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Additions to some results of Erdés and Tarski
by
D. Monk (Boulder, Colo.) and D. Scott (Berkeley, Calif.)

Brdos and Tarski in [3], Theorvem 1.3, establish a connection be:tweeu
% representation problem for certain Boolean algebras and a Plolﬂem
about ramification systems (the exn,(f,h’ problem (1re‘pendth O]i @ gl;feil
cardinal number). In this note we thmu a Te§u1t (_Lhecnvem d.l?)\\‘hmxv
yields the converse of the implicat’im} proved in [3]. Aetua]ly{ \w) hl()\\
that the ramification problem ix equivalent to zm.e.ol?apactness ‘pmb exln(
involving some special topological spaces. The deﬁpljo%o‘llloﬁ flhfbe sliif;z
is given in Section 1, where the (*,ompzwm%ess pur(.)ble.m 1;5 rela e fo fa ep e
ideal probleni studied by Keister and Tarski in [4]. Jille 1)'1(;)0 10— -%mm
alence of the representation 1)1‘01)10;1(1 of [3] and the prime ideal proble

o found in [4], Theorem 4.16. .

anIg‘)ng;;?éln”; Ltlg; compactness problem. is reformulm';cd in sm?pler
set-theoretical terms which make no reference to topological spaces.

‘ 3 . Throughout this note
1. a-products of topological spaces i
a B ind y vl\:ill denote infinite cardinal numbers. Cardinals ave conmdejre(i
aJ;s s’pecial kinds of ordinal numbers (initial numbers), apd.e'ach 01‘d1.11a1
coincides with the set of all smallex ordinals. Th}e &-th (ﬁﬁulute gm;ginif
f « then at = The cardinal nu y

ix denoted by w;. If « = wg, then o gty o n
la seb A is dg;lotizd Dy |4} The set of all subsets of a set 4 is denoted
by S(4), and further

SA) = (BeS(A): |B|<aj.

A topological space X iy a-uofm,ple;w if 1‘,}10 intersectlol‘l 0: ::cé%jléllﬁ
of power smaller than « of open sety is again open. ’?V.‘E]l]yng oace X
course c,-completo. Note that if a is » smgul:rr cm-(}{noh ,f 2 -coI:nplete
is a-complete it and only if A is a*'-complete: The nouf)n o fan C;O ogical
space is a natural generalization of the ordinary ?oblonbo ; r}))priately
space, and many of the usual topological concepts may be Pdl-) with bwo
modified for this class (see, e.g., [8]). We shall be co.ncernfeﬂle e
of these concepts, namely compaciness and the formation o P

topology.
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A topological space X is a-compact if each open cover of X can be
reduced to one of power less than a, or, equivalently, if the intersection
of a family of closed subsets of X ig non-empty whenever the intersection
of every subfamily of power less than e« is non-empty. The ordinary
notion of eompactness is obviously the same ag wo- compactness. If a space
is a-compact, and « < g, it is also f-compact. For o singular, the prop-
erties of a- compactness and a*- compactness do nof coincide, For example,
the set w, with the discrete topology is w1~ cOmpact but not w,-com-
pact.

The a-product topology on the Cartesian product Pup X; of spaces
X, is the smallest a-complete topology which includes as open sets the
usual cylinder sets {f e Py Xy fio e U}, where t,e T and U ig open in
Xy, In other words, to obtain the a-topology on Picr X;, close the
class of cylinder sets under the formation of intersections of families
of power less than a; this gives a base for the a-topology, and open sets
of the new topology are arbitrary unions of these intersections. The
wg-product topology is the same as the ordinary product topology. If ¢
is regular, the base for the a-topology is just the class of all intersections
of families of power less than « of cylinder sets. For « singular, the
a-product topology and the at-topology are identical.

