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The interdependence of certain consequences of the
axiom of choice

by

A. Lévy (Jerusalem)

1. Introduction. Mostowski discusses in [7] the interdependence
of the following statements.

C*(a) For every function F on a (t) such that, for each g < a, F(B) is a non-
void set there ewists a function G on a such that G(B) e F(B) for
f<a

for «’s which are eardinals. The main part of Mostowski’s paper is devoted

to Tarski’s axiom of dependent choices:

D If R is a binary relation and A a non-void set such that (Ve A)
(Hy ¢ A)aRy, then there exists a sequence © such that i, Ruyy for
every m e .

Mostowski shows in [7] that D-C*w,) is unprovable without the
axiom of choice (?) in a suitable system of set theory and also that (Vg)
(B is a cardinal v B < a—>0*(B)) ~C*(a) is unprovable for any regular
cardinal « in the same system (®). The aim of the present paper is to
geperalize and strengthen the results of Mostowski, nsing methods similar
o his. )

In order to single out the information contained in C*(a) in addition
$o that contained in (V) (B is a cardinal A f < a~>C*(f)) we shall consider
the statement

(3) Lower case Greek letters denote ordinals. An ordinal ¢ is equal to the set of
all ordinale smaller than a. w, and K; will denote the A-th infinite cardinal (where the
counting starts with 0). || will denote the cardinality of .

(%) Whenever we shall say provable or unprovable we shall mean provable in the
Zermelo-Fraenkel set theory without nsing the axiom of choice, or unprovable in the
system & of set theory which will be specified in § 3, respectively.

(®) The exact mesning of this and similar gtatements, in which mathematical
and metamathematical variables are confused, will be discussed later.

Actually, Mostowski proved a somewhat stronger result, i.e., that some weaker
form of O%(a) (in which also |F(8)] < 2 is required) does not follow from (V8) (B s
a cardinal A B < a->O*(8)). However, the question of what effects do restrictions
on the cardinalities of the F(B)'s have will not be discussed in the present paper.
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O(a) Let I be a function on a such that, for cach f§ < a, F(B) i8 & non-vnid
set. If for every y < u there cwists a function H om y such that
H(B) e F(B) for B <y, then there exists a funection G on o such that
G(B) e F(B) for B < a.

It will be shown that the following statements are provable:
() O4a) (V< ) O(h). ‘
(ii) €(0), C(a-1).

(iii) Cla)—=C(f) if a and B are confinal with the same regular
ordinal.

It will also be shown that no €(B) follows from other ¢ (a)’s unless
it does so by (ii) or (iii).

We shall now generalize Tarski’s axiom of dependent choices, which
was originally formulated only for denumerably many choices to ar-
bitrarily many choices. Given a binary relation R we shall say that
& sequence A of length y is an R-admissible sequence if and only if
LYARR(2) for every A < y (4). We shall consider the statement

D*a) If B is a binary velation and A a set such that () (Vy < a) (VT e A%)
(T e A)fRwm; then there is an R-admissible sequence in A“.

It can be easily shown that D*(w)« D is provable, hence D is a special
case of D*(a). We shall now carry out here the same transition which
was carried out for O*(a), i.e., we shall congider the statement

D(a) If R is o binery relation and A a set such that (Vy < a)(Vfed)
(Hw e A)fBx and such that if y <a and f is an R-admissible
sequence in A" then for every v < & < a there is an R-admissible
sequence g in A° which entends f (2.6, J = g1y) then there is an
R-admissible sequence G in A

It will be shown that the following statements are provable:
(i) D¥a)= (VB < ) D(B).
(i} If o is regular, then D*(a)«s D(a).
(ili) D(0), D(a-+1).
(iv) D(a)—D{f)

if « and B are confinal with the same regular
ordinal.

It will also be shown that no D( B) follows from other D(a)’s unless
it does so by (i)-(iv).

(*) By & sequence of length
of b to 2= {<u, h(u)>|pu < 4}.
(*) Unless otherwise mentioned z¥ is the set of all functions on

¥ we mean a function on 7. h4A is the restriction

y into w.
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Finally, we shall consider the statement (8)

H{w) If A is a set such that |A| > wg for every f <a (and, for a = 0.
|A| > n for every n e w), then |A| > w, (ie., there are no sets 4
for achich & (A) == o, ercept the obvious ones).

Tt will be shown that the following statements are provable:
(i) If B = a, then H({wp)—H (o).
(ii) If p> « and a, f are limit numbers confinal with the same regular

ovdinal, then H (wg)->H (w,).

To prove (ii) we use some form of the generalized continuum hypo-

thesis.

It will also be shown that H(ws) does not follow from other H (w.)’s
unless it does so by (i) and (ii). ‘
The interdependence of the C(a)’s, the D(«)’s and the H(w,)’s will

De studied. Some of the results arve: D(a)—C(a) for every «, D(wy)—H (m,)

for every a, C(w,)—~H(w,) for every limit number «. On the negative

side, it will be shown, among other things, that ('Va) O(a) @es not imply

D(B), where # is a limit number not confinal with . It is unknown to

the author whether O(w)-D(w), and more gencrally, whether for any

regular ordinal w, where o is a limit number (i.e., a weakly inaccessible
number) (VB < w.)D(f) A Cw,) implies D{wy).

2. Positive results. The following Theorems 1-16 are Theorems
of Zermelo-Fraenkel’s set theory without the axiom of choice.

TurorEM 1. C(0), C(a-+1).

The proof is obvious.

We shall say that « and § are cofinal if and only if a and § are limit
numbers confinal with the same regular ordinal (7).

THEHEOREM 2. If a end B are cofinal, then C(a)« C(f).

Proof. Without loss of generality we can assume that a is regl}lar
(otherwise there is a regular ordinal y with which ¢ and § ave confinal
and then C(a)« C{y)«C(p)) and > c . .

Agsume O(B). Let f be a function on o such that f(y) is 2 non-void
set for y << o and such that for every y < « there is a function % on y
such thabt % (4) e f(A) for 1 < y. Let u be a sequence of length « ascending

(%) We assume that formulas containing the notion || are n.hbr('avia.tious of other
formulas which do not contain this notion. N(z) is the least ordinal 2 such that
< |x|. ) o
W no?’) Florl the definitions of the notions of a regular 01"(11113,1 :mq coufma.hb'y a‘nc;
for theorems concerning these notions which are proved “fxthout using Fho? a,xx;il;a 1o
choice see [1]. Unlike [1] we shall use the term rsga{;lar ordinal only for limit ordinals.

Note that every regular ordinal is an infinite cardinal. .


GUEST


138 A, Lévy

to 8. Define ¥ on f by F(u,) == f(y) for y <« and F(1) = {t} otherwise
where i is a fixed element. Let J < §, then for some y < « & < u,; let 7;
be a function on y as above; put H(u;) = h(A) for w, < § (in which case
A<y) and H(4) =1 for 1< otherwise; then H(A) ¢ F(1) for A< 5.
By O(p) there is a function @ on f such that G(y) ¢ F(y) for y < f. Put
g{2) = G(m), hence g(A) = G{w;) ¢ F(u:) = f(4) for 1< a and thus ((a)
is proved.

Assume C(a). Let f be a function on f such that f(y) 5= 0 for y <
and such that for every & < f there is a function h on 6 such that h(y)
€ f(y) for y < 6. Let p be n sequence of length o ascending to . Let' ¥(4)
={hlh is a function on w, with h(y) e f(y) for y < 3} for 4 < a. By our
hypothesis concerning f, and since u; < g for A < a, F(A) # 0 for 1 < a.
Given any ¢ < a let % < F'(o) and put H(4) = hfu for A< ¢; obviously
H(x) e F(A) for A< a. Thus, by O(a), there is a function ¢ on a with
G(2) ¢ F(2) for A < a. Define g on by g(y) = G(4)(y) for y < B, where 1
is the least ordinal A for which y < ;. Obviously g(y) ef(y) for y <p
which proves 0(). '

THEOREM 3. O*a)« (VB < a) C(B).

