64 : E. Hewitt

(4.8) After this paper was written, we became aware of the paper
Uniform boundedness for groups by Irving Glicksberg [Canadian J. Math.
14 (1962), pp- 269-276]. In this paper, Glicksberg has proved that @,
has at least one continuous character that is G,-discontinuous.
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On compactifications allowing extensions of mappings
by
R. Engelking (Warszawa) and E. G. Sklyarenko (Moscow)

In this paper we shall deal with compactifications of a space X
which allow extensions of some mappings of X into itself. By a topo-
logical space we always mean a completely regular topological space,
by a mapping we mean a continuous function. We shall say that a com-
pact space Y is a compactification of a topological space X if ¥ contains
a dense subspace X' homeomorphic to X. Compactifications of the space X
will be denoted by aX, a; X, ete. The letter o will also denote the homeo-
morphism of X onto X'. Hence we have a: X—aX and « is a homeo-
morphism of X onto a(X). We can define a partial order & in the class
of all compactifications of X. Namely, we put o; XS, X if there exists
a mapping f: ; X —a, X such that fo; = a,. In that case we shall write
f: 0, X >0, X. The Cech-Stone compactification AX is the maximal element
in the partially ordered class. By the weight of a space X we shall mean
the smallest cardinality of bases of X. The weight of X will be denoted
by w(X). Let us notice the well-known result that 0 X>a, X implies
w(a; X) > w(a,X).

Let @ = {ps}ses be a family of mappings of X into itself, i.e. ps:
XX for every sef8. A compactification «X of the space X will be
called a P-compactification if, for every s eS8, there exists a mapping
#s: X —>aoX such that §|X = ¢ (more exactly $;a = aps). The notion
of @-compactification was introduced in [7]. The paper contains some
theorems on the existence of @-compactifications for metric spaces. Other
results are in [3], [4], [12] and [19]. Of course, AX is a @- compactification
for every family @. However, it is known that the weight of X is much
greater than the weight of X and one can set the following problem:
Determine the minimal weight of @-compactifications for a given space X
and a family @. The paper contains some results concerning this subject.

The paper is divided into two parts. In the first part we consider
@ - compactifications of X preserving the dimension of X. The second
part is devoted to investigations of @-compactifications of X, where
X is a peripherically compact space.
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1. d-compactifications preserving dimension. The following
lemma plays an important réle in the proofs of all the theorems of the
paper:

LeMya 1. Let X be a topological space and let @ = {p,}scx be a family
of mappings of X dnto ilself. Let us consider an enumerable family
o X,0,X,... of compactifications of X and a family of mappings 7, A, ..
where ™'t 4y X, X. If jor every se 8 there exists emlensions Bt
g X—-aX, i=1,2,.., of mappings @, then the limit oX of the
inverse system {a; X, nii}, where oy = o} @i tE ... 7l_y for i > j, is a ®-com-
pactification of the space X.

Proof. Mappings =" and ¢i" satisfy the following conditions:
1) 2y = a; .
) P = @,

Let ¥ =lim{a;X,n}}. Then Y is a compact space. The mapping a:
X ]°>o ;X defined by a(z) = {ayz)} is a homeomorphism into ]go aX.
i=1 =1

Of course, a: X—>YC};Qa1~X, and we shall show that «(X)= Y. The
=1

family of all subsets Wj =Y~ ;’Q o X X W; X ; a; X), where W; is an
i<y i>7
open subset of a; X, is a base of Y. Since a,(X) is dense in a; X, there
exists a point # ¢ X such that a;(x) e W;. But a(s) e W; and therefore
a(X) =Y. Thus Y is a compactification of the space X. According to
our convention, we shall denote it by oX.
For every s e 8, let us consider the following diagram:

:iH'l

3 i -
O X e— gy X e e— gy X e a1 X < ...

~2 ~3 ~i i1
tp,i At +|lpf (P,l i, lqj“
X e— g X ey X g X «— ...

We shall show that every square of the above diagram is commu-
tative, i.e.

3)

~1 '+1 i ~T1 .
Psmy - = miPett for i=2,3,..