The main eases of products dealt with in this note are the products
of discrete 2-point spaces. Let 7' be any index set. The product of T copies
of 2 = {0,1} is denoted by 2%. The a-topology on 27 is especially easy
to describe (for « regular). Every open subset of 27 in the a-topology
is a union of sets obtained by the following method: select a subset
T e 8(T) and choose a function g <2%; the basic open set of 27 cor-
responding to g is the set {f < 2%: fe=gu for all teT'}. For u regular,
2" is discrete if and only if |T| < a, while for « singular 27 is discrete
if and only if |T| < a. Of course, each 27 with the a-topology is a totally
disconnected Hausdortf space, which is wy-compact only when ¢ = g OT
IT] < @,. The spaces 2° were used in [7] and [8], where it is noted that
in the a-topology the appropriate generalization of the Baire Category
Theorem holds for all regular ¢. In [7], p. 259, last paragraph, it is stated
that these spaces are dlways a-compact. That statement is false (take
@ = o, for example). We shall see from the results below how much
o-compactness can reasonably be expected.

Inasmuch ag compactness is not automatically obtained, it is reason-
able to study the following relation between cardinals: 7'(a, f) holds
if and only if the space 2 with the a-topology is a-compact. The letter
“I” has been chosen to denote this relation to remind us that topologieal
Spaces are involved, and also that Tychonoff’s Theorem tells us that
T'(w, B) holds for all 8. We formulate next a geries of seven lemmas which
lead to the two main results of this section (1.8 and 1.9).
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Tmma L1 If p o3 py thon Ly ) dmplies 1(‘4:‘7’)- ‘
Proof. Obviously 2% is w conlinuons image of 2% in the sense of the
Proof. O} )

cof of ot o ey the a-com-
topology. Ilence, the a-compactness of 27 ut onee mplies the «
a- gy A4

P oY
pactness of 27 ‘ A ‘
g Tmwna L2, If |2°] < w, then T'(w, f3) holds.
L SLodia . N - . y -
Troof. Bvery a-complete space of powor legs than o is - compaet.
il‘MMA 1.3 If fetaet 2“], thea A, B) fails to hold.
i VL LA doarde A - " . i ‘ .
Proof. Under the hypothesis, o iy diserete in the u-topology., No
diserete space ol power groater than or equal to o s w-compact,
diserele spac | o !
TMMA L. If @ is singular, then 1wy ) fails lo hold.
proof. I « ix singular, then 2% is diserete in the a-lopology
(= at-topology). The conclusion Tollows by the arguwment of 1.3 .
- ‘ . e dmplies thal o is strongly inaccessible.
TamMa 1.5, L] B o a, then T (a, ) mplics el .(4 is sl "r,] fj el
Proof. By 11 and 1o, fa and P(a, ) mply tlm.t.a i regu ‘L.
(i.€ ﬁot ‘%i'ug',ru‘hw) By 1.1 and 1.3, the same hypothesis inplies thab
12| <2 o whenever v < a. Henee, o ix strongly mau,o:bmblv. -
Trom 1.5 we gee Ghat 2” iy nol op-compaet in the "’}'l“’.l;’(’ ogy.
I 1, if o> is logs than the first nucountable strongly inaccessible
Indeed, if o > wy i less than th e
ardi hen 2% faily L v oa-compact, 16 o 18 the first abl
cardinal, then 2% fails Lo e \ ‘ 5 ‘ ountabe
il‘ila,(‘CGBh‘i’blu then it ean be shown that 2 ix still not a-compact. Thi
’ ’ v g
i ow from | slow and the vesully in [4]. -
will follow from 1.8 below a . . _—
The relation 4' iy clogely related to another rvelation I, wlnu}; \x;
e il ; ‘ i oalled a-comnlete it | ) el
now define, An ideal [ in a field of sets A is called a-(‘/omplcte 1£. U .“e(“4
whenever J' e 8,(I). Since A is an ideal of A ilself, ‘l’.h}ﬂ concept app. m
to A, and we xefer to - complole fields of sels. A sul)f_s‘et JZOI 43 o;, 0 glin]elgfng
A if A iy the least a-complete ficld of se;s 111@111(;.11{1;,;[ smt?o sane‘% e
nent. it ab A s B) - yenerated if 8 8 y
U4 as an olement. We say that A is (a, p)-gei ated i somo SRt oF 4
) g loos w-generate 4. By definition, J(a, ) hal
of power at most B doos «-genora A o, Jile o 1
if 3 ¢ sbo proper ideal can be extended to an o
and only if every a-complete proper d wn ! oo
plete prime ideal in every «-complote feld of sets that is (;x ,1/?) g%}u(awy:l.ﬁ(h
‘ ki studio negadi f tho relation 0 (whie
In [4] Keisler and Tarski studied the ‘nuga(um Qll: ;]1,01 N |“A|“I o bk
they call B); wo voeall the Following faeln establislied 1y Se
TmmmA L6, (1) 4 |27 0w then R{a, f) holds,
(i) If p<a< (2", then Rla, ) Joils to hold. | .
iiiy 1 o |98 amd i regular, then R(w, B) fails o hold.
() If o |27 an qular, { ‘ ;
(v) If a o [2/’| and « ds singular, then Ko, B) holda.l N
(V) If aet B oand «is singulor, then (i, B) feils to Told.
inuum | sis implies the negation of the
The Generalized Conbtinuum Hypothesis implies lh(- ‘1{;1‘1 o e
bhesis of 1.6 (i) and (iv). These cases were only included becan:
Lypothesis of 1.6 (ii) and L Oy e e
we do not have any need to assume the Continoum IHyp wig. " X
o
2