Proo'f. (i) B<a->(C*a)->C¥p)). Let f be a function on B such
that f(y) is a non-void set for y < f. Let ¢ he a fixed element. Put

_ iy for oy <p,
F"’)"l{f} for f<y<a.

By C*(a) there is a function ¢ on o with G(y) e (y) for y < a. G4 is
the function required by O*(8).

(i) 0*a)—>C(a) (obvious).

(ifi) O*(a)>(VB< a)0(B) (by (i) and (ii)).

(iv) (VB < a)0(B)—~0*(a). We shall prove it by induction on «.
Agsume (Vg < ) C(f). By the induction hypothesis and (V8 < «)C(B)
we have (Vf < a) 0%p). If a = 0, (*(a) is obvious. If a = d+1 for some 4,
then G*(_a). follows immediately from C*(8). If @ is a limit number let f
bfe a ﬁu%etrlon.on o s.ueh that f(y) is a non-void set for y < . The condition
of C(a) is fulfilled since (V8 < a) C*(8), hence, by C(a), there is a function ¢
on « such that g(y) ¢f(y) for y < a; thus C*(a) is proved.

THEOREM 4. D(0), D(a+1).

Proo_f. D 50) ig obvious. To prove D(a+1) extend an R-admissible
sequence in A" to an R-admissible sequence in A+,

TEEOREM 5. If o and 8 are cofinaly then D(a)«sD(B).

5 fro of. Without loss of generality we assume that « is regular and
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Assume D(f). Let A be a set and R a binary relation such that the
conditions of D(a) hold, then 4 720 since a> 0. Let u be a sequence
of length « ascending to §. Define the binary relation 8 as follows (8):

PRz iff D(F) =y < f, xed and .

(i) y = us for some § < a and fRx where f is the function on & defined
by f(3) = F(pa), for 2<4,
or

(ii) y 5% us for every 6 < o and ® is an arbitrary member of A.

Since, by our assumption, A and R satisfy the conditions of D(a)
and since 4 == 0, one can easily verify that 4 and § satisfy the conditions
of D(B). Thus, by D(B), there is an S-admissible sequence @ in 4%, Put
g(0) = G () for o < a. As is easily seen ¢ is an R-admissible sequence
in A% which proves D(a).

Assume D(a). Let A be a set and R a binary relation which satisty
the conditions of D(f). Let B = ;L<j A"* We define the binary relation §

as follows:

FRh iff DF) =y < a and

(i) F(A) is, for every A<y, an R-admissible sequence in A*? F (&)
C F(A) for § <A<y, b i8 an R-admissible sequence in A"» and F(1) C h
for every A <y,
or

(ii) I does not satisfy the requirements above and h is any member of B.

Since A and R satisfy the conditions of D(B), B and § can be shown
to satisfy the conditions of D(a). Therefore, by D(a), there is an §-ad-
missible sequence @ in B°. One can prove, by induction on 1 < @, that
@12 satisties the requirements on ¥ in (i) and hence that G(A) e A" We
define ¢ ¢ A7 by g(y) = G(A)(y) where 1 is the least ordinal 1 such that
y < u;. Since G4 satisfies for A< o the requirements on F in (i) one
can prove that ¢jus = G(3) for 2 < « and that g is R-admissible, which
proves D(f).

LeMyA 6. D*a)—-If A and R are as in D*a), y <a and f is an
R-admissible sequence in A7, then there is wn R-admissible sequence g in
A® ewtending f.

Proof. Define the binary relation § by hSz iff hRo and if h=fic
for some o <y then = f(0). Ay immediately seen, for every o< a if
% e A° there is an @ A such that 18z, By D*(a), there is an §-admissible
sequence g in A% ¢ is, obviously, also R-admissible. To see that g extends
f one proves g(¢) = f(¢) by induction on ¢ <y.

() D(R) is the domain of the relation R, D(E) = {o|(Ty) (<wy> € B)}. R(R) i
the range of R.
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THEOREM 7. D¥(a)r(Vh < a) D ().

Proof. (i) p< a—(D¥a)—>D*B)). If f==0, then D*(B) is obvious.
If >0, let A and R be as in D¥(B). We define the binavy relation § ag
follows: '

18a iff D(f) < B and fRa or D(f) = and e A.

Since g > 0, 4 5= 0 and the requirements of D*(a) are fulfilled. By
D*(a) there is an §-admissible sequence g in 4% ¢g18 is an R-admissible
sequence in 4%

(ii) D*(a)—>D(a) (obvious).

(iii) DXa)—= (VB << a)D(B) (by (i) and (ii)).

(iv) (VB << a) D(B)—~D*a). Wo shall prove it Ly induction on
Assume (VB < a)D(B). By the induction hypothesis and (VA = a)D(B)
we have (V3 < a) D¥(8). If a = 0, D*(a) i3 obvious. If « = §--1, for some 4,
then D*(a) follows immediately from D*(d). If a is a limit number let A
and E e as in D*(a). The additional condition of D () with respeet to A
and R is fulfilled becaunse of (Vf < a)D*(f) and Lemma 6, hence the
consequence of D(«) holds, which proves D*(a).

TuEOREM 8. If a is regular, then D(a)->D*(u).

Proof. Let a be regular and assume D(a). Let A be a set and R
4 binary relation such that for every y < a and for every fe A” there is
an ze A such that fRz. We have to prove that there exists an R-ad-
missible sequence in 4%

Let B = (ax4) X (2 X a). We define the binary relation § as follows:

gBy iff g e B® for some 8 <a and

(1) D(R() is a function f, D(f) =0 for some o< a, o is’a limit
number or O or o is mot a limit number and for some s e A and B < a
Lo =1, 25BBY) e R(y), and y = {(ox> (E0>>, where % € A, fRw and & < a,

or

(ii) D(R(9)) is o function f, D(f) =0 <a, o is not a limit number,
fornozed and §<ais {o—1, 2> <FAOY e R(y), and y =({o—1,a> YD,
where for some ¢ {{o—1, x) EH> e Rig) and {{o—1L, ¥dLESD> e R{g), for
every & <, but {(o—1, x> &> ¢ Rg),
or
{iil) D(R(g)) is not a Junction, or it is a function f and D(f) ¢ « and
yeB.

‘We shall now see that B and § satisty the conditions of D (a). Let
geB, 8<a Obviously, g must satisfy the requirements of one of the
cases (i), (ii) or (iii) above. In cases (i) and (iii) there is obviously a y ¢ B
such that ¢8y. In case (ii), since f=D(R(g) and D(f) = o there are
£, % < a such that Ko —1, f(o—1)> &35y « R{y). Let u be the least ordinal
<afor which {{o—1,f(c—1)>¢Ind>¢ R(g); then gS{o~1,f(o—1)3 LD
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mhere is always such an 7 since {{o—1,f(c-1)><>>¢ R(g) (note that
flo—1) € 4 since ge B’ and f =D(R(g)))-

Before we shall continue to show that B and § have the properties
required by D{a) we shall show first that if ¢ is an §-admissible sequence
of length 8 < a, then D(R(g)) is an R-admissible sequence of length
o< a and if & < @, then also ¢ < . This will be shown by transfinite
induction. on. 8. If § is a limit number or 0, then g = %g’]r, f=53(?i(g))
= D(ﬂt(g’}r)). The right-hand side i3, by the induction hypothesis, the

7<d . L

union of an ascending sequence of R-admissible sequences, therefore
f is an R-admissible sequence. Also by the induction hypothesis the
lengths of the sequences are ordinals <, therefore the length of the
union f is an ordinal e, and it is <a if 6 < a (becanse « is regular and
hence o is not the limit of a sequence of length é < « of ordinals less than a).
If 6 is not a limit number, then § < « and, by the induction hypothesis,
3)(9{(,(/1(6——1))) is an R-admissible sequence 7' of length ¢’ < « and thus
¢1(6—1) satisfies the requirements for ¢ in (i) or (ii) above. If y4(6—1)
gatisfies (i) then, since ¢4(6—1)8g(d—1), g(d—1) = {o'z> ({05}, where
wed, f'Bo and {<a ¢=g1(6—1) v {{5—1g(6-1)>}, [=DR()
.—_D(%(g’](é—l))) w [o'wd) = f' v {Ko'xd}. Since D(f) =, ,'l i's a se-
quence of length ¢’ +1; f is R-admissible since /' is B-admissible and
'R, I8 ¢1(6--1) sabisfies (i) then g(8—1)= {{o'—1ad<n>>, where
Lo =1 @ B> e R(g) Lor some & < a, hence (o' —Layef’, g = g(d—-1) v
U {8g(8)2), | =D(R() = D(R(g1(6—1)) v {(o'—1 2} = F' v {o'=1 2D}
=/ and then what we claim follows immediately from the induction
hypothesis. .

