the
set I = 8,(«) is an «-complete proper ideal in S(a). Since any prime
ideal which includes I is non-principal and a e C;, I is not included in
any a-complete prime ideal in §(e¢). Moreover, S(a) is an a-complete
field of sets with at most 2° generators. Hence aR2"%

THEOREM 5.5. C, C G,.

Proof. By 5.1, 5.4.

Theorem 5.5 above is also proved in [4] as Theorem 3.2.

THEOREM 5.6. 4 necessary and sufficient condition for aeC, is:

(i) there 48 a complete field of sets in which some a-complete proper
ideal cannot be extended to an u-complete prime ideal.

Proof. It is obvious that (i) implies aeC,.

Assuming a € G,, let B be an a-complete field of subsets of some
cardinal # such that some a-complete proper ideal I in B cannot be
extended to an a-complete prime ideal. Let

= {w e S(B): for some yelI, 2 C y}.
Then J is an a-complete proper ideal in the complete atomistic field
of sets S(B). If J could be extended to an «-complete prime ideal J°
in 8(f), then the set J' ~ B would be an a-complete prime ideal in B
which would include I. It follows that no such J' exists, and hence (i)
holds.

The results of §4 yield at once wvarious characteristic properties
of the class C,.

DrriNitioN 5.7. We shall denote by W, the class of all weakly a-re-
presentable Boolean algebras.

THEOREM 5.8. Fach of the conditions 4.16 (ii)-(vi) and 4.20 (i)-(iv)
becomes a mecessary and sufficient condition for a e C, when we replace
“Wu,,!i” by “Wa”-

Proof. By 5.1, £.16,
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DEFINITION 3.9. We shall denote by D, the class of all a-distributive
Boolean algebras.

THEOREM 5.10. HBach of the conditions 4.16 (ii)-(vi) and 4.20 (ii)-(iv)
becomes a necessary and sufficient condition for aeC, if we replace
“Wa,ﬁ” by H‘Da”'

Proof. In case ué¢ AC the result follows from 0.10, which states
that W, =D,, and from 35.8.

Suppose that a e« AC. Then a ¢ C, by 5.2 and 3.7. Let (ii")-(vi’) and
(ii"”)-(iv"’) denote the conditions which result from 4.16 (ii)-(vi) and 4.20
(ii)-(iv), respectively, by replacing “W.,"” by “D,”. We must show that
each of the conditions (ii')-(vi’), (ii”)-(iv"’) holds. Since Dy C D, and
in view of 0.5, we may assume that a is regular.

It follows at once from 4.18 that (iv') and (v') hold.

Let § = (2% By 1.2, we have [«, 8] C C,. Then by 2.1 it follows
that every o-complete prime ideal in 8(B) is principal. The set Ss(B)
is a f-complete proper ideal in S(B). Let B = 8(8)/8p(B); then B e Wp.
By 0.9 we have W3 C Do+. Clearly Do+ C D,; hence B eD,. B has no
«-complete prime ideals, for, if J were an «-complete prime ideal in B,
then {z: @e8(8), ©/Se(f) eJ} would be an a-complete non-principal
prime ideal in 8(8), which is impossible. Since {0} is a principal ideal
in B, it follows by 0.5 that (vi’) holds.

Since |B| > 1, (ii') holds; (iii’) follows from the fact that 8(B) is not
a-generated by its atoms.

The direct product € of B and S({0}) obviously belongs to D,.
Suppose that j is an isomorphism on B onto an a-subalgebra of @.
Then the set {x: ¢ B, f(x) < <8, 0>} is an a-complete prime ideal in B,
which is impossible. Therefore there is no such isomorphism f, and (iv"
holds. The conditions (i) and (iii"’) follow at once from (iv").

TaEOREM 5.11. The following three conditions are equivalent:
(i) aeCy;
(i) there is a sequence of a-compact topological spaces whose a-prod-
uct spage is not a-compact;

(iii) there is a sequence of a-compact Hausdorff spaces whose a-prod-
uct space is not «- compact.

The above theorem is established in [28], Theorem 1.9. It is obvious
that (iif) = (i), and the implication (i) =(iil) is immediate from 4.27.
Note that, in case a = w, we have a¢ Gy, and hence (ii) fails; the result
that (i) fails for a = e is just the classieal theorem of Tychonoff on
topological products (see [20]).

We mention at this point two natural conditions on a cardinal a
which are necessary for a ¢ C, and sufficient for aeC,.
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We shall say that « e Cf if either a ¢ SN or there is an «- complete
proper ideal in the field 8(a) which cannot.be extended to an @-com-
plete prime ideal. (Note the similarity between the condition ueCy
and 5.6 (i).) Moreover, we shall say that ae C* if there is a sequence
of «-compact spaces whose product space is not a-compact,

It is easily seen from the definitions involved that C, CcCfCec,.
It follows from 2.30 that G, C C{*, and from 5.11 that G C G, (9).
We know of no further connections between the classes C,, G, G,
and G,.

In the last theorem of this paper we sum up the main implications
of the hypothesis C = C,.

TarorREM 3.12. The hypothesis C = C, implies (and is implied by)
each of the following statements:

({d) For every a there is a fi such that, for every y = B, some a-com-
plete proper ideal in 8(y) cannot be extended to any a-complete prime ideal
(more generally, to any a«-complete and 8-saturated proper ideal with
28 < a).