Fundamenta Mathematieae, T, LIIL
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main result of this section is that, aside from the very exceptional
situation of 1.6 (iv) where they behave in opposite ways, the relationg
T and B prove to be equivalent. Before giving this result we require
one further lemma which is essentially known: it is a generalization of
Tychonoff’s Theorem to the «-topology. In [2], [5], and [6] generalizationg
of Tychonoff’s theorem were discussed, but the ordinary product topology
was used. It seems to us more natural (and it gives stronger results) to
use the a-topology. For this reason, and for the sake of completeness,
we shall outline here a proof of the lemma; our proof is a simple modi-
fication of the well-known Bourbaki proof. In stating the lemma we uge
the notation 0u(Y), where ¥ = P,cx X}, to denote the a-complete field
of subsets of ¥ generated by the cylinder sets {f e ¥: f,, e U}, where ty e T'
and U is open in X,.

Levma 1.7. Let a be vegular, and suppose that the spaces Xy are
a-compact for each 1 e T. Let ¥ = Pyer Xy be given the a-product topology.
Then Y ds a-compact, if every a-complete proper ideal in 0(Y) can be
ewtended to an a-complete prime ideal.

Proof. Suppose that B is a family of basic open sets of ¥ which has
the property that no subfamily in S,(B) covers ¥. We wish to prove
that [ JB # ¥ (1). Now B C C,(¥), and the a-complete ideal of C,(Y)
generated by B is obviously proper in view of our assumption on B.
Let PO B be an a-complete prime ideal of O X). For each teT, let

P{h{UGOp(Xt): {feX: fre U}eP},

where Op(X,) denotes the class of open subsets of the space X;. Since
P 18 a-complete and Y ¢ P, it is clear that no subfamily in S.(P)
covers X;. Let the function f be an element of the non-empty product
Pier (Xi~\ Py (®). T felJB, then fedeB where 4 ig a basic open
subset of ¥. In other words, 4 would be a less-than-a-termed intersection
of cylinder sets. Now 4 ¢« P and P is a-complete; whence, at least one of
the cylinder sets including 4 would belong to P. But by construction,

f belongs to no such cylinder set; therefore, / ¢ ¥~ | JB, which com-
pletes the proof.

TeroREM 1.8. The conditions 1~i(a, B) and T(a,B) are equivalent,
unless a is singular and o = |2°).

(*) The fact that this is sufficient in order o
of choice (for families of power less than «). Howi
(Cf. footnote 2).

(*) The axiom of choice is nsed at this stage. If we assumed that each X were
Hausdorff, then it would follow that each X~ Py consists of a single point. Thus
a choice would he unnecessary. Hence in cojnunction with footnote 1 we recover the

known fact that the prime ideal theorem alone implies Tychonoff’s theorem for Haunsdortt
spaces when a = w,.

prove the theorem requires the axiom
ever, for a = w, choice is not needed.

