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A 3-dimensional absolute retract which does not
contain any disk

. by
R. H. Bing (Madison) and K. Borsuk (Warszawa) *

Some examples of 2-dimensional AR-spaces which do not contain
any disks were discovered long ago (see [4], [5], [6]). However, the question
as to whether or not there exists a 3-dimensional AR-space which does
not contain any disk remained open. The aim of the present note is to
give an affirmative answer to this question.

1. Loops and their linking. By a map j: XY of a space X
into a space ¥ we mean a single-valued continuous function from X to
Y. In particular, if X = (' is a simple closed curve, then a map

f: 0=Y
is called a loop in the space Y. Two loops f,, f;: C—Y¥ are said to be

homotopic in Y if there exists a map ¢ of the Cartesian product ¢ x I
of ¢ by the unit interval I: 0 <t <1 into Y such that

fol2) = @(®, 0) and fi(z) = p(z,1) for every weC.

In particular, the loop f, is said to be homotopic to zero in ¥ (sym-
Dolically: f,= 0 in ¥) provided f, is homotopic in ¥ to a loop f, mapping
C onto a single point of Y. If C lies in a plane H, then the homotopy
fox 0 in Y is equivalent to the extendability of the map f, to a map f
of the disk D C H bounded by O into Y.

Let us consider two loops in the Euclidean 3-space E3:

fi: Oy —~E8,  fy: C,—>EB,
and let us suppose that they arve disjoint, i.e. f,(Cy) ~ fo(Ca) = 0. If orien-
tations of C,, 0, and E*® ave given, then an integer A(f,,f,) called the
linking coefficient of f, and f, is defined (see, for instance, Lefschetz [11],
p. 124), It describes the algebraic number of times each of loops f, and f,
twists around the other. For our aims it suffices to consider only the
absolute value of this coefficient

z(fu f) = ]A(ﬁ;fz)] 3
* The first author is supported by NSF grants NSF-G21514 and NSF-G11665.
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which does not depend on the choice of orientations of ¢, U, and .
We shall apply the following properties of the coefficients 4:
(1) I(jly fE) = Z(fzyfl)'

(2) If b is a homeomorphism of E? into itself, then
j~(7c1’ fz) = Z(h;fly hfa) .

() If 0 <e < olfym), fo(m)) for every @y e Oy, @€ Cyy then for every
fwo maps gt 11(C)—~T, go: fo(Co) ~B° such that o(gu(y), v) < ke for every
y <0, and v =1,2 one has A(fs, fo) = At gaf)-

If f: Cy—FEP and fi: Oi—E® are homeomorphisms of simple elosed
curves Oy, O5 onto the same simple closed enrve O C FP, then for every
loop fp: Oy—E® with f,(Cy) C B:—C, the coefficients A(fy, fo) and A(fi, fo)
are equal. Let us denote the common value of them by 1(0,f,) or by
(f, 0). The vanishing of the number (0, f,) implies that each of C,
f0,) bounds in the complement of the other.

The corresponding homotopy linking is mot symmetric, for of two
polygonal simple closed curves in E?, it may be that the first is homotopic
to zero in the complement of the second but the second is not homotopic
to zero in the complement of the first. Since the first homology group
is obtained by abelianizing the first homotopy group (fundamental group),
it follows that if C is a simple closed curve in E3, then a loop f lying in
F*—( is not homotopic to zero in E*—C if A(C, f) > 0. However, it ¢
is an unknotted simple closed curve as would lie in a plane, then
the first homotopy group of E*—C is infinite cyelic and hence alveady
abelian so f is homotopic to zero in E*—0 if and only if A(C,#) = 0. In
this paper we make use of the following

(4) If Cis a simple closed curve in a plane in BB, then a loop [ lying
in B3—C is homotopic to zero in EP—C if and only if 2(C,f) = 0.

If both disjoint loops f;: C;—EP and f,: Cp—EP are homeomorphisms
of C, onto O] and of €, onto O3, then the coefficient A(f,,f,) depends
only on O} and Oi. We shall denote it by A(Ci, C4). Tt (0, Cb) # 0, then
the simple closed eurves €, C; are said to be homologically linked. It can
be shown that:

(5) Given:

1° A disk D, with boundary C, and a disk D,C D, with boundary C,,

2° a simple closed curve UC B,

3% a map f: D;—B® such that {{(D;—D,) 0,) CB*—0,
then the loops f, = f[Cy, fo=f/C, satisfy the equation i(f,, 0) = A(fs, C).

(6) Given:

1° A simple closed curve O C B decomposed into the sum of two simple

ares Jy,Jy with common ends a and b,
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2° a plane HC B decomposing B between a and b,

3° a simple closed curve O C H decomposing H between the seis J, ~ H
and J, ~ H,

then A(Jyw Iy, ) = 0.