Now, let ¢ be as above, 6 < a, and 6 < g < a. We shall show that
there exists an S-admissible sequence % of length ¢ extending ¢g. From
what was shown above it follows that g satisfies (i) or (ii) above. If g
satisties (i) lot g == 647, v <a and we define k(1) =g(l) for 1< 4,
W(6 +4) = <ow) {xAd}, where @ ¢ A and fRe, for 2 <v. It is easy to see
that kb is §-admissible. If ¢ satisfies (ii) then, as we saw, g8{{c—1 &} vy
for some @ e A and &, 9 < a. <& since in case (ii) there is no z « A and
B < a for which {{o—12>BY> e R(g) and (Lo~} <& e Rg) for
all &< 9. Let ¢ == y-1v. Weo shall define a funetion » on d-4r-+1- as
follows: I/(3) = ¢(A) for A<f, W(8+2)=<Ko—1a>{ n+Ayy for A<
As i easily seem &’ is an S-admissible sequence of lven'gth d+v+1. If
0 < 84741, then put h=NW1e and % is an § -admissible sequence of
length o extending g. If 8- -+1< o then, since 1'(8+7) =<{o—1 2> &L
W satisfies (i) and then, by what we saw above, k' can be exten(}ed to an
§-admissible sequence % of length p, which is also an extension of g.

By D(a) there is an §-admissible sequence G ¢ B As we saw ab‘ove
v =3>(€R(G)) iy an R-admissible sequence of length ¢ < a. If we prove
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c=a we are done. For 1<<a let G(4) = {{G(A)Gy(2)> {Fa(A) Gy{A)3>,
then R(G,) = o. It is easy to see that @, iy a non-decreasing function,
on a. For u <o let A, be the least member of {A< a|Gy(4) = u}; then
since & is §-admissible, we have, for y < Gy(4.), Gi(h+7) = Gy(4,) = 4,
Gy(A,+y) = G‘s(ly)y Gs(lu'*'?’) = Gs(}»,«); Gg(ﬂu +V) =y, and Gl(ﬂ,, -+ Gﬂ(}“ﬂ) +1)
= G4(4)+1 = p-+1. Thus G gets the value u <o exactly Gy(4,)-+1
consecutive times. Therefore ¢ = Y (Ga(ly) -%-1). For p <o we have
n<osa
Gy{d) +1 < a since G(4,) € B = (a<d)x (axXa) and « is a limit number.
Therefore a = 3 (G4(4,)--1) implies o = « since « is regular.
w<o<sa

THEOREM 9. D(a)—>C(a).

Proof. Assume D(a). Let I be a function on a as assumed in ¢/(a).
Put 4 = ﬂL<j F(B); fRe iff f is a sequence of members of A of length y < a

and z e F(y). R and 4 are easily seen to satisfy the requirements of D(a),
hence there is an R-admissible sequence G in A°. By the definition of R
we have G(B) ¢ F(p) for B < «, thus proving O(a).

LEMMA 10 (°). ~H (we41) —>there emists a set A such that |A|non > o,
and whenever A = Cu D if 0] < @4y then |D| = w,.

Proof. By ~H(w,41) there is a set B with |B|non > wg41, |B| > ©,-
Put 4 = w, X B.

(i) |4|non > we41 because if |A| > wq4, then, for some subset ¢ of 4,
[Cl'= 0ut1. Lot D = {&|(wq X {8}) ~ U 5% 0}; then € C o, D, hence vy,
< o D|. But D ig a projection of the well ordered set €, hence D can
be well ordered and therefore, by .1 < wiD|, we have |D|>= woiy,
hence {B| > wy11, & contradiction.

(i) et 4 =0CuD and |0 < w,. Let B = {w|(w. x {€}) ~ C 5= 0}.
E can be well ordered since it is a projection of the well ordered set C.
Since B cannot be well ordered (because |B| > w,, |[B| non > wqy,), F is
a proper subset of B and there is a ¥ e B—H. (0 X {§}) ~ € = 0 hence
@ X {y} C D, |D| > a.

THEOREM 11. D(w,)—>H (w,).

Proof. Assume ~H (w,). Let 4 be an infinite set with |A| = wp, for
B < a,|A|non > w,. If ais not a limit number we can assume, by Lemma 10,
that whenever A = C v D and |0} < w, then |D| = wp for each B« a.
This is always true if « is a limit number (since then, if |0] < wuy |C]| = w,
for some y < « and, |4] > w;, for y+1 < B < a, hence A has a subget E
with | B} = ws; B = (B~ C)u (B~ D) and since Bl <0 = o, < v,
we have |E ~ D| = s, hence |D| > ;) or if « = 0. Define the binary
relation R as follows: fRx iff f 4s.a one-one mapping of an ordinal into A

(?) ~ is the negation sign.
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and e A—R(f) or | is not a one-one mapping of en ordinal into 4 and
ze A Iffis an R-admissible sequence of members of 4 of length 6 < w,,
then f is ome-ome and [R(f}| = 0] <, Let 6 < o<, |o| <.
A =R(f) v (4—=R(); since |R()] < wqy [4—R(f)| >|o|. Therefore there
is a one-one function ¢« A? which extends f and whieh is, lence,
R-admissible. If f is not onc-one, then fRz for every zed #0. By
Diw,) there exists an R-admissible sequence F in A%, By the def-
inition of R, F iy one-one and hence [4] > [R(F)| = o, contradicting
our choice of L.
TrEorEM 12 (19). (V) D{(a)« »(Va)H (wq)«>the axiom of choice.
Proof. (i) (Va)D(u)-~(Va)H(w,). This follows from Theorem 11.
(i) (Va)H (o00)-=the awiom of choice. By the theorem of Hartogs [3] for
every set @ there is an aleph o, sueh that w;non <[z}, whereas o, < {|
for every p <2 2. By H(w,) there is a u <4, namely = -1, for which
{#] = w,. Hence  can be well ordered. Thus we proved the well ordering
theorem which implies the axiom of choice.
(ili) The awiom of cheice—(Va)D(a). Let A and R De as in D{a).
By the axiom of choice we can assume that A is well ordered. Define ¢
on « as follows: For p < «, G(y) == the first member of A for which (G y)Ra;
there is always such an & ¢ 4 by the assumptions on B and A. This function
@ is obviously R-admissible.
THrRorEM 13, If « 45 a Umit wwmber or 0, then C(wd)—H{w).
Proof. et 4 be an infinite set with [4] > o, for § < a. We define F
on w, a8 follows: F(y) = {fe A’|f is one-one} for y < w.. Let 0 < g,
18] < @, hence there is a g ¢ A% which is one-one. gy eF(y) for y <é.
By ((w.) there is a function ¢ on o, with G(y) eF(y) for y < w,. Putb
Wy, 8) = G{y)(8) for o<y Cw. WA m(G(wﬁ)) for B <a, hence
M| = w; Tor B < a Also ‘H(h);“){(G(n)) for 1 < o, hence |R(h)| = n
for n < . Since R(k) can be well ovdered (because D(h) can be well
ordered) |R(H)| = w., hence |A] > wa.
TrmoREM 14, B <5 a-r (H (0g4a) +H (e9)-
Proof. Assume H(mgpy) and let f:5a Let 4] > o, for y < . Let
B = {0} AU {1} X o, Obviously |Bl2 @ I B= o, then [4] < a
and, sinee |A] > o, for y < f, 4] 2 ap. I [B]> 0 'then, by H(wat1)s
IB| > eqs, i, B has n subsefi ¢ with [Of = 0w Since |0~ ({1} X wa)}
L 0n, [~ (0} % A)] =5 04epg, hence [A] 2 0wa > O |4] > wp. Thus we
proved H(wp).
10) 1 Teor k() o0l (o) s well ag (Va)D¥(a)«» (Vo) H (w,) < the axiom
of ch(Sic)e f;;ietlltfﬂiwtl;lsaf:o,((i);)depelgdglxtly, to Myecielski (in an unpublished paper).
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THROREM 15. Let o be a limit number or 0 and let 1> o be such that
o, and o, are cofinal; let () wynon < 2% for every v < o3 then ()
H(w;)—~H(0,).

