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Ordering relations admitting automorphisms

by
Amne C. Morel (Seattle, Washington)

In this paper we find (1) a necessary and sufficient condition that
an ordering relation have a (non-trivial) automorphism group, (2) a neces-
sary and sufficient condition that an ordering relation have a non-Abelian
automorphism group, and (3) a lower bound to the eardinality of a non-
Abelian antomorphism group of an ordering relation (%), (3).

For notation and definitions, the reader is first referred to [1], the
content of which is closely related to that of this paper; we shall freely
use terms defined in [1]. Further background material can be found
in [5] and [7]. If 4 is any set, we write »(4) for the cardinality of 4.
‘We use the symbols C and C for inclusion and proper inclusion respec-
tively. We write 4 x B for the Cartesian product of A and B. Let § be
any simply ordering relation; we shall not distinguish between the group
G(8) and the set of automorphisms of S. We write ¢ for the identity of
the group G'(8). We will use the letters m and » for finite order types.
If « is an order type, then o* denotes the inverse of a. For any relation
8, 7(8) is the order type of §. The order type of the natural numbers
in their usual order will be written as w; hence w* (or w*- w) is the
order type of the negative integers (or the integers) in their usual order.
We shall denote by I the ordering relation of the integers. The relations E
and § are strictly disjoint if F(R) ~ F(8) =@.If R, 8, and 7' are initial,
middle and final segments of U, we write RIU, SAU and 15 U; similarly,
for types g, o, v and v we write pJv, oMov and vFv. If #,y < F(R), then
[z, y) is the set of z ¢ F(R) such that xRz, 2Ry, and 2 7 y. For any relation
R and any set 4, we put R(A) =R (4 x4).

Let § be an ordering relation with @, y e F(S). Let s~y if either (i)
28y and there exist f ¢ G(§) and @, ¥, « F'(8) such that 85, y8y,, and
fl@y) =y, or (i) y8=z and there exist f ¢ G(8) and @, 4, ¢ F'(§) such that
1,8y, #8x, and f(y,) = 4. Clearly, ~ is an equivalence relation over

(*) The results of this paper were stated without proof in [3] and [6].

(2) Theorems (1) and (2) answer problems (a) and (b) proposed by Goffman in [4];
problem (¢) is solved in the Abelian case in [1]; the general case, which appears to be
very difficult, is open.
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F(8); the equivalence class #/~ will be denoted by O,. We note that
8¢Cz) is a segment of 8. Now let /e G(8) and x ¢ F(8); if x8F(x), we put
Cro = Wif{(z)8y and ySf”Lyli(w) for some integer i};

if f(2)S®, we put
Oz = {ylf'(2)8y and y8f(x) for some integer i} .
We observe that 8<{C;.> is a segment of § and that
C1aC Cy.

Lo, Let § be an ordering relation, let f < G(8) and let @ < F(8).
Then either .

{i) 7(8<Chad) =1,
or

(ii) For some type y # 0, ©(8{0sz>) = y- (0* + o).

Proof. If f(z)=w, then (i). If f(z)+ », we may assume x8f(w).
We put h

vi = 1[8[f@), £ (@)))

Now y; # 0 for each ¢ and
(840 = ) vs.
X

Since f is an automorphism, it is clear that y; =y, always; heﬁce
we have (ii).

for every integer 4.

THEOREM 1. Let 8 be an ordering relation and lot o = (8). Then
the following conditions are equivalent:

(i) G(8) is non-trivial.

(ii) There exists a type y # 0 such that ¥ (0* + o) Moa.

"Proof. Suppose (i) holds. Choose feG(§) with f #% e. Then (ii)
follows from the Lemma. If (i) holds, then § is representable in the form

8=1+DUi+V,
(¥
yhere T(Us) =y for each integer i and the relations occwring on the
right side of the identity are pairwise strictly disjoint. For each i, let f;

be an automorphism of U; onto U,;. Now we can define an f e G(S)
with f £ e as follows:

fl#)=a for zelF(T)wF(V),
f(@) = fi») elsewhere.
THEOREM 2. Let S be an ordering

] ) relation and let o = v(S). Then the
following conditions are equivalent:
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(i) G(8) is non-Abelian.
(ii) There ewist types f and & and a type y = 0 such that

(B4 (@ +o)+0)- (0* + o) Moo .