2. Anchor ring and its core. Now let us suppose that O, is
a circle with radius 7, lying in a plane H C E?. Let D, be the disk bounded
(in H) by 0y and let » be a positive number less than #o. The set

Ay = {o|w e B, o(x, Cp) < 7}

is an anchor ring with the core (center line) C,. The numbers 7 and %o
will be said to be the inner and the outer radius of 4, and the number
# = 7fry is called the profile of 4,. Evidently two anchor rings are similar
if and only if they have the same profile. Let B, denote the boundary
of 4,. A circle 0, C B®— 4, will be said to be transversal to the anchor ring
A, provided A(C,, C;) = 1. We observe:

(7) Given in E® an anchor ring A, with core Cy and a cirele C, transversal
to Ay. Then there exists a neighborhood U of the boundary B, of A, such
that every loop f lying in U is homotopic to zero in the set U if and only if
AMf, Co) = A(f, O)) = 0.

BEvidently, if the number s> 0 is sufficiently small then the set

U= {u|lo < B oz, By) < ¢}
satisfies condition (7).

3. Chain which substitutes for an anchor ring. Let 4, be
an anchor ring with outer radius »,, inner radius », core C,, and boundary
B,. Let n be a natural number greater than 3 and let @y, a,, ..., ax (where
the indices are understood modn) be vertices of a regular n-polygon
inscribed on ¢, in their natural order. Evidently

o T
0(ay, @) = 0(as, @41) = 2rosin
is small if » is large. Set
8, 1 (a a)—ga‘ sin =
o =g 0lag, th) =g TS0 -

Let az, denote the center of the segment ayari1, Dy denote the geo-
metrical disk with center ax, radius s,, and lying in the plane of the
civcle C,. Let Dy denote the geometrical disk with center az, radius s,
and lying in the plane perpendicular to the segment joining a; with the
center of C,. Let Oy denote the boundary of Dy and Oy the boundary
of Dy. One sees easily that:

1° Ok ~ Of = 0 for every k.and j.

2° Oy~ O = Ch~ O =0 if k #§ (modn).
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3° A(Cr, €5) = A(Ck, C5) = 0 if k5 (modn).
40 A, Oy =1 if 0<Ek—j <1 (modn), and A(Ck, 07) =0 in all
other cases.

50 If @, ¥ are points belonging to two different circles of the collection
0y, C1, Cay G4y vy Ony O,y then o(z, y) > §8,.

Now let us suppose that @ = 7fro <%, that ¢ is a positive number
less than 2r, and that the natural number » is so large that o(ag, ;) < e.
Denote by Ay the anchor ring with core Cp and inner radius s = Js,,
and by A} the anchor ring with core (}; and with the same inner radius s.
Tt follows that Az and A} are similar to 4, and their outer radiug is s,.
Their diameters are equal to 2(s—+8) = 2(1+9)s, <2(L+Hle<e It
follows from 5° that all anchor rings A, 4], 4;, 43, ..., 4n, 45 ave

1
disjoint. Moreover it is clear that for every point x skU1 (4w Ay)

3 1 &
o, Cg) < 8+98 gz o <”2‘ 0(ag, @) <§<7"’
We conclude that all anchor rings A, 4; are contained in the interior
of the anchor ring 4, and also in the ¢-neighborhood of its core C,.
The set
n

{8) M =LU1 (Ax v A7) C 4,
will be said to be chain substituting for the anchor ring A,, and the anchor
rings Ay, 4%, ¥=1,2, ..., n, will be said to be links of this chain. Thus
the chain M has 2n links A4,, A1, 4,, A3, ..., 4Aa, 43; we shall denote
these links (in the same order) by Li, L3, ..., L3, where the lower indices
are understood mod 2n. It follows by our construction that the cores
of two links Z; and L} are linked if and only if |§—j| = 1 (mod 2n). Thus
we have: :

(9) For every anchor ring A, with core Cy and profile & < % and for
cvery &> 0 there exists an integer n > 3 such that in the interior of A there
exists a chain M with 2n Yinks Li, Li, ..., Lin, these links being congruent
anchor rings with profiles 9, diameters <e, and each lying in the &-neigh-
borhood of Cy. If O denotes the core of the link Lﬁ, then 2(C} , 0’}) =1
if [E—jl =1 (mod 2n) and 1(Ci, 05) = 0 if |i—j| > 1 (mod 2n).