Proof. Assume H(w,)) and let 4 be a set such that |4| > 8, for
every 7 <<o. We shall prove that |4|> s, by contradiction. Assume
|4|non > x,.Let y be the regular ordinal with which o, and w, are
cofinal, and let u and » be sequences of length y ascending to w; and w,
respectively. Let B = {KfE)|(HB < y) (f is a one-one function in A’ (md’
{<mp)k

Since | 4] > |£] for & < w,, we have |B| = |up| for f<y and hence,

since %in Ug = w;, we have |B| > o, for 5 <1, and since 1 is a limit
¥y

number (because «; is singular), [B| > w, for 5 < . By H(w;) we have
|B| > wi. Let € be a subset of B with |(| = w;. Consider the set

D :jeg(lc )?R(j). Since € is well ordered and all the R(f)’s are well ordered

uniformly (since the f’s are functions on ordinals), D is well ordered.
Since DC 4 and s,non<|4|, we have |D|<x,; let 8 be the least
orydina:l 0 with | D] <{wl. OC KEONEB <) (f is a one-one funetion in
D% and ¢ < pp)} C ;\/jd {fIf is a one-one function in D'} X ug.

If we put, for 8 < 0, By = C ~ ({f|f 45 a onc-one function in D7} x )
we get ¢ =ﬁg’ Ey. By is, for B < 6, well ordered by the well ordering of C,

hence D(F;) is also well ordered. Since D(Es) C D 7 Pl
(1Dl : > D(E) C D7, [D(By)| < | D™
< max (D], 5|0, It max(|D|, vs)) is infinite, then

ma/X(}D], [Vﬁ‘)mux(lDHvﬂi) — 2]\1ux(|1)|,|vﬂ[)

and since max ([D|, [5]) < oy, we have, by one of the assumptions of the
theorem §;non < 2P Tf wax (D), 5)) is finite then obviously
s;non < 22D Thug in any case x;nom < 1D (Bp)|. Since D(Hp) Py
be well ordered, we have |D(Hj)| < &, for B < 4. Since By C D (Bp) X py
aal}d dp < o1, we have By <s;; and since y iy the reg;la.r ordinal
with which w; is confinal and § <y, [0] = [ U Bsl < 8z, which is a con-
tradiction. f<d ’

THEOREM 16. ¢ (@)= (V) (Hy = B) (0, and w, are confinal A H(w,)).

Proof. Assume C(w,), then by Theorems 2 and 13 we have even
(Vy>a) (0, ond w, are confinal—H (,)). Now, on the other hand
assume (V3) (ff.[y = B) (0, and w, are cofinal p H (w,)). Let f be a func’r,im{
on o, as required by C(w,). We have to prove the existence of a function
¢ on o, such that g(y) e f(y) for Y < wqa. Define I on o, as follows: F(y)

(;1) %y 2%, |a|™, etc., we mean oardinal exponentiation.
(**) Note that for o= 0 the last hypothesis is trivially true.

icm®
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= {nDH) =y A (VE<y) (n(8) €£(8))} for ¥ < w.. By the assumption
on f we have F(y) # 0 for y < w,. Let (%)

0y = nmx(sup s{F(v)), cu(,+1) .
y<wag
Let ¥ = f be such that w, is confinal with o, and H(w,) holds. Let
¢ be the regular ordinal with which o, and o, are confinal. Let g and »
be sequences of length o ascending to o, and m,, respeetively. Let

B = UmXF(V;.)~
A<a

Obviously | B} > |u:| for 2 < o, hence |B| > w, for n < y. y is a limit
ordinal (because it is singular, being cofinal with w. < w; < o, and hence,
by H(w,), |Bl > w,. Let CC B, |0] = w,. C =)0~ (‘u;, XE(5)). pa< oy,

i<a

also 8(F(r)) < o,, hence ‘C ~ (wa xli'(w;,))l < w,. Sinee ,, is not the
union of less than |o| sets of cardinality less than o, we have that
Cn (/M. X F(v)) 7 0 tor arbitrarily large A’s less than o. Let 7 be a sequence
of length o ascending to o such that €~ (u, XF(v,)) #0 for A<o.
Define @ on o by G(4) = the second component of the first member of
Cn (,u,lxlf’(wq)) (in @ fiwed well ordering of C), for A < ¢. Define g on
o, as follows: ¢(8) = G(4)(d) for § < w,, where 2 is the least ordinal for
which 6 <»,. Thus we have ¢(8) = G(1)(8)ef(d) for &< a, since
G(A) e F ().

3. Negative results. Now we shall show that certain cases of
the statements considered above (C(a), D(a) and H{w,)) do not follow
from appropriate conjunctions of other cases of these statements. This
will be done by methods developed by Fraenkel and Mostowski.

Even the independence of the axiom of choice itself is still an open
problem for systems of set theory which do not admit urelements or
non-founded sets. Thus we can hope, for the time being, to prove the
above mentioned independence results only for a set theory which admits.
either urelements or non-founded sets. We shall choose a set theory which
admits only urelements; however, the same results hold for a set theory
which admits only non-founded sets (see, e.g., Mendelson [5]). To prove
those independence results ome can use @ set theory with ov without
clagses. Tor the sake of convenience we choose the system & of set theory
given in Mostowski [6]. This is a set theory of the Bernays-Gddel type,
i.e., with classes, which permits the existence of urelements, but not
of non-founded sets, and which does not have the axiom of choice among
its axioms.

Tf  is consistent, or if the system A, B, C, of Godel [2] is congistent,
then, by the construction of Gddel in [2] the system 4, B, ¢, D, B, H
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of [2] is consistent, where H is the generalized continuum hypothesis —
(Va) (2% = 8,41). This consistency will be assumed throughout this para-
graph. This assumption cannot be avoided since if S is not consistent
no statement can be independent of any other statement in &. Let S*
be the set theory obtained from & by adding two symbols for constants
I and < and axioms D, H, H and “L is a class of urelements, L is not
a set and <3 well-orders L. Within the system 4, B, 0, D, H, H we define
the classes Uo={x— (0} a2}, U=yl (@){yetn (Voen)(o0o
AfzCitvae er)))}. We interpret &* in the system 4, B, 0, D, E, H
by translating “class” as “subclass of U, “element” as “member of U”,
0as 2—{0}, L as Uy— {2—{0}} and < as {<a—{0}, B—{0}>|3 L a < f).
It is easy to see that the axioms of &* go over to theorems of 4, B, (,
D, E, H in this interpretation, and hence G* is consistent.