Proof. Suppose (i) holds. By Theorem 3 of [2], the group G(8) cannot
be simply ordered. Now using Theorem 2 of [2], we easily find that there
must exist an feG(S) and x,y ¢ F(§) such that y e« €, and

fy)8y, «8flx) and «f(2).
Since 28/ (2) and & # f(2) for every ze C;,, we have
CraC Cy.

Hence either (a) {8y for every te C,., or (b) y St for every te Cy,; for
definiteness assume (a). There must be a g e G(S) and 2, y, € O, such
that @, 8%, ySy,, and ¢(x,) = y,; obviously g # e. We have obtained

(1) There exist @ e F(S8) and f,ge G(S) such that = #f(x), » + g(a),
and Oyq # Cpz-
We can assume that xSf(z) and #8¢(x) in (1). Put

2) ¢ =7(8¢[o, f(@)])) and 8 =(8{(z, 9(@))).
Using (1), (2), the Lemma, and the fact that §{Cy:> is a segment of 8,

we find that at least one of the following cases holds:

(3) There is an & %0 such that - w =¢-w-+& and ¢-o* = 6- o*

(4) There is an & £ 0 such that §- w* =e¢+9p-0* and ¢ 0 = - w.

(5) There exist non-zero types & and { such that 6-o = ¢-w-+¢ and
@ o* =(+0- 0%

(6) There exist non-zero types { and & such that 6-o =¢ -0+ and
0 o =c+¢p

(7) A case obtained from (3)-(6) by interchanging ¢ and 6 everywhere.

Suppose (3) holds. Applying the elementary Lemma 3.5 of [5] to
the first identity of (3), we obtain at least one of the two statements below:

(8) There is a finite type n 5 0 such that ¢- © = f-n and e = 0-w.
(9) There is a finite type n and non-zero types 6% and 6® such that
poo=0n+0 e=6?+0 0 and 6946 = 0.
If (9) holds, add 6® on the right to the first identity of (9); we now
see that (3) implies
(10) There exist types » 7= 0 and = such that ¢-w+ax =070
Trom the second identity of (3) we get
grw*=10-0*+0-n.
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Now applying Lemma 3.5 of [5] to the identity above, we obtain
either

(11) There is & type m 7= 0 such thatf- w* =¢-w* and ¢.-m = 60,

or

(12) There exist a finite type m as well as non-zero types ¢ and e
such that ¢ +¢® =g, ¢- 0*+¢W = - w*, and ¢+ g-m = 6.4,

Suppose (11) is satistied; put

(13) "=¢-m and 0' = 6. n.

If (12) holds, we add ¢® on the left to the third identity of (12),
obtaining

(14) D+ Bt g m =@ (m41) = g4 6-n.
In this case we put
(15) @' =¢p-(m+1) and 6 = 6. x.

From (15) and (10), we have ¢'36; from (15) and (14) we have 0'Fy’.
Now using Corollary 1.28 of [7], we get
(16) ¢ =10,

Note that if ¢' and 6’ are defined by (13) rather than by (15), then

the statement (16) is a part of (11). Now using (10), (16), and (13) or (15)
we find that

an) protr=9" 0t+n=40 =¢,

and hence

(18) ¢+ =0
From (18) and Theorem 1.37 of [7] we get

(19) There is a type ¢ such that ¢’ = @' w-+i-+¢'- o*.
Using (2), (18) or (15), (18) and (19), we see that

T(8¢01e)) = - (@* +0) = ¢'- (0 4 o)

H

@9 = (@ 0titg" o) +(g 0+t oY) (0% + o)

= (0" 0+ 49" (* + ) + (149" o¥) - (0 + o) .
Now set
Proti=F, ¢=y, it¢g o*=3s
in (20). Then we have

T(8<01)) = (B+y- (0 +0) +0) - (0* + ).