The set

2n n
NM=J0i=(Cvu )
=1 k=1
will be called the core of the chain M1

It is known (see, for instance, [8]) that a loop f lying in E3— 4, is

homotopic to zero in E*— M if and only if ¥t is hemotopic to zevo in
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B — Ay, that is if Z( f, ) = 0. This fact may be also formulated as follows:
Let D be a disk with the boundary (.
(10) A loop f: C—E*—A, can be extended to a map ': D V"
loop, rtended DB~ N1
if and only if A(f, Cy) = 0. v A
Now let us prove (with the same notation): .
. (1) If f: C—B— 4, and Mfy Co) > 0, then for each extension f':
DB of f aznfl for every & > 0 there exist a link L} and two disjoint subdisks
Dy, D, of D with boundaries ¢ and C; such that each partial map },, =70
r=1,2, 18 a lop in A,—I* lying in the e-neighborhood of link I ami
homologically linked with the core of this link. '

Proof. By the construction of A, we infer that the core Ciyq of

“the link Ly, is transversal to the anchor Ting ILi. Tt follows by (7) that

there exists an open neighborhood U; of the boundary B; of I} contained
in A4, and such that a loop ¢ lying in U, is homotopic to zero in U if and
only if (g, (3) =0 for » =1,i+1. Since the sets B, Bl, ..., Bl, are
disjoint, we may assume that the mneighborhoods Uy, Uy, ooy Uy, ave
mutually disjoint and also disjoint from the cove N* of M, and that
each U; lies in the e¢-neighborhood of Li. Now let us write:

DY

Fi={"NL), G=F"Y Uy for every i=1,2,.., 2.
The sets Gy, Gy, ..., Gy, are open and mutually disjoint while ¥ is
a compact subset of G4 It follows that @; contains an open subset. 69
such that
FiCHCG for i=1,2,.. 2

and the boundary Z; of Gy is the union of a finite number of disjoint
simple closed curves €71, Cia, ..., (fm,. Each of the partial functions

Gig =00y i=1,2,.,2n,§=1,2, ..., m,

is & loop in Uy. Tf A(gy, C1) =0 for v = i,4+1, then g;; is homotopic
to zero in U; by (7). Consider the component E of D— U 0% that con-
tains C. Wach boundary component of & other than ¢ is a Gi;. If for
each such CP;, A(gis, €3) =0 for »=4,4+1, we find that the map
J'/C = can be extended to may of I into B — Nt — namely, the extension
is f* on K and takes each component of D—F into an appropriate Uy.
Since the existence of such an extension is contrary to (10) we conclude
that for at least one Cf; and » =4 or i-+1 it is 1 (¢i5, Co) > 0.

Thus we have shown that there exists a loop g;; such that for some
index » we have i(gi,, C)) > 0. Now, fixing the index », we can find
amaximal (7, inthe sense that there ave indices 4, j, such that (g, %)
is positive but for every other pair of indices 4, § satisfying the condition
gi, O3) > 0, the disk Dy, bounded in D by the curve €2, does not
contain Cf,;, on its interior.

Fundamenta Mathematicae, T. LIV 11
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Now let us consider the domain V CD bounded b%r th'e digjoint
simple closed curves C and C?u,h. Consider the v‘arious Ciy’s in V. For
some such €2, Z(giz, Cy) > 0 or else we could obtain & map g: S
such that g/C = ', 410 = I'/Chi,- Bt since Z(g/C, 03) = 0, we arrive
at the contradiction from (5) that A(gis,, 05) = 0. Consequently there
is a 0% in V such that 2(gis, Ol > 0. It follows from the maximality of
01, that this 0?%; bounds a disk in V. Consequently the proof of (11)
is complete,

As an easy consequence of (11) we get:

(11) If O is the boundary of a disk D and if the loop f: O—IF—A4,
satisfies the condition A, Cy) > 0, then for every extension 'c D—>T* of
i there exists o disk D' C.D with boundary O such that the loop {'[C" is
Tomologically linked with the core of one of the links of the ochain M.

4. Wreath substituting for an anchor ring. Suppose we
are given an anchor ring 4, with outer radius 1, profile # < %, core O,
and chain M* substituting for 4, having 2n links L, Ii, ..., L3, similar
to A,, With outer radii equal to §sin(w/n). Let us construct a decreasing
sequence of compacta
D MED.LDMD..

in the following manner: Suppose that for a natural number k we have
a set M* such that

(125) M* s the union of (2n)" disjoint anchor rings b i=1,2,.., (Z‘n)k)
with the outer radii equal to (%sina-:/n)'c and with profile 9.

Let @; denote the similarity mapping 4, onto I¥. Then p; maps the
links I} (j =1,2,..,2n) of the chain M' onto disjoint anchor rings
similar to A, and contained in the interior of I¥. The inner radii of these
anchor rings are equal to (#sinm/n)™™®. It we set

. en)k
M = (),
=1
then we get a set M**" satistying the condition (1244:). The anchor rings

Tk(i=1,2, .., (2n)) are components of M* and their diameters converge
to zero when k-»oco. It follows that the seb

= (M
k=1

is a 0-dimensional compactum, actually a set of Antoine [3]. Evidently
each of the sets

Miy=MnL, i=1,2,..,2n,
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i similax to MM, z.md ccl)nsequently M is a set of Antoine lying in the interior
of t-lie anchor ring L;. It is known. [13] that there exists in the interior
of I; a simple arc J; eontaining ;. The set

2

2n

W=JJ;
i=1
will be said to be a wreath substituting for the anchor ring A,, and the
arcs Jy (components of W) will be said to be links of the wreath W. We
infer the following from (9):

(18)  For every amchor ring A, with core C, and profile ¢ <} and
for every &> 0 there ewists in the interior of A, a wreath W substituting
for Aq, lying in the &-neighborhood of Cy and such that the diameters of its
links are less than e.