In § 4 we shall give an interpretation J; of & in &* which depends
on » formal parameter B, i.e., every sentence of & goes over to a formuly
of &* with the free variable 8. In J; every axiom of & goes over to
2 formula ¢(8) such that (Vg)e(B) is a theorem of &* It will be shown
in § 4 that the following statements (a)-(g) go over by J; to theorems of S*.
In the following we write o, for the regular ordinal with which w; is
cofinal. Note that in the following (a)-(g) § and a arve fixed, wheveas y
is a variable.

(a) If o, is not cofinal with wg, then CO(w,). If p is not a Timit number
or 0, then also C(wp). ‘

(b If B is a limit number or 0, then ~ C(w;).
(e) If y < a, then D{w,).
(A) If w, is regular and y > a then ~D(w,).
(e) If y < B, then H{w,).

)

() If y is a lmit number or 0 and o, 18 not cofinal with ws, or

if B is not a limit number or 0 and y is any limit number or 0, then
H(w,).

(8) If y = B and either y is not a Vimit number or 0, or B is & Wit
number or 0 and o, is cofinal with ws, then ~H (@,)-

By Theorems 1, 2, 4 and 5, (a)-(g) give all possible information con-
cerning the CO(y)’s, the D(y)’s and the H(w,)s.

Let us see now what conclusions can be réached from Jp, using
{a)-(g), concerning the independence of the various statements. ‘We shall
now arrive at some independence results informally and only later we
shall diseuss the exact formal meaning of what will be said now. By

Theorems 1, 2, 4, and 3 we shall deal with the ¢ (y)’s and D(y)’s only
for regular ordinals y.
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Independence of ((w,), where o, is regular. (Vy)(w, is regular
Ay a=>0(w,) A (V) (v < a—>D(w,.)} AVY) (y< BV yis a limit num-
ber or 0 and o, is not confinal with w,->H (0)7,)) does not imply C(w,) in &,
for any f.

In (a)-(g) wp is confinal with w,, but since for every ordinal f there
is an ordinal f'> f such that wy is cofinal with Wy, 0.8 B =4
we can drop the assumption concerning the confinality of wg.

It is easy to check that this result concerning the independence
of C(w,) cannot be improved since the addition of anything new to the
eonjunction will cause it to imply C(w,) by the theorems of § 2. Note
that one cannot expect H(w,) to hold for arbitrarily large »’s such that
o, is cofinal with w,, by Theorem 16, and hence, by Theorem 14, the
same is true also for H(w,) with non-limit number y.

!
T Oay

Independence of H (w...). (Vy)0(w,) A (Vy < a)D(w,) A (Ty)(y <a
vy 48 a limit number or 0—~H(w,)) does not imply H(w.,) in &.

This is obtained by substituting a-+1 for « and § in (a)-(g). It is
easy to see that this result cannot be improved.

Independence of H(w;), where $ is a limit number, o, is
the regular ordinal with which oy is confinal A (Vy)(w, is regular A p %~ a—
=C(w,) A (Vy < a)D(w,) A (Vy)(y < BV y is a limit number or 0 and
w, 1§ not confinal with w,—H (w,,)) does not imply H(ws) in &.

Also this result cannot be improved for the theory obtained from &
by adding to its axioms the generalized continuum hypothesis, by
Theorem 15. Hence, an improvement of this result for the theory &
itself would give, as a by-product, the independence of the generalized

-eontinuum hypothesis in &, and hence in the system 4, B, 0, D of [2].

Independence of D(w.i). (a) (Vy)C(w,) A (Vy < a) D(w,)
A (Vy)(y < aVy s a limit number or 0—>H (w,,)) does not imply D(w,t1)
in G.

(b) (V) (o, ds regular A y # a+1->C(w,) A (V¥ < a)D(w,) A (Ty)
(y <PV y is alimit ordinal or 0 and o, is not confinal with w.4,—~H(w,))
does not imply D(w.4+1) in &, where § iy any ordinal.

The best independence result for D(w..;) one can expect in the
light of § 2 is stronger than (a) and (b). Itis: (Vy) O(w,) A (Vy < a)D(w,) A
A (Vp)y < BV y is a limit number or 0—H (w,)) does not imply D (w.ss)
in &, where # is any ordinal. Whether this is true or not is unknown to
the author. In the special case of D(w,), (a) can be slightly improved,
as will be mentioned later.

Independence of D{w,), where « is weakly inacessible or 0.
(a) (Vp)O(w,) A (Vy < B)D(w,) A (V) < BV y is a limit number or

Fundamenta Mathematicae, T. LIV 10
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0—->H(w,)) does not imply D(w.) in &, Where pis an ordilml.such that
p+1 < a. (This is obtained by substituting f-+1 for « and # in (a)-(g).)

(b) (Vy)(@, is regular A y 7 a—C(w,)) A (Vy < a).D(w,,)‘/\ (V9)ly<pv
vy is a limit number or 0 such that w, is not 0?’)»f19l(&l with w, —>H(w7,)}
does not imply D(w,) in &, where 8 is any orchnal.’ i

Here, again, one can expect a st-rong.er‘ result, i.e. that (Vy)C(w,)
AVy<a)D(w) A (Vy)y<Bvyisa }’mmt m.mnbevr or 0—+H(w,)) does
not imply D (w,) in &, where f is any ordinal. It is 1}1ﬂfuown to the author
whether this is true, even in the case a = 0, where it is unknown whether
C(w) implies D(w) in &.

To study the formal meaning of the independence results we shall
deal only with one simple independence result since the same procedure
can be applied to all other independence results. Only oceasional remarks
will be made concerning the other independence results.

‘What does it mean that, for every ordinal a, (Vy < a)D(w,) does
not imply D(we:) in &7 Of course, this has no immediate meaning at
all since we cannot quantify with a formal variable « the metamathema-
tical statement “(Vy < a) D(w,) does not imply D(w.41) in &’. However,
we can give the quantified statement two different formal meanings.

The first meaning is as follows. Let & be a term in & which can be
proved in &* to be an ordinal, and let « be absolute with respect to the
interpretations Jg, i.e., if we denote with «® the tranglation of the term
a in J;, then (VB)(e = a®) iy provable in &* The independence result
is that (Vy < «)D(w,) does not imply D(w,4:) in &. The same meaning
can be given to all other independence results. Whenever g occurs we
have just another term @ which meets the same requirements like o,
and if f < o is mentioned we require also &* -2 < «. To see that the
independence results are correct under this meaning all one has to do is
to substitute « for o throughout § 4 and notice that all proofs remain
correct.

The requirement of absoluteness (with respect to J;) of the teirm a
is quite natural. Every decent term like 0,1, ey, o, 0,, ete. is absolute.
If - and o are absolute 50 are = —+a, =- s, w,, 859, ete. Indeed, any term in
whose definition all the quantifiers are vestricted to the part of the universe
which is founded on the void set (i.e., restricted to the class U given
by ze U (Ht)(met A (Vyet)(y C 1)) is absolute. To see why the re-
quirement of absoluteness is necessary consider the case where « is the
term “the least ordinal o such that D(wey:) if there is such an ordinal, and
1 otherwise”. We shall see that (Vy < o)D(w,) does imply D(wew). If
there is an o such that D(wa41), then D(was), hence (Vy < a)D(w,)
—D(wa41); if there is no such o, then e=1 and since ~D(w,;), we have
(Vy < @) D(@,)>D{wara). ' ‘
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The second meaning is more natural that
semantical notions rather than the simple syntactical notions used for
the first meaning. Now, the above independence result will be understood
as follows. For every model 4 of G and for every ordinal « of A there
is a model M’ of & with the same ordinal numbers such
¥ < @, y satisfies the formula D(w,) in M’ whereas «
D(w;) in M'. The other independence results are given the same meaning.
To see that the independenée results are correct under this meaning
notice that the interpretation of &* in & (via 4, B, (, D, E, H) given
in the beginning of this paragraph actually gives us a construction of
a model A" of &* for every given model 4 of & (or of 4, B, C of [2])
such that the ordinals with the relation < in 0" are isomorphic to the
ordinals with the relation < in 0. Thus we can replace H'' by an iso-
morphic model 6’ of &* in which the ordinals and the relation < are
the same as the ordinals and the relation < of (. The interpretation
Jp produces, starting with A, a model 4’ of S which has the same
ordinals with the relation < as 6 and in which (a)-(g) hold for the
given f.

