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On uniform sets in a complete separable metric space
by

R. Westwick * (Vancouver).

1. Introduction. Let R denote a complete separable metric space.
For definitions see Halmos [3]. Let 1" denote a group of homeomorphisms
of R onto itself. For each set A contained in R, we let §(A) denote the
collection of all those subsets B of R for which a sequence 7y, 7y, ... of
elements of I' exists with BC | Jl 7i(4). We call a subset 4 of R uniform

e
(with respect to the group 7'), if for each open set U for which U~ A4 #@,
we have A ¢ 8(U ~ A). The purpose of this paper is to prove

THEOREM 4. Let A be a closed uniform subset of R, and let U be an
uncountable collection of closed subsels of A, such that A € S8(B) for each
BeW. If either

(i) T is an abelian group, or

(ii) R 4s the real Uine and T the group of isometries of R,
then there are at least two sets B, and B, of W such that A € S(B, ~ B,).

This theorem reminds one of the theorem: If 9 is an uncountable
collection of Lebesgue measurable subsets of the real line, each with
positive Liebesgue measure, then at least two of the sets have an infer-
section with positive Lebesgue measure. The similarity is even closer
when we notice that the real line can be covered, to within a sef of
measure zero, by a countable number of isometric copies of any set
with positive Lebesgue measure.

At the end of this paper, we construct a closed set A in the real
line, containing an uncountable collection U of disjoint closed sets B,
such that A e 8(B) for each B e Y. Here, the group T consists of the
tranglations of the real line. This set is of interest in another connection,
in that it is an example of a closed set for which there exists no Hausdorff
meagure giving it a non-zero o-finite measure. See for example [1].

I wish to express my sincere thanks to Professor C. A. Rogers
for the advice he hag given and the interest he has taken in the
preparation of this paper.

* This paper was written while the author was being supported by an Overseas
Tellowship, granted by the National Research Council of Canada.
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2. Theorems 1, 2 and 3, of this section are valid without the ad-
ditional conditions on R and 7' assumed in Theorem 4.

TaEOREM 1. If A is a closed uniform subset of R, and if A 8 (QIA.,)
where each As is a closed set, then A e §(Ax) for some imteger k.

Proof. Let ,,7,,.. be a sequence of elements of 7T, such that
Aggn(gm). Now ,-@1”(,-@1 i) = Qn(m), and by our hypothesis

on T, 75(4s) is a closed set for each ¢ and j. Therefore, the Baire category
theorem applied to the closed set A and the covering | Jzy(4:) of A,
47

provides us with an open set U and integers 4y, j,, such that Un 4 # @
and U~ A4 Cry(ds). Since A is uniform, 4e¢S(TU~4) and so
A ¢ 8(vs,(As,)). But then A e8(44,), which completes the proof of the
theorem.

THEOREM 2. Let A be a closed uniform. sel in R, and let A be an
uncountable set of closed subsets of A with A e 8(B) for each B e W. Then,
there is a closed set D with A e 8(D), and an uncountable subset Ay C A,
such that for each B e, there is a ve T with ©(D) C B.

Proof. We choose first a countable base of open sets Uy, U,, ...
for the open sets of R. Such a base exists because B is assumed to bo
separable.

Let B be a fixed element of . Since 4 ¢ §(B), there is a sequence

Tyy Tas - Of elements of 7' such that 4 C ‘Uln(B)‘ B is closed, and so by

our original hypothesis on T, 74(B) is closed for each integer i. By an
application of the Baire category theorem to the closed set A, there
is an open set ¥V with ¥~ 4 # @ and V ~ 4 C v(B) for some integer i.
Since Uy, U, ... is & base for the open sets, we can find an integer
such that U;CV and Uy~ A # @. Olearly, w7 (U; ~ 4) C B. Therefore,
for each B %, there is an integer j and a v e 7T, such that U; ~ 4 O
and 7(Ujyn A)C B. Because A is uncountable, uncountably many of
these integers j must be equal to some fixed integer, say 7,. Lot 2, de-
note the set of those B ¢ A corresponding to f,. Since Upyn A 0, and

sinee A is uniform, 4 ¢ §(U;, ~ 4). Since Uy, is open, Uy, = G O where
i1

the sets i are closed sets. Therefore, A ¢ S(Cj O¢n A), and since each
gl

Q‘ ~nA i§ closed, we have, by theorem 1, that A e 8(0i, ~ 4) for some
integer 4o. Let D = C;,~ 4. Then D is closed, 4 ¢ 8(D), and since

DL Ty, ~ A, there is, for each B Wy, a v e T with 7(D) C B. This proves
theorem 2.
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THEOREM 3. Let D be a closed set in R, such that, whenever D e 8 (Cj Ag)
=1
with each A4 closed, it follows that D e 8(Ay) for some integer i. Then D
contains a closed wniform subset Dy with D e S(Dy).