(i) For every a> w there is an a-distributive and weakly ao-repre-
sentable Boolean algebra, with at least two elements, which has no a-com-
plete prime ideals (more generally, no «-complete and 3 -saturated proper
ideals with 2% << a) and which therefore is not strongly «-represeniable.

(i) For every u> o there is an a-distributive and weakly u-repre-
sentable Boolean algebra B which has a proper principal ideal I such
that B(I is not isomorphic to any «-subalgebra of B.

(iv) For every a > w there is a p with the following property: jor every
y = f there are two sets 4, B C_ Su(y) such that any two seis o e S2(A) and
b e 8.(B) are separable over y, but A and B are not separable over y.

(v) For every o> o there is a p such that for every y > B the a-prod-
uet space of a y-termed sequence of two-point discrete topological spaces
is not a-compact.

The derivation of this theorem from other vesults of this and the
Preceding section presents no difficulty.

In the main results of §§ 2, 4, and 5 we have established various
necessary and sufficient conditions for a cardinal « to belong to the class
Gy, Gy, or Gy, vespectively. In the special case « = w one can show that
most of these results can in fact be established without the axiom of
choice. Various observations in this direction are known from the liter-
ature. For instance, the results of [24], [39], [44], and [45] yield the

. (®) In [23] the term “Tychonoff number” was used to refer to those infinite
cardinals whick do not belong to G¥*; it is also stated there that €[~ {w}C C** and
GH*C C,, and some further references are given.
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information that, in the special case a == , the following theorems can
be proved without using the axiom of choice: Theorems 5.6, 5.8, and
5.10 (which provide characteristic properties of the class Cp), Theorem 5.5
(ie., weC=>weGC), and Theorem 0.8 (i.e., D, C W,)(*). Moreover,
in [24] and [30] it is established that for « = o the equivalence of 5.11. (iii)
with ae C, can be proved without the axiom of choice. In [49] and [50]
it is stated that certain metamathematical eonditions involving a are
equivalent to the formula « e Cy; as had been announced in [12], the
proof of these equivalences does not require the axiom of choice in case
L= (.

On the basis of the above examples, and also to some degree on
the basis of our intuitions concerning the character of the axiom of choice,
there seems to be good reason to believe that there is a comprehensive
naturally defined class of statements s(«) which can be shown to hold
for all infinite cardinals « if and only if they can be proved without the
axiom of chdice for a = w. We are not able to provide any more precise
information about this class of statements. The following may serve as
an indication of the difficulties involved: as has been shown in [19],
the statement that 5.11 (i) fails for « = o is equivalent to the axiom
of choice, while it is stated in [44] that (in a suitable set theory) the
formula o ¢ C, does not imply the axiom of choice; nevertheless Theo-
rem 5.1 shows that aeC, and 5.11 (ii) are equivalent for all a.

In conclusion we should like to restate the fundamental connections
between the classes Gy, C;, G,, and C, and to formulate the related prob-
lems which remain open. In Theorems 3.3, 5.5, and 5.2, we {have estab-
lished the following inclusions:

G,CC, GCG, GCC.

It is not known whether any of these inclusions can be replaced by an
identity. Furthermore, consider the six identities which may hold be-
tween two of the four classes discussed:

CO=C17 C0=C27 COZC) C1=C2, CI=C, CZZC'

It is known that the first identity implies the third one; this is a con-
sequence of 1.14 and 3.4. From this and the inclusions stated above
we easily conclude that the first three identities are equivalent and each
of them implies the last three identities; moreover, the fifth identity
implies the fourth and the sixth (and is actually equivalent to their con-
junction). We do not know whether any further implications hold be-
tween these six identities.

(1) It follows trivially from the definitions involved that D, is the class of all
Boolean algebras.

° ©
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Incompaciness in languages with infinitely
long expressions

by
W. Hanf (Endicott, N. Y)

1. First order predicate logie has the well-known compactness prop-
erby: If every finite subset of a set I' of sentences has a model, then
the set I' has a model. This property is not, in general, shared by lan-
guages with a greater power of expression. In this paper we consider,
corresponding to any given infinite cardinal e, the logic L, which differs
from first order predicate logic in that disjunctions and conjunctions
of sequences of formulas of type less than « and quantifications over
fewer than o variables are allowed. For many cardinals « we shall show
that L, is incompaet; that is, we shall exhibit a set I" of sentences of I,
which has no model but is such that every subset of I' of power less
than « has a model (%). -

For the most part, the set theoretical part of our discussion can
be carried out on the basis of Zermelo-Fraenkel set theory. Without
some modification, however, some of the set theoretical statements we
make would not have their proper meaning in Z-F. For example, we
will have occasion to speak of the class of all accessible cardinals. This
is not, of course, a set in the sense of Z-F at all. On the other hand,
it would do little good to use the Bernays type of set theory (where
we have sets and arbitrary classes of sets) since we also have oceasion
to consider functions defined on classes, ete. Although it could easily
be avoided, at one point in Section 3, we use “ordinals” to index the
set of all ordinals in the sequence determined by an arbitrary well-order-

(1) Languages with infinitely long expressions were introduced by Tarski in [16].
The author’s results on incompactness of Ly for inaccessible o were first stated in the
abstract [3]. This paper represents an essential portion of the author’s doctoral disser-
tation presented to the Graduate Division of the University of California, Berkeley,
California. Grateful acknowledgement is made to Professor Tarski for his encouragement
and assisstance at many stages of this work. It should be pointed out that the Léwenheim-
Skolem theorems given in [3] are incorrectly formulated. The correct formulations and
references to the earlier work of Carol Karp are given in [5].
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