In § 4 we shall give also another interpretation § of S in &* in which
the following sentences go over the theorems of G*:

(8) (V) O(w,).

b) D(w).

(b)
() If w, is regular and y # 0, then ~D(w,).
(d)

)

the first, but requires

that, for every
+1 does not satisfy

d) If y is 0,1, or o Umit number, then H(w,).
(e) If v 0,1 and is not o Wmit number, then ~H(w,)

Independence of D(w). (a) (Vy)C(w,) A D(w) A (Fy) (p=0vy
=1V y is a limgt number —>H(w,,)) does not imply D(ey) in &. (Part (b)
is just part (b) of the theorem on the independence of D(w,+;), Where 0
is substituted for a.)

Part (a) is a slight improvement of what we get from part (a) of
the theorem on the independence of D(w.1) by substituting 0 for g,
since here H(w;) is added.

4. The interpretations. We proceed now within S* Let K be
a nou-void set of urelements. We define: K, = K, K, = K v |_J P(K,),

#<n
where P (o) is the power set of . We say that  is a K -element iff there

exists an ordinal 7 such that # e K,. Let @ be the group of all permutations
of K. For ¢ ¢ and a K-element z we define @ (i) as follows:
() p(2) is, for weK, already defined; o(z)= {p(y)ly e} for ¢ K.
One can easily verify that
(2) pp(@) = plw(®)); 1(w) = x, where 1 is the identity on K.
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Let ¥ Dbe a subgroup of &. Let @ C P(X) have the following prop-
erties: .
i) UQLK,

(ii) a,beQ—avbeq,

(iii) s e Q@ A pe P—pla) Q.

Let the variables a, b, ¢ range over §. A permutation ¢ ¢ ¥ is said
to be b-identical iff ¢(») = x for every » ¢ b. The group of all b-identical
members of ¥ will be denoted with P°. An element « is said to be b-sym-
metric iff @ is a K-element and ¢(x) =2 for every ¢pe Y We define

(8) @ is an M-element iff © is a member of some set 1 such that i is
ramsitive (i.e., u v et—u et) and such that for every member y of ¢ there
is ¢ b eQ such that y is b-symmetric.

(4) X is an M-class iff every member of X is an IM-element and
(@b € Q) (Vg « ¥')(Vy « X)(p(y) ¢ X).

By an M - function (M -relation, M - set, ete.) we shall mean an M - class
which is a function (a relation, a set, ete.). The following are easy to
prove (see [6]): ’

(p) If = s an M-element and y ¢ x, then y is an M -element.

(6) If a set » is an M-element it is also an M-class.

(1) If an M-class X is a set it is also an M -element (to show this
one proves that the transitive closure of X, i.e. the intersection of all
transitive classes which contain X, satisfies the requirement for ¢
in (3)).

(8) If all the members of x are M -elements and x is b-symmetric for
some b eQ, then © is an M -element.

(9) Bwery ordinal is a 0-symmetric: M -element (the proof is by in-
duction—0 can be assumed to be a member of @ without loss of gener-
ality).

(10) Ewery finite set of M- elements is an DM - element, and hence every
ordered n-tuple of M -elements is an M - element.

(31) Let F be a function mapping o class of ordinals onto X, and let
b eQ. Fis a b-symmetric M - function iff each member y of X is a b-symmetric
M -element.

(A2) I} o 4s a b-symmetric M-element and v e ¥, then v(x) is a p(b)-
symmetric M - element. .

As shown, essentially, by Mostowski in [6] if we interpret & in &*
by replacing the primitive notions “class”, “element”, “¢” and “0” by
“H -class™, M- element”, “e” and “0”, vespectively, all the axioms (and
the theorems) of &, as well as the sentences (Va) (P(a) can be well—owdered)
and (Va)(2" = %.41) go over to theorems of S* It follows easily from

icm
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the properties of the interpretation that the formulas €/(1), D(1) and
H(w;) go over, respectively, to the formulas

C(A)  Let F be an M-funclion on A such that F(y) s, for each y < 2,
o non-void set. If for every 8 < A there exists an M -function H
on 8 such that H (y) e F'(y) for y < & then there emists an M -function
G on A such that G(y) e F(y) for y < i

D(Y) If B is a binary M-velation and A an M-set such that (Vy < 4)

(Ve A”) (f is M-function—(Hz ¢ 4) fRx) and such that if f is

an R-admissible M-sequence in A7, where y < 1, and y<o< i,

then [ can be emtended to an R-admissible M -sequence g in A°

then there is an R-admissible M -sequence in A*.

If A is am M -set such that for every y < A there is a one-one M - func-

tion F mapping o, into A, but there is no such F mapping o, onto A

(and, for 4 = 0, |A| = n for every n e w) (*3), then there is a one-one

M -function G mapping w; into A.

R (w;)

Finally we remark that, as easily seen, the ordering of the ordinals,
the function w, and the notions of confinality and regularity are absolute
with respect to this interpretation.

The interpretation J;. We take for K the subset of L which
consists of the first ws members of L. For ¥ we take the group of all
permutations of K. We take Q = {ala C K A |a| < wg}. We recall that
the regular ordinal with which wgs is confinal is denoted with c,.

(a) If w, is not confinal with wg, then C(w,). If B is not a limit number
or 0, then also C(cwp).

Let F be an M-function on o, as assumed in C(w,). Since F is an
M -function, it is a b-symmetrie M -element for some b <@ and hence,
by (11), each F(f) is a b-symmetric M-element, for { < w,. By the
assumption of C(w,) for each { < w, there is an M-function f on ¢ such
that f(8) e F'(8) for 8 < {. By the axiom of choice there is a function f
on w, such that f; is, for { < w,, an M -function on ¢ such that f,(d) ¢ F(6)
for 6 <. Since f; is an M-function, it is a-symmetric for some a € @;
by the axiom of choice there is a function @ on w, such that, for { < w,,
a; €@ and f; is a,-symmetric. Thus |a;| is a sequence of length w, of
cardinaly < ws. Let o, be the regular ordinal with which w, is confinal.
By a general theorem about sequences of ordinals we get that if o % a
or if B ig not a limit number then there is & cardinal w; < ws and a sequence
u of length w, ascending to o, such that |a, | < w; for 1 < o,. Let ¢ be
2 gubset of K—b of cardinality wg; then, for a fixed A < w,, let ¢ be

(#) The absoluteness of the notion of finiteness for such an interpretation is shown,
essentially, in [4].
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a permutation of K which is the identity on b and which maps a, into
b u . There is always such a permutation ¢ since |a,,| < w; = |¢|. By (12),
@(f,;) 18 a @(a,,)-symmetric M -element, and hence also a by ¢-symmetric
I -element. As follows easily from (2) and (9), ¢(f,,) is a function on
128 <§yfﬂ;.(t)> €fn,u for { < pa, hence <C7 ‘p(f#z(c))> = <‘P(C)7 ‘P(fu;,(c))>
= ‘P((Cyfuz(C») e@(fy), ie, o)) = ‘P(flt;,(C))' F() is b-symmetric,
pe® and f,(0) < F(), for &<, hence ¢(f,)(0) = p(f(0) € p(F(0))
= P(Z). Denote ¢(f,,) with g; then ¢ is a b U ¢-symmetric M-function
on w; and ¢(¢) € F(¢) for ¢ < u,. By the axiom of choice there ig a function
¢ on w, such that, for 2 < w,, ¢, is & b v ¢-symmetric M-function and
9:(¢) e P(L) for { < . We define the function & on o, by G() = g,(0),
where 1 is the least ordinal such that ¢ < u,. Since G(f) = gi(Z) and
g, 18 a by ¢-symmetric M -function, G(Z)is a b v ¢-symmetric M - element.
Thus, by (11), G is a b v ¢-symmetric M -function and G(¢) ¢ F(¢) for
{ < w,.