Proof. Let € be the set of all those open sets U in R for which
D¢ 8(D ~ U), and let U, be the union of these open sets. We prove
that the closed set .Dy = D —~U, is the required set.

Since B is separable, each U e ¢ can be represented as a union of
open sets taken from a countable base. It follows easily, that U, can be
written a8 a union of a countable number of the open sets of &, say

Uy, Uy, Us, ... Furthermore, we can write Uy = |J Oy for i =1,2,3, ...,
i=1

where each Cy; is closed. Since D¢ §(U;~ D), we must have D ¢ S(D ~ Cy)
for all 4, §. Therefore, gince D = (D—Uy) v (D ~ Uy) = Dy u U (D ~ Oy),
1,

it follows, from the hypothesis on D, that .D e S(Dy). '
It remains to prove that D, is uniform. Let U be an open set with

UnDy#@. Then U¢ ¢, and 50 De8(DnT). We write U=1J C

i=1
where the sets C; are closed. Then )

UnD:(UnDo)u(UnHanD)=‘O(C'4r\Do)u ”‘(O’gn Cyn D).
£ =1 2

s

The components are all closed sets, and for all ¢, 4§, k, D é 8(Ok ~ Oy~ D).
Therefore, D e8(0;~ Dy) for some integer 4, implying that D e8(U ~ D).
Since D, C D, we have also Dye 8(U n D), and this proves that D, is
uniform.

8. We now proceed to prove theorem 4.
Let U,, Us, .. be a countable base of open sets for the open sets
of R, and let 7 ¢ T. Then, if U is an open set in B, v~(U) is open, and

0
s0 vXU)=J Uy for some sequence of integers 4,%,, ... Therefore,
=1

U= G 7(Uy,), and so it follows that v(U,), v(U,), ... forms a countable
7=1

bage of open sets also.
Let D be a cloged set, let %, be an uncountable subget of U, and
for each B e, let vz e T such that

) A 3(Dy,

(2) 75(D)C B.

By theorem 2, this is possible. Now, suppose DeS(H A¢) where each
0

A; ig closed. Then, since 4 e 8(D), 4 ES(¢U1A')’ and so by theorem 1,

1*
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A € 8(Ay,) for some integer 4. This, together with (2), implies D) € 8(4y,),
5o D satisfies the hypothesis of theorem 3. Therefore, let D, be a uni-
form closed subset of D such that D e §(D,). Then, since (1) holds, we
have also A e 8(D,). Let oy, 0y, 03,:.. be a sequence of elements of 7'
such that 4 C J oy(Dy).

=1
Let B e, Then, by (2), and since Dy C D, vp(D,) is covered by
CI o¢(Dy). By the Baire category theorem, there is an open set U such
i=1
that U~ 1p(Dy) # @ and U ~vp(Dy) C oy(D,) for some integer 4. Now,
78(Uy), t8(Uy), ... is a countable base for the open sets of R, and so

there is an integer § such that
3) 0 # 1p(Uyg) ~ wp(Dy) C o Dy) .

Since %, is uncountable, there are integers j, and 4, such that for un-
countably many B e ¥,,

(4) 0 #5(Us, ~ Do) C o1(Dy) -

Clearly, Uj, ~ D, # @, and since D, is uniform, we have D, ¢ 8( Uy, ~ Dy).
Then, since A ¢8(Dy), 4 e 8(U; ~D,). The proof of the theorem is
completed when we have shown that, in both of the cases (i) and (ii),
B, and B, can be selected from A, such that B; ~ B, contains the image
of Ujy~ D, under some 7 e T.

Suppose that (i) holds, that is, T is abelian. Let B, and B, be any
two elements of ¥, satisfying (4). Then

7B, G;;lTB,(Do o an) QTBl(Do) ,C_ B, )
5,05 75,(Do ~ Uy,) C 1oy Dy) C By

Therefore, By ~ B, containg 7(Dy ~ Uy,) where v = 15,05, vg, = T3, 00 T -
On the other hand, suppose that (i) holds. Since each 7 ¢ 7', in this
case, is either a franslation or a reflection, we can choose B, and B,
such that (4) is satisfied, and both zp, and vp, are translations or hoth
are reflections. By replacing D, by —D, if necessary, we may in fact
agsume both 7z and 7z, are translations. We have two cases to con-
sider, depending on whether oy, is a translation or & reflection, Tf oy, 18
& translation, then the homeomorphisms under congideration comml;te,
implying, as before, that B, ~ B, D vp,05 v,(Uy, ~ Dy). If 6, i a re-
flection, then o}, is the identity homeomorphism and vz, oy, 7s, = TB,01, T8y
= 03, In this case we have (Do U,) = v, 0175,(Dy N U3,) S0 0iy( D))
= 75,(Dy) C By, for k=1,2, and 80 B, ~ B, D 04(Dy ~ Uy,). This com-
pletes the proof of the theorem. N ' E
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4. In Theorem 4, the set 4 is assumed to be uniform. This con-
dition can be relaxed to the condition on the set D of Theorem 3. One
needs only to observe that the closed wuniform subset D, of D, con-
structed in the proof, satisfies D ¢ (D —D,). From this it follows easily
that Dy e 8(Dy ~ B) for each Be. Then apply Theorem 4 to D, and
{Dy~ B| B e}

However, we construct a closed set to show that some conditions
are needed. The closed set that we give is an effective example in the
gense that the axiom of choice is not needed for its construction.