In order to prove this it suffices to show that equality (3) holds
on & dense subset a;4(X)C 01X, i.e., it suffices to show that

‘ ~i g1 .
(4) ‘P:r""? Qg = 753—-1%“ a1 for

However, it follows from (1) and (2) that

i=2,3,..

i int y . o
P Gigr = Fri = @10 = w_y o9 = 7 F aigs

whence (4) and (3) are proved.
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The family {F12, is a map of the inverse system {u; X, #'};»s into
{0, X, @}}iz . It determines a mapping @: aX —+aX, because aX is a limit
of both systems. We shall show that ¥, is an extension of @s. We have
to prove

6

Pel = agp; .
Let p;: P, X—u; X be the projection into the ith axis. In order
i=1
to prove (5) it suffices to show that

(6)
It follows from (2) and the equality p;a = a; that

PiPsa = prag,  for {=2,3,..

~ il ~itl
Dipst = Qg Pir1@ = Qs iy = U@y = PiOPg

and we have proved (6).

Hence, for every seS, the mapping ¥: aX—>aX is an extension
of ;. Thus «X is a z-compactification of X and the proof of the lemma
is complete.

In the sequel we shall also use two well-known lemmas.

Lemta 2. Let aX be a compactification of X and let {fs}ses be a family
of mappings, fo: X—~T,, where Y, is a compact space, for every s e 8. Then
there exists a minimal ecompactitication agX of X such that agXSaX
and, for every se S, there is an extension 7ot ag X T, of fs, t.e., there
exists a compactification agX such that if, for a compactification o’ X of X,
@' X&>aX and if there is an extension fi: o' X —=Y, of f, for every s eS8,
then o' X&>agX.

Moreover, if w(aX) <7, w(¥) <7 jor every se8 and §< 7, then
w(agX) < 7.

Proof. Let P =aX x ]; Y, and consider the mapping ag: X — P

8€.
determined by as(s) = {a(@), {fs(z)}}. Then ag is a homeomorphism
of the space X into P. We shall show that we can take the subspace
as(X)C P as agX. Indeed, denoting by p a projection of P onto «X and
by p. the projection of P onto Y, we have pag=a and psag = fs.
Hence p: agXSaX and the mappings {fs}ses can be extended.

Now, let us suppose that for a compactification o’X there exist
a function ¢: a’X>oX and extensions fst ¢/’ X—¥, of mappings f, for
all s ¢S. Then the mapping F: o’ X —~ag X defined by F(z) = {gf(aa), {fﬁ(m)}}
satisties condition Fa’' = ag. Hence o’ Xax X. The last part of the lemma
follows from the given construction of agX.

COROLLARY. Let R — {0sX}ees be a family of compactifications of
a space X. Then there exists a compactification ag X that is the least upper
bound of R with respect to the partial order >

h*
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Indeed, it suffices to replace Y, fs and aX occurring in Lemma 2-
by X, as X—o0sX and an arbitrary compactification from the family
R, respectively.

Remark. Using the construction from the proof of Lemma 2 one
can construct the compactification pX. In fact, it suffices to take in
the Corollary for ‘R the family of all compactifications of the space X.
The consideration of the family does not lead to a contradiction, since
for every compactification «X of X we have aX < 92“

TEvma 3. Let {agX}eeg be a family of aompact@fzmtio.ns thatv are
greater than a fized compactification aX of X. Then the family {asX}seg
has the greater lower bound.

If a mapping p: X—Y, where Y is an arbitrary compact space, can
be extended over all compactifications belonging to the famaily {asX}“.S,
then @ can be extended over agX.

Proof. Let us consider the family ‘% of all compactifications smaller
than ¢ X for every s e 8. The family 9 is not void since aX ¢ R. It follows
from Lemma 2 that 92 has the least upper bound agX. It is easy to check
that agX is the greatest lower bound of the family {a;X}ses-

In order to prove the second part of the lemma, let us consider the
mapping a: X—>aX Y determmed by a(3) = (a(m),zp(m)}. The com-
Therefme we have abX%a]lX and, for some mapping f: aSA—>all
fag = ;. Since §: ¢, X - Y, where §(x,y) =y, is an extension of ¢ over
o, X, §f is the extension of ¢ over agX. Thus the proof of Lemma 3 is
complete.

Let us denote the greatest lower bound of {a;X};cs either by S/E\S as X

or by oy X A 0, X A ... A agX in the case where § is finite.

It is known that if ¢XSo; X and & map ¢: XY, where Y is
a compact space, can be extended over ¢, X, then ¢ ean also be extended
over «y X. An analogous fact does not hold when ¢: X —+X. In this case
it may happen that there exists an extension ¢: a; XX, though
there is no extension of ¢ over a,X.