Let us observe that (11') implies that if a simple closed curve C
is the boundary of a disk D and if the loop f: C—E*— 4, is homologically
linked with Cy, then for every continuous extension f: D—E? of f and
for every k=1,2,.. there exists a disk DEC D with the boundary
Cp, such that the core O of one of the components of M” is homeologically
linked with the loop f'/0%. It follows that 7(D) ~ M* s 0, for every
k=1,2,.. and consequently /(D) ~ M 3 0.

Moreover, by virtue of (11), there exist two disjoint disks .D,, D,C D

with boundaries Ci, Cs, and link I; of the chain M* such that the core
of Z; is homologically linked with each of the loops f, = f//Cs, » =1, 2.
Moreover, we can assume that the loops fi, f: lie in 4,—M* and in the
¢-neighborhood of the link Ii. Tt follows that both sets /(D) and f(D,)
intersect the set My, and consequently also the arc J;2 M;. Hence, we
have the following:
_ (14) Let C be the boundary of a disk D and let f: C—E*—A4, with
A(f, Cp) > 0. T'hen for every continuous extension f': D—>E* of f and for
every & > 0 there ewist two disjoint disks DY, D3 C D with boundaries (3, C3
and a link L; of M" such that both loops §/C3, 03 lie in Ay—DM" in the
e-neighborhood of L} and that (DY) A Li A W # 0 £ 7DD A Li A W.

In particular it follows (under the hypotheses of (14)) that

(15 FD) AW 0.

5. Broken anchor ring and its substituting wreath. By
a topological anchor ring we understand the image A4 = h(4,) of 4, by
2 homeomorphism h. Then the set h(C,) will be said to be the core of A4
and the sets A (M) and k(W) will be said to be the chain and the wreath
substituting for the topological anchor ring A. The links of (M) and
of 4(W) are defined as components of these sets.
It follows from (13):
11*
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(16) For every lopological anchor ring A with core C and for every
> 0 there ewists a chain and a wreath substituting for A, lying in the
¢-neighborhood of C and having links with diemeters less than e.

In particular, if 0, is a simple polygon (i.e. a polygonal simple closed
eurve) lying in a plane HC E? and 7 is a positive number sufficiently
small, then the set

Ay = {w]o e B, o(w, Oy) < n}

is a topological anchor ring. More exactly, there exists a 110111(’011).01‘1)]1].\111
1 mapping the space E° onto itself so that h(d,) = A, and W(Cy) = G,.

The set E,, will be called a broken anchor ving with core ¢, and inner
radius 7. The sets

M =n(My and W= h(W)

will be said to be the chain and the wreath substituting for the broken
anchor ring ffo.

The following is a consequence of (2) and (11):

(17) If C is the boundary of a disk D and f: C—B—A4, is a loop with
1(f, Co) > O then, for every continuous extension f: D—E* of f and for
every > 0, ﬂme exist in the interior of D two disjoint disks Dy, Dy with
boundaries Ci, C3 and a link of the chain Mt such that the loops L=1c,
v=1,2 lie in A,—I* in the e-neighborhood of the link of I and they
are both homologically linked with the core of this link.

6. Dense sequences of chords. Let @ be a unit ball in B? with
boundary S. A segment K C B® will be said to be a chord of 8 provided
both its ends belong to 8. A sequence {K,} of chords of § will be said
to be dense on S provided for each open subset G 5= 0 of 8 there exists
an index » such that both ends of the chord K, belong to ¢. Let us show:

(18) There ewists a sequence of the disjoint chords {K,} dense on S
and such that the diameters of K, converge to 0.

Proof. Let {a,} be a sequence of points of § dense in § and such
that an # a,, for n # m. We define the sequence {K,} by the induction:

1. Let a; be a point of §—{a,} such that g(a;, a1) <1. We set
Ky = araf. .

2. Suppose  that for »=1,2,...,m  we have K, = E,,Tz?,, where
a,eS—{an}, 0@, ) <1y and K,~K,=0 for p,»=1,2,..,m
Then we see at once that there exists a point aj.q € S~ {az} such that
e(@mi1, @me1) < 1f(m-+1) and that the chord Kopr = Gmir i 38 disjoint
from K1 1% Kz Vv Km.

Thus we get a sequence {K,} of disjoint chords with diameters con-
vergent to zero. If # is a point of an open subset & of 8, then there exists
an ¢> 0 such that all points y ¢ § with (2, y) < e belong to @. Since

icm
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the sequence {a,} is dense in @, there exists an index n > 2/e such that

Q(lln.y < 8/2 Then Q(am ) = @(an; a/n) +Q(an, ) < ¢ and consequently
both ends of K, = aa; belong to G.