Aceording to von Neumann [4], the set of numbers ap, where

ﬁ; 22[1}»]
Up = S e (p>0),
=1
is a sot of distinet algebraically independent real numbers. I have chosen
to take the sum from 1 rather than 0 in order to have 0 < ay <1 when-
ever 0 < p < 1. By restricting p to a perfect subset of real numbers
which does not contain rational points, the subset so obtained will be
a perfect subset of reall numbers. We let A denote the real numbers ay
obtained by taking 0 <p < 1.

Let By, F,, .. be a sequence of digjoint perfect subsets of (0, 1),
each of which does not contain any rational point. Such a sequence is
easily constructed by taking F; to be a subset of (1)L +1), 1/11) obtained
by excluding small enough open sets about the rational points. We also
let f; be one-to-one functions from the unit interval (0,1) into I,
t=1,2,.. These can be constructed as in Denjoy [2], page 8.

Tet A= {ap| p e B} for i = 1,2, ... Then the sets 4; ave disjoint
perfect subsets of 4. Let Dy = A +..+4s= {@+... +u| vie Ag,

$=1,..,n}, and
D = (_M'(%—t}_) +D”) .
n=1

Bach D, is a perfect set. Furthermore, since Dn C (0,1 -+1), the set
$n(n1) +Dy is contained in (§n(n+1), k(n-+1)(n-+2)), for n =1, 2, ...
and 5o D is a perfect set. If &, b, ... is @ sequence of real numbers with

o >
tie A, 4==1,2, ..., then the get = Ug(%n(n +1) -ty +Dny) is & per-

e
foct subset of D for which there is a sequence of translations oy, sy ...
such that D C @ on(B). If 1,4, ... is another sequence of real numbers

ne=1

with & e 4; and # % &; for ¢=1,2,.. and if " ig the corresponding set,
then HAF =@ because for n=2,3,.., (ta+Dn1)n (¢ +Dna)=9.
For each te(0,1), let B; be the set obtained by taking the sequence
Anityy Uyctyy - Then the sety He for 0 <t <1 are mutually disjoint per-
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fect subsets of D such that for each f, D ¢ S(E:). We notice that all of
the sets mentioned are effectively given. The set D is the set we set
out to construct.

The fact, mentioned in the introduction, that this set does not have
non-zero o-finite Hausdorff measure for any Hausdorff measure is clear.
To have non-zero measure, each of the subsets H; would have to have
non-zero measure, and since there are uncountably many of them in D

_and they are pairwise disjoint, D would have non-o-finite measure.
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On the genus of an n-connected graph
by
F. Harary* and Y. Kodama*

1. Introduction. The conmectivity »(@) of a graph G is.the
smallest number of points whose removal vesults either in a discon-
nected graph or in the graph with one point and no lines. Graph & is
n-conmected it %(@) = n. For n =1, an n-component of @ is a maximal
n-connected subgraph. Thus a 1-component of @ is a (connected) com-
ponent; a 2-component of G is called a dlock of & (by Battle, Harary,
Kodama and Youngs [1] or Harary [3], and & nonseparable subgraph
by Whitney [6]); and a 3-component of & will be called a brick of @.

The genus v (@) of @ is the smallest integer n such that & is imbed-
dable in the orientable surface S, whose genus y(Ss) is #. In [1], we
(Battle, Harary, Kodama and Youngs) proved that the genus of any
graph is the sum of the genuses of its blocks. Our present object is to
study the genus of a graph in terms of its bricks, and in general of its
n-components.

The problem is so complicated that we restriet our study in this
note to the case where an n-connected graph G is the union of two
(n+1)-components, B and 0. We will gee that the number of points
in B ~ 0 is exactly n, that »(@) < y(B)+y(C)+n—1, and by an example
that this inequality is best possible. Let 2y, Vgy ..oy On be the set of points
in B~ C and call Gy the graph obtained by adding line vsv; to @. Then
we will prove that, if y(Gy)> p(&) for all 1<i<j<n, then y(G)
= y(B) +9(0) +n—1. This last equation is gpecialized to the case where
B and C are bricks, i.e., n=2.

2. Results. We will present one lemma, one theorem, one corollary,
and several examples,

Remark 1. Let an n-connected graph & be the union of two
(n+1)-components B and C. Then the number of points of B~ O is
exactly m. Moreover, the set of lines of B~ O consists of all lines of &
whose end points are in B A C.

* * This work was supported in part by the National Science Foundation under
grants NSF G-17771 and G-20637.
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