The following theorem is proved in [13]

THEOREM 8. Let X be a normal space. For every compactification o X
such that w(o; X) = w(X) there is a compactification oX of X satisfying
the following conditions: :

1) aX&>ao X

2) dimoX = dim X (1);

3) w(eX) = w(X).

() By dim X we mean a Lebesque covering dimension, i.e., dimX < n if and only
if every finite open covering of X has a finite open refinement cf order at most n-1.
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Remark. In paper [13] it is not stated that «X satisfies condition 1).
However, it follows from the construction given there that the condition
can also be satisfied.

In [9] and, independently, in [19] and [4] the following generalizations
of theorem S are proved:

THEOREM M. For any space X and any pair of compactifications
@ X, e, X of X such that ayXS>ay X there exists a compactification oX
satzsfymg the following conditions:

) 6 X>aX >0, X;

2) dimaX = dim ¢, X;

3) w(aX) = w(a X).

THEOREM VE. For every normal space X, any family @ = {p;}ses
of mappings of X into iiself such that § < w(X) and for any compactification
a; X such that w(o X) = w(X) there exists a compactification aX of X
satisfying the following conditions:

) X >a, X;

2) dimaX = dim X;

3) w(aX) = w(X);

4) oX is a P-compactification.

Remark. As in [13], it is not stated explicitly in [19] and [4] that
aX satisties condition 1), but it follows from the construction given in [4]
that the condition can also be satisfied.

‘We shall prove a theorem (Theorem 1) which generalizes Theorem M
and Theorem VE. We shall use Theorem M in the proof of Theorem 1.
In order to make the paper self-contained we shall include a proof of
Theorem M. The proof we are going to give here is quite different from

the original proof from [9], and seems to be somewhat simpler. In fact,
we get the proof by a little modification of the proof of Theorem S given
in [13].

First, we shall fix the terminology. By a cover we always mean a cover by open
subsets. By a uniformity for X we mean a uniformity in the sénse of Tukey [18], i.e. a fa-
mily % of covers of X that satisfy the following conditions ®):

(i) For A, B € there exists € Y such that € > WA B;

(ii) For U e there exists B ¢ U such that B+ > UA;

(iii) If WeU and A > B then B «U;

(iv) For any x ¢ X and any neighbourhood ¥V of z there exist A e U and U U
such that ze U cV.

(%) Let A and B be covers of X. By ArB we denote the cover composed of all
sets of the form U~V, where U ¢ and ¥ « B. We say that the cover B is a refinement
of U it for every V ¢ B there exists U ¢ such that ¥ c U: we then write B > %. We
say that the cover B is a star-refinement of U if for every ¥V «B the star St(V, B) of ¥
in the cover B, i.e., the union of all elements of B which are not disjoint from V, is
contained in an element U «W: we then write B % > A
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By a Dase for uniformity We mean any fainily of covers of .X that satisfy con-
¥

ditions (i), (i) and (iv). . ‘ o
£ of Theorem M. First, let us suppose that the d1mens19n of gy X is finite and
P A0 over {Uskes of X is said to be extendable over ay X if there exists a c)over
egml © 7; ; such that ap(Ts) = a(X) ~ T, for every s ¢ §. Let us denoj:e -by Y bthe
{Us}iies ; £ finite covers of X that are extendable over %Xf and by U o 1:he su ‘Bif
f?n:) 7y c?)m osed -of all covers of order at most n+1. Since dima, X =1fn‘, t< ere exists
o cor P 9, which has no refinement belonging to 9, and of order <n. o
) CUVIOI' niR:dser tno prove Theorem M it suffices to show that there exists a base -J for
o s Ly .
uniformity in X which satisfies the following conditions:
1) B cws
(@) D = w(eX);
). ) N '
(i; ngzrﬁ eiiary cover {Uskes of a,X there exists in ") a refinement of [a;{Us)lses-
i fact, it follows from some fundamental theorems on uniformities thajt a com-
letionnof Ia, ;miform space (X, (), where U is & uniformity generated by %3, is a com-
P: tification of X that satisfies the conditions of the theo?em. L © atistoin
pee Tirst, we are going to construct in X a base for the uniformity ¥, ¢’ satisfying
Irst,
the following conditions: . y ) |
(8) 9, is partially ordered by a relation > thab is stronger than >, i.e., such
0
implies B > U; o
et 5(BB)>]3‘Q()[12n;lvpery B, ¢ T, the family of covers B ¢ 9J, such that B, > B is finite;
s B = w(a X); . ~
23 ;‘X; ;.’1)1}; cov“er {1(7.1}\"5, of 0, X one can find a refinement of {a7*(Us)lses be-
longing to %o