7. A sequence of brokem anchor rings demse in (. Let
{4,} be a sequence of broken anchor rings lying in the interior of the
wnit ball Q. We say that {d,} is dense in Q if for every simple closed curve
OCQ S there exists an index » such that A, C@—C and the core
J, of A, is homologically linked with C.

Now let us show:

(19) There emists a sequence {A)} of broken anchor vings lying in
Q—8 and dense in Q.

Proof. We apply the following elementary facts about the topology
of the plane:

1° If X and Y are disjoint compact subsets of B* which lie in a region
@ C B but do not cut it, then there exists a simple polygon ¢/ C G—X—¥
which separates G between X and Y. Moreover, we can assume that
all vertices of ¢ have rational coordinates.

Since the set of all simple polygons in E? with rational coordinates
of vertices is countable, we infer:

2° Tor every plane region G there exists a countable family of simple
polygons lying in & such that every two disjoint compact subsets of G
which do not cut @, may be separated by a simple polygon belonging
to this family.

Applying 1° and 2° let us show:

3° There exists in @ — 8 a conntable family € of plane simple polygons
such that for every simple closed eurve O C @ —8, there exists a € ¢ €
such that L(C, ¢) > o.

In order to prove 3° consider the family § of all planes HC E®
which intersect @ and pass through three non collinear points with rational
coefficients. Manifestly $ is countable. By 2°, for every H <$ there
exists a countable family € of simple polygons lying in the regiom
Gy =H~(Q—8) and such that every two disjoint compact subsets
of @ which do not cut &, can be separated by a simple polygon Qe Cy.
Evidently the family

C=1JCy
HeH

is also countable.

Now let us consider a simple closed curve € C @—8 and two distinch
points @, b € €. Then ¢ is the union of two simple ares Jy and Jy with
common, ench @ and b. Consider a plane H ¢ $ cutting BB between a and b.
Then there exists a simple polygon O e Gy separating @ between the
sets Jy ~ H and J, ~ H. 1t follows by (6) that 2(0, 0) > 0. Thus 3° is
proved.
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Now let us order the polygons of the family € in a sequence {C}}
such that each polygon (' € € appears in {C;} an infinite number of times,
Denote by 4, a broken anchor ring with eore ¢, and with radius 7, < 1/,
Evidently 5, can be chosen so small that 4, C @—8. The proof of pro-
position (19) will be complete, if we shall show that for every simple
closed curve € C @—48 there exists an index » such that 4, CQ—C and
e, ¢)>o.

In order to prove it, leb us observe that, by the construction of the
sequence {C;} there exists an index 4, such that A(C, C)> 0. Let ¢ denote
the distance between ¢ and €},. Since €, appears in the sequence {(}}
an infinite number of times, there exists an index ¢ such that

Gi=0 and I<e.

Then the polygon C; satisfies the condition 1(0f, €) > 0. Moreover, if
e A; then o(x, Ci) < 1fi <e, and consequently 4;C @— C. Thus (19)
is proved.

Let us observe that (19) implies:

(20) For every meighborhood U, of each point xeQ there ewists an
index v such that Cy ~ Uy # 0.

In fact, there exists in U, a disk D C@Q—8. By (19), there exists
an index » such that the simple polygon C; is linked with the boundary C
of D. It follows €, ~ D s 0 and consequently also O, ~ U, # 0.

Now let us prove:

o0
(21) There ewists a sequence {4} of broken anchor rings in @ —8 — ) K,

y=1
and dense in Q such thai for each i =1, 2, ... the inner radius of Ay is less
than 1[i and there exists in As a wreath Wy substituting for Ay and such
that Wi~ Wy =0 for i 4§ and the diameters of the links of Wy are less
than 1/i.

Proof. Consider the sequence {d,} of broken anchor rings of (19).
If we tried to prove (21) by shrinking the inner radii of the broken anchor
rings of {4;} and putting wreaths in these shrunken broken anchor Tings,
we would have to exercise care to insure that the wreaths did not intersect
each other or the segments in {K,}. We modify the cores of the broken
anchor rings of {4} before shrinking them.

Let Of be the core of 4;. At most a countable number of planes
parallel to the plane containing 0{ contains a segment of {K,}. We adjust
01 to obtain a polygonal simple closed curve 0, in the interior of A such

. - . e
that C) lies in a plans, 0, misses | J K,, and there is a map of an annulus
v=1

into the inferior of Aj that takes the two boundary components of the
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annulus homeomorphically onto €7 and (. We can obtain C; by first
translating 07 to a nearby plane H not containing any element of {K,}
and then adjusting the image of C; in H so that it misses the 0-dimensional
set consisting of the intersection of H with the segments of {K,}. It follows
from (5) that if € is a simple closed curve in @—4;, then (€, Cj)
=20, 0.