(b) If B is a Wmit number or 0, then ~C(wp).

We define the function ¥ on wg by F(y) = {h|h e E* A h is one-one}.
Let h e F(y); then h is obviously an R(h)-symmetric M -element, hence
F(y) is a O-symmetric B -element, hence F itself is a 0-symmetric
M-function. F(y) is, for every y < ws, a non-void set, since |K| = w;.
Let 6 < wp and let & e F(8). Define the function ¢ on & by g(y) =h1y
for y < 4. Obviously ¢(y) e F(y) for y < 4. Thus all the hypotheses of
C(wp) are fulfilled. Assume that the conclusion of C(ws) holds also, i.e.,
that there is an M-function & on o, such that G(y) e F(y) for ¥ < wg.
Sinee @ is an M-function, @ is b-symmetric for some b e Q. Since g is
a limit number or 0 and [b] < wy, there is a & < wp such that |b] < [&] < w;.
Since & is b-symmetrie, G(£) is also b-symmetric, hence also G(£)(y)
is b-symmetric for y < £ Bubt G(£)(p) e K, hence it is b-gymmetric
only if G(&)(y)ed. Thus R(G(£) Cb, but this is impossible since G (&)
is one-one, being a member of F(£), and hence }S{(G(E))[ = |&] > |b],
& contradiction.

(e) ¥y < a—>D(w,).

Let B and 4 be as assumed in D (w,). Let { < o, and let f e A% Since
Aigan M-set, f(8) is, for 8 <{, a b-symmetric M - element for some b Q.
By the axiom of choice there is a function b on { such that b; €@ for
8 < and f(8) is a bs;-symmetric M -element. [U bg) < wp sinee wp is

8<
confinal with w,, { < w, and |b,| < w, for 8 <¢. Hecnce f(8) is, for 6 <,
a aL<’,c bs-symmetrie M-element and by (11) f itself is a U bs- symmetric
8<¢

M-element. By the assumption of D(w,) we have now that for every
{ < o, and every fe 4% (which is necessarily an M-function) there is
an wed such that fRe. By D*(w,), which follows from the axiom of
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choice, there is an R-admissible funetion F in A%. F is an M -function
by what was shown above, since o, < w,.

(e) y < f—~%(w,).

Let 4 be an M -set as required in ¥(w,). 4 is b-symmetric for some
b e Q. If every member of & is also b-symmetric, then let F be a one-one
funection mapping |4| onto 4. By (11), F is also a b-symmetric 2 -function.
By the hypothesis of #(w,) there is no one-one M -function mapping ws,
with é < y, onto 4, hence |4| > w,. F{w, satisties the conclusion of B(w,).
We shall now consider the other case, namely where there exists a member
y of A which is not b-symmetric.

We shall see now that if z is an 3/ - element which is b v d-symmetrie
and b v d@'-symmetric, where b, d, d' €@ and b, d, d' are pairwise disjoint,
then z is b-symmetric.

Let ¢ « ¥°. We shall now show that ¢ is a product of members of
Pl L Pt Let ¢ be a subset of K—(budud we (@) ue d)) of
cardinality |d| (this is always possible since [budud' we{d)we=H(d")| < ws
and hence |E—(bu d v d' u ¢~d) v ¢~d'))| = wp). Let p be a one-one
funetion mapping d on e. We define:

p(t) for ted,
@) =] y7) for tee,
[ for teK—(dwve).

¢, is well-defined because d ~ ¢ = 0. ¢, is obviously a permutation
of K, and since (dve)~(buvd)=0, we have guleleUdl. We define:

| o) for teE—(dveuved),

| pw (1) for  tee—{ulplytw) ed},
wlt) = olple)) for tepid)—d,

I w(w(qJ (w*l(t)))) for te{ulpfpiw)ed} (Ceo),

l 1 ) for ted.

@, is well-defined because ¢ n (d v q)‘l(d)) = 0. g, is eagily seen to be
a permutation of K. b ~ (d v 6w @~1(d)) =0 since b~ d =0 by hypothesi;.s,
b~ e =0 by definition of ¢ and b ~~(d) = 0 since br~d=0 and ¢~ is
the identity on b, by @e ¥’ Thus b C K—(d v e v ¢g*(d)) and hence,
for teb, pot) = g(f) = t. Thus g, e P*“%. We define:

ely(®) for ted,
gat) = | p~tlpmi(t))  for tegple),
t for teK—{dugle)-
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@ is well-defined since dn~g(e) =0 because ¢p=(d) ne =0. ¢, is
easily seen to be a permutation of K. (bw d’)n (dugp(e)) = gince
@’ ~p(e) = 0, because p~(d') ~ ¢ = 0, and b~ p(e) = 0, because b~e =0
and ¢ e ¥’ Thus we have g ¢ P**%. Now, ¢ = g0 as can be easily
checked. Thus ¢ is a product of members of 7*~%w Y% hence ¢ maps z
on itself sinee the members of ¥*~%u PO map 2 on itself. Therefore,
z is b-symmetric.

Returning now to the member y of 4 which is not b-symmetric,
y is ¢-symmetric for some ¢ € §). |6 —b| < wp hence [¢—b|- w, < wg. There-
fore, there is a sequence d of length e, such that, for § = ¢’ and 4, ¢’ < w,,
d;C K—b, |ds| = |c—b| and ds ~ dy = 0. By the axiom of choice there
is a sequence ¢ of length w, such that ¢; ¢ PP for 6 < o, and @s(6—b) = d;.
Since A is b-symmetric and ye.d, also gsy)ed. Since y is b w (¢—1D)-
symmetric, gs(y) is b u ds-symmetric, by (12). Assume @(y) = @s{y) for
8 # 0'; then gy(y) is b w dy-symmetric and also b v dy-symmetrie, hence,
but what was shown above, gx(y) is also b-symmetric. Since g, e ¥°,
we have, by (12), that y is also b-symmetrie, which is a contradiction.
Thus [{ps(y)|6 < w,}| = w,. Bach ¢xy) is bUaU ds- symmetrie, where

<w,

bulJd;eQ, since |bo \Jds| =1|b|+|b—¢|- w,. Eﬁ"herefore, by (11), F
8<a,, <o,
= {{0, gs(y)>|d < o} is & oyne.~one A -function mapping w, into 4.

) If v is a limit number or 0 and w, is not confinal with wg,
or if B ts not a limit number or 0 and y is any Umit number or 0, then
B(w;).

This follows from (a) by (the translation of) Theorem 13.

(8) If v>p and either y is not o limit number or 0, or f is a limit
nimber or 0 and o, is confinal with wg, then ~%(w,).

By (the translations of) Theorems 14 and 15 and the generalized
continuum hypothesis, which is an axiom of &*, it is enough to prove
~J€(wp). Consider the 0-symmetric M -set K. For any given ¢ < wg, let a
be a subset of K of cardinality |¢], thus a €. Let 7 be a one-one mapping
of { into a, then F(6) e a for every 6 < ¢, hence F (d) is an a-symmetric
M -element, thus F is an a-symmetric M -funetion. There iy no one-one
funetion mapping ¢ onto K because |K| = ws >¢. On the other hand,
there is no one-one. function mapping w; into K, because if @ is such
a function then it is b-symmetric for some b ¢ @, hence @ (9) is b-symmetric
for every 6<ws, hence G(3)eb, R(A)Ch, ie., |R(G)| <D <awp, a con-
tradiction.