. «_pI,
The space ¢, X can be treated as a subspace of the Tichonov cube I t£' 4

the subspace of @, X. Let Ur= {Suln—1 be
T = 7 = w(a, X), and the space X a3 ¢ Le ’ )
Z];:.ﬁily of eover(s 1of. the interval I, where I, = {(k/2", lo-lﬁ—Z/.‘Z"t)t}}k,:o’.I ‘f)ant ti;nde:ls;iye
P i for the uniformity in L. Let 3
ifv that Spea * > Jn, and hence “Pr is a F)ase ] 1
;:ﬁ’)g aabas:+;0r the"product wniformity in I° composed of;.ltl cov(jlls ;f th; fo;:i
o =1, for t#1 an 4 € Jng
Wity by ors B3 Ts My oens Tog) =t5 V,, where V, f 4

Go= 1,2, 0k e
: 0 the cover {Us~ Xlses O .
ery U = {Uslses ¢ Uy lot AX denote t :
3 —F{‘glrle;r:J and p:ﬁf AX ; B|X if and only if A > B and A# B. It is easy to
Py = o

g i ined i isfi ditions (5)-(8)-
that 3, is contained in 9/ and satlsﬁe§ comn 58 )
checkLei‘.a"I‘ d;note the get of all triples (), U, @), W]il.ere “)3 C.'.H,,, 13 ¢ and @ I8
a one-one map of %)’ onto ) that satisfies the following conditions:
(9) Ry eB; )
(10) @) > A for every AeW';
(11) I %, B %3 and B > U then @(B) * > (). .
Family T is not empty. Indeed, the triple {{xy), ). g), where ¢({X}) = %o,
to T. . y §
beloniset ous define a partial order in T agreeing that (U], 31, ¢1) > (135, Wy, @) if and
only if ;2 9} and () = (%) for every U eI;. One can ea:ﬁ.sﬂyt le:ee that zlo:ma;rlxli
ists in T an element greater than any
subset T, c T ordered by > there exis ; ey eleme
i there exists a maximal elem
. , by the Kuratowski—Zorn Lemma, > 1 ne
frrxo'lllfl ;ra?y (]3);“?)3 'P)S" We shall show that the element in question satisties also co?d_ttlon

(12) For every U e, there is B ¢ W’ such that B > U
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Let us suppose that condition (12) is not satisfied. Then there exists Ay € Ty such
that the relation B > U, does not hold for any element B € 9. Let us take any Bf e i,
such that B > A, and let B,, B,, ..., B, be all elements of 7)" which are smaller (with
respect to >) than B). Let %n, %}, ..., B, be extensions of covers Bl @(B), ..., p(By)
over q,X, respectively, and let us consider the finite cover %.,MB. /\.A.Aﬁk of g, X.
The cover has a finite star refinement B because the space a,X i3 normal. Finally, let
‘53'1;1-.1 = {Uskes be a finite cover of order < n+1 which is a refinement of &. The cover
B = {05 '(Us)}ses belongs to 9s%,. Moreover, it is easy to check that the triple (931, Uy, ¢1)
where U = 1" O (B}, Uy = U v {B), p(B) =B and (%) = @ (A) for We )’ is greater
than the maximal triple (93, 9, ¢). Thus condition (12) is satisfied.

It follows from conditions (9)-(12) that the family 75, where (1, 21, @) is any
maximal element of T satisfies conditions (i), (ii), (iv) and conditions (1)-(4).

In the case where dima,X = oco the proof is a little more complicated. In fact,
instead of 9, one should consider 9y and instead of R, the family of covers {®R,)™®

=17
where R; is a cover of X that has no refinement extendable over 2, X and of order

at most 4.

THEOREM 1. Let X be a space and @ = {plses @ family of mappings
of X into iiself, and let 0, X be a @-compacifiﬁcatio_p of X. Then for every
compactification a; X such that f: XS, X and S < w(ay X) there ewists
a compactification aX of X such that:

1) @ X&>aX>a X;

2) dimaX = dim g, X;

3) w(aX) = w(a X);

4) oX is a D-compactification.