Let .4, be a broken anchor ring with core C; and inner radius less

than 1 and so small that 4, C 4; and 4, ~ |J K, = 0. It follows from (16)
p=1

that there exists a wreath W, substituting for the anchor ring 4, such
that the diameters of its links are less than 1.

Suppose the broken anchor rings .4, 4,, ..., 4x have been chosen
so that for i =1, 2, ..., k, 4:C 4;— |J K,, the inner radius of A, is less

y=1
than 1/é, each simple closed curve in @—4; that homologically links
the core of A} also homologically links the core of A;. Suppose that
Wy, Wa, ..., Wi have been chosen so that they substitute for the anchor
rings A, A,, ..., Az vespectively, are mutually disjoint, and the diameter
of the links of W, are less than 1/i. Suppose the core Cji, of Ay, lies
in a plane H. Note that at most a countable number of planes parallel

2

to H contain a non degenerate continuum that lies in | J W or any of,
i=1

{K,}. Let O+, be a polygonal simple closed curve in the interior of A;ys

o0
such that Cpy; lies in a plane, Cjy; misses | I,y Cipq misses each o,

y=1
W, ..., Wi and there is a map of an annulus into the interior of Ajsr
which takes the two boundary components of the annulus into Cisq and
Ciy1. Then A4y is a broken anchor ring with core Ci.+1 and inner radius
less than 1/i+1 and so small that Ay, C Afyy, A4 misses each Wi,
o
Wa, ..., Wi, and A, misses | K,. Then Wiy, is a wreath in 44, sub-
v=1
stituting for A;4; such that the diameters of the links of Wiys have
diameters less than 1/i-+1. If we continue defining 4,'s and Wy's in this
way, the sequences {4,}, {W,} satisfy (21).

It follows from a modified version of (20) applied to the broken
anchor rings {4,} of (21) that for every neighborhood U, of each 1)9int
# €@, there are infinitely many indices ¢ such that 4; ~ U # 0. Since
each point of A; lies within the distance 1/i of Wy we conclude.

(22) Each open subset of Q contains o link of an element of {W,}.
8. The construction of the space @* Now let us consider

in the ball @ a sequence of chords {K,} satisfying (18), and sequences
of anchor rings {4,} and wreaths {W,} satisfying (21). The chords K,
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and the links of the wreaths 1, eonstitute & countable family 0 of disjoint
ares with diameters converging to zero. It follows that the decomposition,
M of @ into ares of the family A and the individual points of @ not on
one of these ares is upper semicontinuous. Let @* denote the hyperspace
of this decomposition and let

p: Q- QF

be the continuous ma)p whose inverse sets rp"l(w), * e @*, ave exactly the
elements of the decomposition M. It follows by a theorem of Lelek [12]
that @ is an AR-set. In Section 9 we prove that dim@Q* == 3 and in
Section 11 we prove that @* does not contain any disk.

9. Dimension @*. Let us denote by P the subset of @ consisting
of all individual points of the decomposition 9. Then ¢ maps the set P
homeomorphically onto a subset P* of @* and it maps the set N = @ —Pp
onto the countable set N* = @(N) = Q*—P*.

Since the set N ~ § is countable (it consists of the ends of chords I,),
there exists a simple closed curve 0 C §—XN. Then § is the union of two
disks D, and D, having ¢ as their common boundary. Since ¢ is a homeo-
morphism on €, C* = p(C) is a simple closed curve and this curve is
homotopic to zero in each of the sets D} = (D) and D¥ = (D,).
Moreover we have:

C*C DY ~ DX C O* U N*,
where ¥* is a countable set. It follows that the set §* == Df o D¥ == ¢(8)
contains a 2-dimensional true cycle which is not homologous to zevo

in 8% but it is homologous to zero in @* (because Q* is an AR). Con-
sequently (see [1], also p. 151 of [10]) we obtain:

(23) dim@* > 3.

On the other hand, let us observe that (22) implies that the set
NC !1 W, is dense in @ and consequently (see p. 44 of [10]) the dimension
nf- the set P =Q—N C@Q is less than or equal to 2. It follows that the
dimension of the set P*, homeomorphic to P, is less than or equal to 2,
anq since Q* = P* U N*, where N* is countable, we conclude (see p. 32
of [10]) that dim@Q* < 3. By virtue of (23) we get:

(24) dim@Q* = 3 .
10. Lemma on extension of maps. We now prove the following:

-LEMJ\IA. Suppose we are given a closed AR -set Y, lying in a compuct
metric ANR-space Y. For every neighborhood V of Yy in X there exists
a neighborhood U of ¥y in Y such that every map fo of & closed subset X,
of an arbitrary metric space X into U can be extended to o map f: X V.

icm
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Proof. We can suppose that Y is a subset of the Hilbert cube Q“,
consisting of all points & = (2, ,, ...) of the Hilbext space B* satistying
the condition 0 < #; < 1/i. Since ¥ is an ANR, there exists a neighborhood
G of Y in B and a retraction

r G—+Y

‘Evidently, there exists for ¢ and » a positive number e sueh that:

(28) If 2 B” and o(2, Y) < ¢ then 2 ¢ @,

(26) If 2 e B” and o(2, X,) < e then 7(2) e V.