icm°®
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Proot. That Tﬂ(a, ) implies 2'(u, f) is an immediate consequence
of 1.7 for « regulay. (Hint: mkg A== ﬁ and X; ==.2 fo? 3,11. t €.T3 and qote
that O Y) is («, B)-generated.) Ii‘(fr o singular the nnphcat?lon'ls immediate
from 1.2, 1.6 and the hy'po‘nlum,s‘T For the other nnphc?mon, we m&y
agsume that f >« by virtue of 1.3 :u}d 1.6. Then accm;dmg to 1.5, ¢ i
strongly inaccessible. Suppose 1':11311 A is an a-complete field qf sets which
is a-generated Dy @ subset B o:t power at most f, and that Irxs an a-com-
plete proper ideal of 4. Let B" be the .,s'(l,t of c‘omplements of elements
of B in the field 4. Since « is strongly umucegmble,l every element of A
can be oblained as w ](‘eﬁs-t‘]lmb{Lj};cl'llmcl union of less-i?hm'l-a—’termed
intersections of seby in B B (Tlint: rm(.s the geperal. distributive law
to show that this colleetion of unions of intersections is an a-complete
field.) Let us use the notation ¢! = a and a® == | 4~a, for (}»e.A.'I“rom
the foregoing remarks it readily ‘Eullowh: 1‘.hn.t. the problelm .ot finding .an
a-complete prime ideal of A i,nul}ulingj I is equivalent to finding a function
fe2’ such that the set I uw 'Y b e BY generates a proper a.-e.omplete
ideal of A (the ideal so gencrated will always be prime or trivial).

This last problem can be solved by using our a-compactness assump-
tion for 2% Let B = {bg: &< p}. For each subsel M e 8o(f), let

Py={fe2: ITu 9 £ e MY generates o proper a-complele ideal of A}

1 Fy were emphy, it would mean that
Udm WOl jor all fe2™.
) se M

Now |M| < u, 50 |27 <t «, and T is «-complete. Hence,

A~ 1(&) .
,E;JMM % sLEJbe el
Using De Morgan’s law and the distributive law we would at once h:ive
U4 B I, which is inapossible, Thus Iy 18 never empty ff)r I « 84(B). Notice
also that if I e 8(p)", where y < a, and if N—_—Azjj’ M, then

Iy C Y VTP
Teey 7
H £ o sty H
Hence, no less-bhan - e~ termed intersection of the sety lfym,. Mefa(sﬂk
is ever emphy. Winally, if we note the sin‘m}ylo fact 1“11;%1')1’111 is a cz(;’;;d
. l ' i i T bagi en-clos
el of 9 (becatse gy s an ab most [2"] union of bagic op
subgelt of 27 (boecause My ds an ab !
hat : is
subsets of 27), it follows from compactness that () {Far —"-fhf &éggi}red
non-empty. Any funciion in this intersection will give the
result.
£ onrding ich would
Perhaps the most natural property of car dma.l'mugberstz/lll]lwan g
correspond to Tychonoft’s Theorem is this: we write (a) son
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every product of ¢-compact spaces is «-compact in the ¢-product topology.
The conneetion between ¢ and I’ is easy to establish -using the above
results.
TosorEM 1.9, C{a) holds if and only if T'(«, By holds for all B.
Proof. The necessity of the second condition is obvious. If T'(a, f)
holds for all g, then by 1.5, a is strongly inaccessible and hence regular,
In view of 1.8, B(a, f) must hold for all f. Hence, ((a) follows by 1.7,

§ 2. Ramification systems. A rvelational system (4, <
called @ ramification system if the following conditions hold:
(i) A ds non-empty;
(i) < partially orders A;
(iil) for each we A, the set {ye d: y <

) iy well-ordered by <.

The order of an clement = of o ramification system (A, < iy the
ordinal type of the well-ordered set {y e d: y < @, ¥ = a}. The order of
the system {4, <) is the least upper bound of the orders of its elemenis.
By an a-ramification system we understand a system of ovder ¢ where
for each & < g, the set of all elements of order & has power less than a.

We say that §(a) holds if every a-rvamification system has a subset
ordered by the partial ordering in type a. The negation of the property (?
was studied in [3]. Our purpose here is to relate § to 7.

TreoREM 2.1. If « is strongly inaccessible, then (o) and Ta, )
are equivalent.