Proof. Let us consider the mappings o,ps: X+, X, for se 8. Tt
follows from Lemma 2 that there exists a compactification o)X greater
than o, X such that, for every s ¢ 8, there is an extension Pe X > X
of a9 and w(a X) = w(a, X).

Let us put 0, X = 0, X A ¢4 X; we then have

(7) %X>azx>a1X.

The mappings a;p, can be extended to the mappings f@ge: o X+ X,
where @;: ¢p X —a, X is an extension of ¢. It follows from Lemma 3 that
one can find extensions of the mappings 0 @Pg, SAY

(8) aﬁ: X >0, X for sef ;

moreover w(azX) > w(a,X) > w(e; X) and hence w(ayX) = w (o, X). By
Theorem M, there exists a compactification 2, X guch that

(a1) @ X &y XS0, XSy X;

(by) dimey X = dim e, X;

(e2) w(ay X) = w(0, X) = w(e, X).
By (a,) and (8) we infer that

(dy) for every s e, there ewists an extension

’52: X0 X of @i X->X.
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-1
1o

Now let us suppose that for every i<k we have already defined
all compactifications o1 X sueh that

(a4) anX>a2i+1X>a2i—1X;

(by) dimag; X = dima, X;

(6r) w(az1X) = w(oX); )

(d;) for every s e 8, there exists an exiension

Tp?i""l: i1 X a1 X of @ XX
Next we shall define the compactification @y, X in sueh a way that
conditions (ax)-(dx) ave satisfied. } .

Tet us consider the mappings dop—1@s: X —>aop_1 X . There exists a com-
pactification a, X greater than ;-1 X such that, for any se8, one can
find an extension 7o' abX —>oax—1 X 0f asp-10s and w (o3 X) = w (g X)
= w (o X).

Put a X = ¢y X A 0 X, we then have
9) 0y X >0 X o1 X .

The mappings op-1¢s can be extended to the mappings ¢@s: apX—
a1 X, where ¢: ap X g1 X. By Lemma 3 there exist extensions
of tap-195
(10) e
and w(apX) = w(ogX). - o

Now, the existence of & compactification apy4. X which satisfies con-
ditions (az)-(dx) follows from Theorem M and (10). .

The family of compactifications {o.; X} satisfies the assumptions
of Lemma 1, whence the limit aX of the corresponding inverse system.
is a @-compactification. Moreover, from the construction we infer that
oX is the least upper bound of the family {ay.:X}. Therefore, con-

ditions 1) and-3) are satistied since w( P a1 X) = w(e X). Finally, it
i=1

top X 0oy X for selS

follows from a well-known theorem on inverse systems (which follows.
for example from Lemma 3.7 [2] p. 217) that condition 2) is satisfied.

This completes the proof of Theorem 1.

Let us notice that the assumption that ¢, X is a @-compactification
cannot be omitted. Indeed, let X be the real line, let o, X be the minimal
(one-point) compactification of X and let oyX be any compactification
different from AX. Then there exists a function ¢: X —~IC X, where I
denotes the interval [0,1], which cannot be extended over ayX. It is
easy to see that for @ = {p} there is no compactification satisfying con-
ditions 1) and 4) of our theorem.

If 0, X = pX then Theorem M becomes Theorem S and Theorem 1
becomes Theorem VE. The proof of Theorem VE obtained in this way
is much simpler than that given in [4].

icm
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Finally, we want to pay attention to some consequences of Theorem M.
Let us consider a metric compact space X. Let D be a countable dense
subset of X x I. Then D does not contain any isolated points sinee X T
is dense in itself. Put oyD = D, oD = X xI. Then it follows from
Theorem M that there exists a compactification aD such that w(aD) =,
and dimaD = dimpD = dim D = 0. But D does not contain any isolated
points and hence is homeomorphic to the Cantor set (see [8], p. 38). X is
the continuous image of X x I; hence

COROLLARY. Fach imetric compact space is the continuous image of
the Cantor set.

If X does not contain any isolated points, then one can take X
instead of X x I and we have the following

THEOREM 2. Let X be a compact metric space with no isolated points.
Then there exists a mapping f: C—X of the Cantor set onto X. Moreover,
for a dense subset D of C the mapping f|D: D—f(D)CX is a homeomorphism.