Since ¥, is an AR, there exists a retraction »,: E°—¥,. Then there
is an open neighborhood U of Y, such that:

27) If ye U then o(y, rly) < e

Consider now a map fo: Xo—U. Then ryfy: Xy-+ ¥, and consequently
rofo can be extended to a map a: X—7Y,. Since the values of f, and of
rofo lie in the Hilbert cube §°, the formula

Bolie) = folar) —7ofo()
defines a continuous function with values belonging (by (27)) to the
set Z, consisting of all points # = (2, 2,, ...) e B such that |2 < 2/i and
o(2, 0) < e. Bvidently Z, is an AR-set and consequently 8, can be ex-
tended to a map

for every xeX,

B X—Z.

Now let us observe that the values of the map a lie in ¥,C Y and
that p(a(x) + (@), a(x)) = o(p(x), 0) < ¢ for every & ¢ .X. It follows by (25)
that

a(®)+ B(r) e G
and consequently the formula

fla) = 7(a(z) +p @)
defines a continuous function. Since a(w) ¢ ¥, and p(«) ¢ Z,, we infer
Dy (26) that the values of f belong to V. Hence
f: XAV,

Moreover, if e X,, then f(z) = r{a{z)+p(x)) = r{rfolx) +.fu($)”7'ofo(m))
= 7fo) == fo{w), Decause fy®)eV C ¥. Thus f is an extension of f, and
the lemma is proved.

for every w2elX,

11. Q* does not contain any disk. Let us suppose tlllat D*
is a disk lying in @*. Since the set N*C @* is countable, the disk D*
contains a subdisk with the boundary lying in the set P* = @*—N*
Oonsequently we may assume, without loss of generality, that the poundary
0% of D* lies in P*. Then ¢ = p~%(€*) is a simple closed curve in @ and
@ maps € onto (* homeomorphically.
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Now we shall consider two cases. First, lot us supposge that D* C g*,
Then § is the union of two disks D, and D, with ¢ as their comimon
boundary. Since the set N* is countable, we infer that the set D* — (% — s
Is arcwise connected, and consequently the set ¢~1(D*—(*—N *) 18 con-
tained in one of the regions D,—C and D,—C. We can assume that
¢ Y D*—0*—N*)C D, —C. We now show that D* = ¢(D1) by showing
that the agsumption that there is a point P in Dy —p~Y(D*) leads to an
absurdity. First, we note that if D* i given a definite metric, then for
each positive integer n there is a simple closed curve J, in D*—N of
diameter less than 1/n such that p=3(J,) separates p from D,—0 in §.
We obtain J, by considering a triangulation of D* of mesh less than
1/n such that each 1-simplex of the triangulation misses N* and find
that the boundary of one 2-simplex of the triangulation serves as J,.
It oy nyy oo I8 & converging subsequence of J1y sy o, the limit of
oY n)y 97 (Jny), ... separates p from D,—C in 8. However, this is
impossible since this limit contains at most two points. Hence, we con-
clude that D* = ¢(D;). Now let us consider a chord K, of {K,} of (18)
with ends @ and b belonging to D,. The set D, ~ N is countable. Con-
sequently there exists a simple arc J with ends « and b and with interior
lying in D;—C—X. Then ¢(J) is a simple closed ¢urve lying in D*—(*
and since Dy —J is arcwise connected, we infer that D*—g(J) is conneeted.
This contradiction disposes of the first cage.

We now consider the second case, where D* is not contained in §*.
It follows that D* eontains a subdigk lying in @*—8x, Consequently
we can assume that the given disk D* lieg in Q*—8*, and its boundary
C* lies in P*. Then ¢ = }(0%) is a simple cloged curve lying in Q—8
and, by our construction, there exists in Q—g& a broken anchor ring
4 e{4,} of (21) such that ¢ C @—A and that ¢ is linked with the cove
of 4. Let W C N be the wreath substituting for 4. It D*C Q*—N *, then
97(D*) would be a disk in Q— 8 —~NC @ —W which is impossible by (15).
Oonsequently every disk D* C Q*— §* intersects the countable set N* — g*,
Let us order the points of D* ~ N* into a sequence {a,} where a, = ax
for » # k. We can assume that G1y Bay ory Gy, aTE the points of N*—g*
of the form a; = @(J;), where J +i8 a link of the wreath W. Let M De the
chain substituting for 4 and 4; (i =1, 2, ..., m) be the link of I con-
taining J;. Let us observe that A~ A, = 0 for § # 4.