This follows immediately from (g) by (the translations of) Theorems 8,
7, 5 and 11.

(Q) If w, is regular and p > a, then ~D(w,)
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The interpretation j. We take for K the subset of I consisting
of the first &; (= 2%) members of L. Let § be an order relation on K
similar to the natural order of the real numbers. For ¥ we take the group
of all order preserving permutations of K. We take Q = {{(—o0, 2)|z e K}
({(—o0, #) = {y|ly ¢ K A ySx}). We shall write ¥~ z-symmetric, ete., for
o) (—o0, ¥)-symmetrie, ete.

() (Vy)C(w,).

Let F be an I -function on w, such that F(4) is a non-void set for
each 6 < w,. Since F is an M-function F is x-symmetric for some ¢ K.
Let y be a fixed member of K with 28y. We shall see that F'(6) has, for
every 0 < w,, & y-symmetric member. Let % ¢ F/(8); then v is a z- symmetric
A -element for some z ¢ K. Without loss of generality we can assume Sz
(since if wSw’ and 2 is w-symmetric v is also w’-symmetric). There is an
order-preserving premutation ¢ of K which is the identity on (— oo, #) and
which maps # ony. By (12), p(u) is a @((— oo, #))-symmetric M -element;
but @((—oo, 2)) = (—o0, ¢(2)) = (—oo,y), hence p(u) is a y-symmetric
M -element. w e F(J), F(5) is z-symmetric (because F is) and ¢ e ¥,
hence ¢ (%) € F(8). Thus @(u) is the required y-symmetric member of #(4).
By the axiom of choice there is a function ¢ on w, such that G(8) is
a y-symmetric member of F(d) for every 6 < w,. By (11), G is a y-sym-
metric M -function.

(b) D(w).

Let 4 and R be as assumed in D (o). Since 4 and R are I -sets, they
are w-symmetric for some weXK. Let f be a v-symmetric sequence of
members of 4 of length <w and let w ¢ K be such that vSw, uSw. We
shall show that there is a w-symmetric member y of 4 such that fRy.
By the assumption of D(w), and since f is an M -sequence by (10), there
is @ member x of A such that fRx. Since w € 4, v is an M -element and
hence x is r-symmetric for some r ¢ K. Without loss of generality we may
agsume o8 and wSr. Let ¢ be an order preserving permutation of K
which is the identity on (—oo, %) and (—oo, v) and such that ¢(r) = w.
¢(®) is a w-symmetric M-element by (12). A is «-symmetric, g e ¥*
and # € A, hence ¢(x) ¢« 4. By fRx we have ¢(f)p(R)p(x), but f is v-sym-
metric and R is w-symmetric, hence p(f) =f, ¢(R) =R and we have
fRp(x). Thus ¢(x) is the requived y. Let v be an ascending bounded
sequence of length o of members of K such that u8v,. Put v =v_,. We
define the relation 7' as follows. fT iff for some new, f e A™, fRy and ¥
i§ ¥-Symmetric, or, if there is no such y, y is any element. By D*(w)
there is a 7'-admissible function ¢ ¢ A”. 'We shall prove by induction
that ¢(n) is vs-symmetric and that (g]n)Rg(n) for every = ew. By_the
induction hypothesis, g(m) is, for every m<n, vn-symmetric and since
the sequence v is ascending, g(m) I8 ¥p—-symmetric, where v, = %
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or 48v,—1. By (11), g% is v,—-symmetric and hence, by what was shown
above, there is & y e A such that (g]n)Ry and ¥ is va-symmetric. Thus,
by (¢1n) Tg(n), we get (g1n)Rg(n) and g(n) is vx-symmetric. Leb w be
an upper bound of », then each ¢(n) is w-symmetric and, by (11), ¢ is
a w-symmetric R-admissible M -sequence.

(@) If p is 0,1 or a limit number, then X(w,).

If y =0 or if y iy a limit number, then ¥X(w,) follows from (a) by
(the translation of) Theorem 13. If y =1, let 4 be an infinite M -set
satisfying the assumyption of J(w,). Since 4 is an M -set, 4 is - symmetric
for some u ¢ K. Let 7 ¢ K be such that uSr. If every « ¢ 4 is 7 -symmetrie,
then, by (11), there is an r-symmetric M -function f mapping |4| onto A.
By our assumptions on 4, D(f) cannot be w,, hence |[4|> w,, and 1w,
is the M -function required by the conclusion of #(w,). If, on the other
hand, there is a y ¢ A such that y is not 7- symmetric, then y is 8- symmetrie
for some s ¢ K, r8s. Let v be the greatest lower bound of the set of all
t's for which y is ¢-symmetric. Since y is not r-symmetrie, we have r8v
or r =9, hence uSv. Let w ¢ K, v8w. Let v’ ¢ K, uSv'Sw, and let ¢ be
an order preserving premutation of K which is the identity on (—oo, u)
and such that ¢(v) = ¢'. It follows easily from (12) that »’ is the greatest
lower bound of the set of all #'s such that ¢(y) is ¢-symmetric. Since 4
is u-symmetric and ¢ ¢ ", we have ¢(y) e 4. Thus for every v’ between u
and w there is at least one member of A4 such that the greatest lower
bound of the set of all #'s for which it is ¢-symmetric is ¢'. Since there
are 2% =g, such v”s 4 has at least », w-symmetric members. Let f
be a one-one function mapping o, into the set of w-symmetric members
of 4. By (11), f is an M -function which satisfies the conclusion of ¥(w,).

(e) If y # 0,1 and y is not a limit number, then ~3X(w,).

By (the translation of) Theorem 14 it is enough to show ~J8(wy).
Consider the set K. Let f be a one-one function mapping w; into (—oo, u)
where e K. f is, by (11), a u-symmetric M -function. There is 1o
M-function g mapping o, onto K, because, if ¢ is an M -function,
¢ is u-symmetric for some wue¢X, hence, by (11), g(4) is u-sym-
metric for every A< w;. Therefore, g(4)Su or g(2) =u, for 1< oy, i.e.
R(9) C (—oo, w]CK. Thus the assumptions of (w,) are satisfied by K.
On the other hand, there is no one-one M-function mapping w, into
K since |K| = x; <x,.

(e) If w, is regular and y = 0, then ~D(w,).

By (the translations of) Theorems 8 and 7 it is enough to show ~D(e,).
Let A be the set K and let R be the binary relation defined by: fRux iff
f is a bounded above sequence of members of K of length <w, and @
is & strict upper bound of f (i.e., u e R(f) >ulx). A and B are easily seen
to be M-sets (note that if f is a bounded above sequence of members
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of K and y is an upper bounded of 7, then f is a ¥-symmetric M -element).
Let { << w, and let f be an M-sequence f ¢ K°. Since 7 is an I -sequence
it is y-symmetric for some y ¢ K. §(8) is y-symmetrie, for d<Z, by (11),
hence f(6) € (—oo, y1, R(f) C (—o0, y]. Let ¢ K, ySz, then « is a strict
upper bound of f and fRx. Furthermore, if £ <1< o, let E+n =2,
let @ be a strictly ascending sequence in 4% with ySu, (by the well-known
properties of the natural order of the real numbers there is always such
a sequence x as long as n-+1 < o). We define a sequence g ¢ 47 by g(é)
= f(0) for 6 <, g({+0) = xs for & < #. It is easily seen that fC g and
that if f is B-admissible, then ¢ is R-admissible too. ¢ is strictly bounded
by »,, hence R(g) C (—oo, #,) and, by (11), ¢ is an T, -Symmetrie M -se-
quence. Thus all the assumptions of D(w;) hold. The conclusion of D(w,)
cannot hold since if ' is an R-admissible sequence in K* F is obviously
strictly inereasing, but this is impossible since there is no strictly ascending
sequence of real numbers of length w;.
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