If we consider, in addition, a countable family @ = {p;}i=; of mappings
of X into itself, then the following theorem follows from Theorem 1:

- THEOREM 3. Let X be a compact metric space with no isolated poinis.
Then, for every countable family ® = {p:}iz. of mappings of X into itself
there exist a mapping f: C—~X of the Cantor set C onto X that is a homeo-
morphism on a dense subset of C and mappings @2 C— C such that fg; = ¢;f
for i=1,2,..

Proof. The last equalities of the theorem are valid on a denge subset:
of the Cantor set and hence on the whole Cantor set.

Finally, let us notice that if f: ¢—X is an open mapping, then for
every g: X—>2X there exists a mapping @: C—C such that fo'= ¢f. In
fact, the multivalued mapping f '¢f is lower semi-continuous and the
existence of a mapping §: C—C such that F(z) e f'¢f(x) follows from
Theorem 2 of [10].

If we take X = I = [0, 1] and D equal to the set of rational numbers,
then, by Theorem 2.1 of [12], we infer that for no f: ¢ —X, such that
for some dense D' C(, f|{D': D'>D is a homeomorphism, there exist
mappings ¢: (—C for any ¢: X —X.

2. P-compactifications of peripherically compaet spaces.
A space X is called peripherically compact if there exists a basis B of open
subsets of X such that Fr(U) is compact for any U «B.

A basis B of open subsets of X will be called a =-basis, if it satisfies
the following conditions:

1) if Uy, Uy eB then Uy~ Uy eB and U, U, eB;

2) if UeB then X\U eB;

3) Fr(U) is compact for every U «B.
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It is easy to prove the following

LsmuA 4. Let X be a peripherically compact space and A a family
of subsets of X with compact boundaries. If A<L7=w(X) and a w-basis B
of X is given such that W CB, then there exists a sw-basis B, satisfying
ACB,CB and By < 7.

It is proved in [14] that every =-basis of X determines a compacti-
fication 73X, namely the compactification which corresponds to the
proximity &y defined by the following condition ():

(1) A8y B if and only if there exists U B such that A C U and B C X\ T.

It is also shown in [14] that the basis B = {INI} of vy X, where

U =X X\ U (closure in »g3X), satisfies

2) FrxU =Fry93xif for every UeB.

In the terminology used in [15] it means that »gX is a perfect
compactification with respect to all U «B. It is clear that (2) implies
ind vy X\we(X )) < 0 (%, In[1] the notion of a compactification with a zero-
dimensionally placed set of added points was introduced; here such
compactifications will be called =-compactifications. A compactification
+X is called m-compactification if and only if there exists a basis B of
open subsets of X such that FrU ~ (»X\»(X)) =0 for every U ¢B. It
follows from the results mentioned above that »3X is a m-compactifi-
cation. Of course, if a space X has a =-compactification then, X is per-
ipherically compact.

There exists a maximal =-compactification in the family of all
m-compactifications of a peripherically compact space X. The com-
pactification corresponds to the =-basis B(X) composed of all open
subsets with compact boundary. The compactification will be denoted
by uX. For metrizable spaces, uX coincides with the compactification
X* of X constructed in [5] “durch Endpunkte” (see also [6] and [11]).

Let X, Y be two peripherically compact spaces and let B and D
be m-bases of X and Y respectively. Consider the compactifications
rgX and »pY determined by the bases. A mapping ¢g: X— ¥ is said to
be a m-mapping with respect fo B and D, if, for every closed set A C Y
and for every V D such that 4 CV, there exists U B satisfying the
following condition:

{3) gHA)CTCgY V).

(*) For the definition of the proximity space and its properties (which shall be
used in the sequel) see [17].
) (*) by indX we mean the inductive Menger-Urysobn dimension, i.e. ind X < 0
if and only if X has a basis B such that Fr(U) = 0 for any U 8.

icm

Compactifications allowing extensions of mappings w5

If g: XYY is a n-mapping with respect to the bases B(X) and
B(Y) composed of all open sets with compact boundaries, then g is called
briefly a =-mapping.

In the sequel, we shall mainly consider mappings of a peripherically
compact space X into itself. If g: X —>X is a z-mapping with respect
to bases B and B, then we shall say that g is a z-mapping with respect to B.