Now let us eonsider a positive number ¢ so small that
{28) o(z,y)> 2 for every zed; and

YyeQ—4,, for ¢ =1,2,..,m,
and let 7

denote the e-neighborhood of Ji in Q. Then

{29) o(®,y)>¢ for every 2eV; and yeQ——fi;, fori=1,2,..,m.
By the lemma of Section 10, there exists a neighborhood U;CVs

of the arc J; such that every map of a closed subset X,

of a space X
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into U; can be extended to a map of X into V;. Now let us consider,
for 4=1,2,..,m a disk DjC D* containing in its interior the point
a¢ and such thabAits boundary COf lies in D*—N* and that ¢~1(D*) C U;.
Sinee U;C V;C 44, we infer that
(30) DfAnDf=0 for 4,j=1,2,..,m, i#j.

It follows by (28) that, for ¢ =1,2, ..., m:

(81) The distance of every point of =Y D}) from the boundary B; of
Ay is greater than e.

Moreover, by the definition of U;, we infer that, for 4 = 1,2, ..., m:

(82) There exists a map wi: Df—V such that pi(z) = ¢~ (z) for every
xe CF

Now suppose that, for some k > m, we have already defined the
disks D%, D#, ..., Dk C D* such that a, <D} and that the boundary OF
of D¥ lies in D*—N* for v=1,2, ..,k Suppose also that we have
defined the neighborhoods Vi, Vs, ..., Vi in @ of sets <p.‘1(a.1), N ), o
¢~Yay) respectively and also t}ple maps ¥y, ¥, ..., ¥z Satisfying (32). Con-
sider the point apr1. If axq: ezL—J1 Df, then we choose an index § <% such
that ap: € Df and we set Diyy = D, Vipr = Vy and g4 = y;. If, however,
Ay € D*— L]J D}, then we set Vi1 =Q—W and we define Df.; as a disk

Te=1

lying in D*— L,J D¥ such that its boundary Oy, lies in D*—N* and that

it is a neighbtgx}hood (in D*) of the point axy, so small that the pavrt.-ial
map ¢~ Y/0%y; can be extended to a map e D,’}‘.,.}»Vk.;.l, .for which
the diameter of the set wpii(D¥+y) is less than twice th.e diameter of
¢~Yars1). By the lemma of Section 10 this is always possible.
Thus we have a sequence of disks {Df} and a sequence of maps
{yn} such that: o
' (33) If n s n' then either D ~ D} =0, or D} = Di and yn = pw-.
. ik
(34) vy is an ewmtension of ¢~i/Cx. '
(38) Tor every & < O there emisis only & finite number of disks D} such
that the diameters of pu(Dy) are >e.
(36) If an does mot belong to DY w Df v ... v DE then wa(D¥) C @—=W.
Now let us set
o0
ok
~w for every ®eD*— J Df,
@7) glay =77 T
() for every weDf, i=1,2,..

Tt follows from (38) that g is a function g: D*T)Q and frglgl 13(}3;41);
and (35) that this function is continuous. Moreover, we infer from {36) tha

(38) Y C D for i=1,2,..,m.
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Applying (17), we infer that there exists an index 4, =< m such that
the disk .D* contains two disjoint disks D’ and I’ with boundaries ¢~
and O such that the loops ¢| 0’ and ¢| €’ are linked with the core C;, of
alink d;, of the chain M and that g(¢') and g(0”) are subsets of the
e-neighborhood of the boundary B;, of the link A;,.

It follows by (15) that if J;, is the link of the wreath W lying in 4, then.

g(D’) ~ Jin #= 0 # l](.D”) e J.;" .
By virtue of (38), we conclude that
D' ~Df#0%D" ~Df.

Since the disks D’ and D" are disjoint, we infer that the disk DE
intersects the boundary of D', and consequently .D¥ ~ ¢ 5 0, hence
also g(Df,) ~ g(0") # 0. But this is impossible, by (28) and (29), because
the points of ¢(Df) belong to the e-neighborhood of J;, and the points
of ¢(C') = ¢=((¢") belong to the z-neighborhood of B;,.

Thus the supposition that @* containy a disk leads to a contradiction.

Remark. It follows by our construction that the hyperspace X
of the decomposition of the set §—S whose non degenerate elements
coincide with the links of the wreaths W,, » =1, 2, ..., does not contain.
any disk. By a generalization of the theorem of Andrews and Curtis [2]
obtained recently by D. 8. Gillman and J. M. Martin [9] the Cartesian product
of B' by the decomposition-space of E™ into points and arves, with only
a countable number of arcs, is homeomorphic with E"**. It follows that
B x X is topologically * and thus we get a 3-dimensional Cartesian
divisor of E* which does not contain any disk.

12, Problems. The following questions remain open:

1° Is it true that the space Q* (constructed in Section 8) does not
contain any 2-dimensional AR? More exactly, is it true that the first
Betti number of every 2-dimensional subset of Q¥ ig infinite?

2° Does there exist an AR-space of an arbitrarily given dimension
which does not contain any disk?

3° Does there exist a Cartesian divisor of a Huelidean cube such

that its dimension is greater than or equal to 2 but it does not contain
any disk?
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