Proof. In [8], Theorem 3.4, it is shown that ﬁ(a) implies a property
gf @ that is stronger than ﬁ(a, a) (cf. [4], Theorem 4.31). Hence, by 1.8,
@(a) implies T'(a, a), if « is inaccessible. Assume now thab T(a, a) holds,
and let {4, <> be an a-ramification gystem. Bince « is strongly inac-
cessible, it follows that |A] = a. We may assume 4 = g Tf fe2% let
1) ={f<a: f(£) =1} For each &< a, let 4: Le the elements of
(A, <> of order less than & TLet

Cp= {f 2% [7(1) ~ 4; is ordered by < in type &},

for £ < a. Clearly since dgyyrvd; 40, each U¢ is a non-empty closed
subset of 2 in the a-topology. Tt is also clear that ¢ C C,, whenever
N < &< a Sinee T'(a,a) holds, there must be an feM{Ce &< a}, and
17(1) is the subset of 4 ordered in type a (%).

Thus for a stron

T gly inaccessible the properties B(a, a), 1'(«, a),
and @ (a)

are equivalent. By 1.8, R(a, a) and T(a, a) are equivalent for

. () Alfred Tarski has pointed . out to us that the proof of Theorem 4.2 of [3] can
ezfsﬂy be modified to show that Bla, «) implies () (a) for a strongly inaccessible; by
virtne of our Theorem 1.8 this gives an alternate proof of 2.1.

icm°®
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Wo know that 2(a, «) fails if « is not inaceessible. Specker in ‘[_'9]
e ) that 9 (a) tails i« gty where s inaccessible, ov agsuming
s shvo“‘lii 1}71!(1 ’(‘;omyinunm ypothesis, if = pT, where p iy 1'(»;;1,1}@1'.
the Gfgm'].lh,l;\-yi(m,—q that 0 (a) fails to hold il « is singular. Whenee, ¢(a)
{USO" 1'1‘"]120:1(; to ’I'(u, a) in thoese cases also. The remaiuing case where
:ugl‘ljy ‘siugn]uvl', seemy Lo be s6ill an open problem,

§ 8. The separation principles. Hven though the topological
t minnl.ogy wsad i the fiest Lwo seetions s suggestive and convenient
in many instances, the combinatorial simplicity of the statement of .1&1(
. ‘1"!11;1(&'11(“\‘!4 of 2" i rather hidden by the produel space formulation.
- COMPACTIIES b & ! ¥ ‘"H A " e
To place the ideas in sharper Toeus, we shall first expross the condition

R g Thepte of rom 3.1 ar)

;1’((2 #) in terms of the family S() of all subsels of # ("Theovem 3.1) and
ﬁwny simplify the resulting statement (Theorem 3.2).
. To gbart oub, recall the usual ole-one correspondence bebween S(f)
and Qﬁ obtained from the notion of o characteristic tunui‘:mn of a hub;(m
T l f | awn for
of a given set. Undev Lhis correspondence an open set in the base for

( sy on 2F iw matehed with o subset of 8(g) of the form
the a-topology on 2" in matehed with

[w, frey] TN C e C N C ooyl

where Jo wy] < a. That is Lo say, l.‘hu 1)_|)(ﬁ11.m~.1‘,~4 in the iJn’lku'uu(.!! aun{\\rl())tito
topology on S(f) are shuply wnions of intervals <>fl Lhw “mm‘. :1 1.‘1‘
further thab the interval [, ey s mnml.vloly flul’mnnnu(l M. the ()‘l ‘< (s.‘li;.
pair (@, y) € Suf) % 8u(f). Tlenee, w covering of B-(/‘l) by 1)‘;m(: on ns‘..\(,:i
is determined by a swbsel /2 C 8u(f) - Su(f), that is, by @ {fuln,tlml}. »‘1]1];.«‘
the a-compactness of S{f) can be formnlated in fers of um:um:%[hr ?E
bagic open sots, we see Lhat 1'(w, f) can be oxpressed as a property o
relations over 7).
1elata?(?&fi(1;l(11‘.1:%({))v();pm'lry of relations thal corvesponds to ’I’(.a,‘f)’?, .wv:
must define what it means for w relation B C SJf) - S{p) to d(“:tmull‘m.t:
a cover of 8(B). For some purposes, however, 1"}10 n‘ul.hnrh“)n‘u‘f:er tio ];J A;(;t:
the emphasis on the non-covers, A relation wh!uh du(,u]'mlugs \ lumluiu '
will be called w separable velation. To be previse, we HI!,))I 111}3\‘{,‘;]&‘{? W vlf::l
R CBUB) = 8ulf) ix separable voer i, in symbolss Sop(R), it 6 m;u‘. Ji{]
XC By sueh that, £ (X)) S (B~X)) - 0. That condition menns (1.3‘: ‘ :
that .\ Delongs o no interval [y ey Tor '(;r:, 2) & Ry heneo, G 1.({1(1» 11'
one point of the spaee 27 that is nob in the nnion of the open lsui'y:a (‘1(5 ’f}m
mined by J. We may alse use the notion H(s])h(l.\’,), \\‘Ill‘m;(). /f l.q‘ .1‘(5]1). n:,.;]t
by an arbilraxy set b, sinee the fael that # ivan ordinel i clonrly irrelevant
in the definition. ‘ .
The foregoing discussion leads wl onee o ‘wl.mt \V(}_f,:wll the f‘:»}f{i
Separation Prinoiple fov a pair of cardinals «, f. L is condition (x) of b
next theorem.
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TueorEM 3.1. T'(a, B) is equivalent to the condition:

(%) whenever R C S(f)x Sp) and Sepp(r) holds for all re S.(R)
then Sepg(R) holds.

Proof. Obvious.

TUsing a suggestion of Tarski (4), condition 3.1 (i) can be farther
simplified. It turns out that it is not necessary to use arbitrary relations
B C 8.B) x 8uf); rather those relations R, where (2, %) ¢ R implies @ = 0
or y = 0, prove to be sufficient. Now each such R iy determined by two
classes:

A={wel(p): (#,0)eR}, and B = {ye8.(p): (0,4 eR}.

The condition Sep,(R) is then equivalent to u new condition AYpB
(read: 4 and B are separable over f), which in general means that
for some X' C B, we have 4 ~ 8(X) = 0 = S(p~X) u B. Thus A)(B and
Seps(4 x {0} « {0} . B) ave equivalent for all A, B C 8u(p). We shall also
use 4){B for arbitrary sets b. In this way we arrive at the Second Sepa-
ration Principle given in condition (s#) of the next theorem.

THEOREM 3.2. T'(«, B) is equivalent to the condition:

() whenever A, BC Sup) and a)(sb holds for all @ e Su(4), b e 8u(B),
then A)(zB holds.

Proof. The implication from left to right follows at once from 3.1
and the above discussion. Suppose then that the right hand side holds.
Cleaxly the right-hand side will continue to hold with # replaced by g x 2,
beeause f is infinite and g = |f x 2|. Let then ¢ be a cover of 2° by basic
open sets in the «-topology. Notice that since functions are sets of ordered
pairs, 2“’QS(/9><2). Notice also that there is a set K C 8. x2) such
that for the given cover:

)

C={l,px2]~2" zecK}.
Let

A=KEC{{&0, &Nk e<p), B={{(£0), 1) E<p).
Suppose that 4)(sx.B holds. Let X C B x2 be chosen so that
AN 8(X)=0=8(8x 2)~X}~ B.

If & < 8, then {(£,0), (¢, 1)}(_X;X by the first equation, and X ~ {(£, 0),
(£,1)} # 0 by the second equation. Hence, for each & < g, there is & unique

() The idea of the First Separation Principle was formulated by Scott in 1956
and communicated to Tarski in a version suitable for an axiomatic set theory with
both sets and classes and with the cardinal « equal to the cardinal number of the
universe. At that time Tarski suggested the simpler Second Separation Principle and
Tarski and Seott independently verified its equivalence with the first. The details of
the axiomatic version will be published elsewhere.
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¢ <2, such that (£,£)eX; in other words, X <2°. Now ¢ covers 2%
whence, @ C X for some z ¢ K. This contradicts the equation 4 ~ §(X) = 0.
Therefore, 4 and B are not separable over fx 2. From our assumption
it follows that there are a e 8,(4) and b ¢ 8,(B) which are also not separable.
Let K' = K ~ a. Let

O = ([, fx2]~ 2" weK').

Tt is trivial to verify that €' C C covers 2° and that | ("] < a. Thus T'(a, B)
is proved.
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