LeMMA 5. Let X be a peripherically compact space and let B be

@ m-basis of X. If A= ACV <B then Adg(X\V).

Proof. For every z e FrV we have Adp{w} since A = ACT. Let
V.e®B be a neighbourhood of z ¢ FrV such that A485V,. Since FrV is
compact, one can choose a finite subset {z,...,z;x} CFrV such that
Vayy -y Vay, 18 @ covering of FrV. Let us put

W = (X\\V) (VA S RVENEVE P9
Then we have
ACX\W,

FIVCW, We3.

Hence A63FrV and now the lemma follows from Lemma 1 of [15].

LemmA 6. Let X, Y be two peripherically compact spaces and let B
and D be n-bases of X and Y, respectively. Let us consider compactifications
v X and vo Y and a mapping g: X —Y. Then ¢ is a =- mapping with respect
to B and D if and only if g can be extended to a map G: vy X >y Y.

Proof. 1) Let g: X—Y be a n»-mapping with respect to B and D.
It suffices to show that ¢ is a §-mapping of the proximity spaces (X, dg)
into (Y, d3), i.e. that two remote sets A and B contained in ¥ have remote
counter-images in X. Let AdpB; then we have 4658 and hence we can
suppose that A4 is closed. There exists ¥ ¢® such that A CV, BC Y\ V.
It follows from our assumption that for some U e®B condition (3) is
satisfied. Therefore

TCgiV)Cg™P)

and hence
®) 7H(B) C g (T\P) = T\g(P) C X\ T.

But we infer from (3), (4) and (1) that g-(4)dgg-*(B).

2) Let A be a closed subset and let ¥ ¢D be such a subset of ¥ that
ACV. It follows from Lemma 5 that

() ABy(X\T) .

Let us suppose that G: vgX —+vpY is an extension of g. Then the
sets g~(4) and ¢g~(Y\V) are remote. Hence we infer from (1) that there
exists U e®B such that

A CT, g T\V)CXI\T.
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It follows from the second equality that
UCT =X (X\T)CI\g(T\V) = g(T),

and hence the condition is also sufficient.
One can obtain from Lemma 6 the following particular case of
Theorem 1 from [16].

COROLLARY. Ewery perfect mapping f: X Y (i.e. a closed mapping
such that for any y € Y the set " (y) is compact) is a w-mapping, and hence
there exists an extension G: uX —-uY of g. ‘

Proof. Since f is a perféct map, f7( 0) is compact for every compact
set CCY. Let 4 =ACY and V eB(Y) be such that 4 C V. Let us
consider the set U = ¢™(¥). We then have

Fr U = giV)\g (V) C g=(PI\g(V) = g(Fx ).

The last set is compact and hence Fr U7 is also compact as a closed

subset of a compact set. Therefore we have obtained
UeB(X) and g¢¥4)CUC V).

Thus g is a =-mapping.

LEvMMA 7. 4 mapping ¢: XY is o w-mapping with respect to B
-and D if and only if for any pair V1, Vs of elements of © such that V.CV,
there exists U ¢B such that

gHT) C U CgyYy).

Proof. The necessity of the condition is obvious. Tet A be a closed
subset of ¥ and let ¥, be an element of D such that 4 CV,. It follows
from Lerp_ma 5 that there exists V, ¢ such that )

ACV, and X\V,C XV, ie TV,CV,.
If U is a subset satisfying the condition of the lemma, then
gHA)CTCgy(Vy,).
Thus g is a 7-mapping with respect to B and D.
LEMumA 8. Let X be o peripherically compact space. Let us consider
an inverse system {a, X, 05}sez Of compactifications of the space X, where
0 @eX>ayX. Let oX = lim {a, X, 02}scx be the limit of the system.

If 0,X is a ®-compactification of X, for every o€, then aX is also
& m-compactification of X.

Proof. Let us take for every oe X a basis {UZ}“LU of ¢, X guch
that FrU A (aoX\\a,(X)) =0 for AeL,. Consider the base in P o, X

cexl
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composed of all subsets of the form P UZ , where lee Ly and U; = a, X 7

geX i

for all but a finite number of indices o ¢ X. We shall show that
(6) Fr(PU3) (aXia(X)) =0.

Of course, it suffices to prove (6) for P U;, where UZD # a, X for

exactly one index o« X, say o,.
Therefore we have

Ui)= P U; xFr Ui s

€x OnFoEX

Er(

and hence if x = {x,} ¢Fr( g U7) naX then x, ¢Fr Usy, 5, X C ap( X).
Since

00 X)) = 0 (X)  and 0 (0 X\ X)) = 6 X' 0y (X},

we have z, € a,(.X) for every ¢ ¢ X. Thus = ¢ a(X) and (6) is valid. This
complets the proof of the lemma.

THEOREM 4. Lot X be a peripherically compact space of weight T,
let B be a n-base of X and let &', D" be two families of mappings defined
on X and satisfying the following conditions:

(a) for any p e @', ¢: XX and ¢ is a - mapping with respect to B;

(b) for any ¢ e @", p: X~ T, where Y, is a compact space of weight
<7 and ¢ is a w-mapping with respect to B and a - basis B, of Y,;

() LD <.

There exists a compactification »X of X satisfying the following con-
ditions:

)

) vX s a m-compactification;

) w(X) <7

) vX is a @'-compactification;

) for every ¢ e @, there exists an extension 3: yX — Y, of o.
Proof. We may assume that for every ¢« @ the =-bage B, has

the cardinality <v. Consider any ge®” and the set of all pairs (Vy,V,)

such that 7,CV,CY, and V;e®B,, for i=1,2. The cardinality of the

set is evidently not greater than 7. It follows from (b) and Lemma 7

that for any pair (V,,7,) from our set there exists U ¢B such that

g (V) CUCg(T,).

Let us denote by % the subset of B obtained in this way for all ¢
in @”. Of course we have U < 7. Let B, be a =-basis satisfying the con-
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ditions ACB, CB and B, <. The existence of such a base follows from
Lemma 4. It is easy to see that, for ¢ =1, o, X = vy X satisfies the fol-
lowing conditions:

(L) e X 48 a 7-compactification determined by the base By;

(2)) Bi<v, WCB, CB, if i > 1 then B;_, CB; CB;

(84) if i>1, then every ¢ ¢ @' is a m-mapping with respect to B,
and Bi_;.

Let us suppose that, for ¢ < &, some bases B; and compactifications
a; X satisfying conditions (1:)-(3:) are already defined. Let us consider
the base By, and the set of all pairs (V;, V,) of elements of By_, which
satisty condition ¥, CV,. By (2;_:) the cardinality of the set is not
greater than 7. It follows from (a) and Lemma 7 that for any pair
(¥1, V,) from our set and any ¢ e @ there exists U «B such that

gV)CUC e {Va) .

Let us denote by U the subset of B obtained in this way for all
¢ in @” and letus put Wp= W, By—1; of course we have A, <r. Let B
denote a base satisfying the conditions of Lemma 4, where 9 is replaced
by Uy, and let ap X = vy, X. Conditions (14)-(3;) are evidently satisfied.
Now let us consider the inverse limit {a; X, o%} of compactifications ob-
tained in this way, where o} for %> is the natural map of the greater
compactification a; X onto the smaller compactification a;X. Let oX be
the limit of the system. We shall show that oX satisfies conditions (1)-(5)
of the theorem. Since by (2), »g X&> a; X for every i, condition (1) is satis-
tied. By Lemma 8 condition (2) is also satisfied. Condition (3) is satistied
because for every i we infer from (2;) that w(a;X) < 7. Condition (4)
follows from Lemmas 6 and 1. Finally, (5) follows from the definition
of %, the inclusion ACB, CB, C ... and Lemmas 7 and 6.

In an analogous way one can prove the following

THEOREM 5. Let X be a peripherically compact space of weight ,
let B be @ z-base of X and let @', & be two families of mappings defined
on X and satisfying conditions (a) and (c) of Theorem 4 and the following
condition:

(b") for any g e ®”, ¢: X Y,, where ¥, is a compact space of weight
<7, and @ can be extended to o map F: v, X =Y, of & n-compactification
v X of X into ¥,.

Then there emisis a compactification oX which satisfies conditions
(2)-(5) of Theorem 4.

Remark. In the first part of the paper we did not have to consider
the family & because we constructed there a ‘compactification greater
than a compactification given in advance. In particular we could take
any compactification over which every mapping from &'/ can be extended.

icm
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In the present’ situation that is not possible. In fact, if uX is different
from BX, then there exists a function f: X -7 that cannot be extended
over uX, and hence it cannot be extended over any cr-compactification..
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