Sinee ¢ £ 0, y = ¢’ £ 0, and we obtain (if).
The case (4) is symmetric by inverses with (3). Now assume that (5)

holds. Since (10) was derived from the first identity of (3), we again have

©
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(10). Using the fact that the first and second identities of (5) are symmetric
by inverses, we see that the second identity yields

(21) u+0-o* =g@-m for some u and some finite m 3 0.
As in case (3), put
o =¢-m and 6 =0n.
Then by (10) and (21), we have
@30 and 0'F¢’;
using Corollary 1.28 of [7] again, we obtain
0 =9

Now the argument leading from (17) to (ii) is applicable here.

Suppose that (6) holds. Then we have (10) and also

v+p-o*=0-m for some » and some m #* 0.

Moreover,

.-m+0.n=v+p o*+g ot+nan=rv+g (0*+o)+x=_0-(m+n);
and

0. (0* +w)=0-(m+n) (0*+w)= (v+¢-(w*+w)+n)-(w*+w);

hence (ii) holds. ' _

Now let (ii) hold. Then § is representable in the form
(22) § =1+ 3 (094 Y B +79) + 1o,

[N [N
where ) o
v(RY) =y for all integers ¢, §,
2(UP)=p and (V%) = 8 for all integers §,

and any two relations on the right of the identity sign in (22) are pairwise

strictly disjoint. For all integers i,f,4’,j" We choose functions 1o,
197, f&féi" as follows:
G maps U isomorphically onto v,
(23) 197 maps V¥ isomorphically onto i,
47 maps BY isomorphically onfo B,
Then there exists an automorphism fe G(8) defined as follows:
flo)y=w for z e F(Ty) v F(Ty), .
flo) = 1% (@) for all j and all & <P (UD),
@) = f37 (@) for all j and all x e PV,
)

( .
(@) = 0{47() for all 4, and all &< F(RY).

f
f
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There also exists a g e G(8) defined as follows:

g(@) = file(w) for all 4 and all z ¢ P(R),
g(z) = f(x) elsewhere.

Now suppose © ¢ F(RY). Then f(s)e F(R¥) and gf (@) e F(RP); on the
other hand, §(z) ¢ F(RY) and fg(z) ¢ F(R{). Hence (i) holds.
CoroLLARY 3. If 8 is an ordering relation and if G(8) is non-Abelian,
then
z(G(S)) > 9N,

Proof. By Theorem 2, S is representable in the form (22) above.
For each function % on the set of integers to {0, 1} we use (22) above
to define an automorphism f; of §:

fuw) = @ for w e F(Th) © F(T,),

flw) = 1§ (@) for all j and all o e F(UD,

ful@) = 1% (@) for all j and all &« F(VY),

fal@) = 3 w) for all ¢, and all & e F(RY).
Clearly, f; 5= fr for h # h'.

We note in conclusion that every non-Abelian G(8) has as a subgroup
the automorphism group of a relation of type (w*+ w)2
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On the imbedding of a regular ring in a regular ring
with identity
by
L. Fuchs (Budapest) and I. Halperin (Kingston)

1. Introduction. Throughout this note we shall suppose that R
is an associative ring, regular in the sense of von Neumann (this means
that for every a ¢ R, axa = a for some ¢ R). We shall prove the following
theorem:

THEOREM 1. 4 regular ving is isomorphic to a two-sided ideal of a reqular
ring with identity. .

A special case of this theorem has been established previously by
Kohls [3]. Also, Johnson [2] has shown that, for a certain class of rings
which includes all regular rings, each of the rings is isomorphic to a subring
of a regular ring with identity.

In this note we shall not require familiarity with the theory of regular
rings.

Owr procedure is to imbed the regular ring R in the ring of all pairs
(@, o) with @ ¢ R and o from a suitable commutative regular ring M with
identity such that R is an algebra over M. If every non-zero element
of R hag the same additive order, necessarily a prime or infinity, then
we can choose M as the prime field of the corresponding characteristic
(and begin our proof with section 4). In the most general case we shall
need the following result:

THEOREM 2. There exisls a commutative regular ving M with identity
such that every regular ving R is an algebra over M.

First we shall construet this ring M and then turn each regular
ring into an algebra over M. Finally, we verify the main vesult, ie.
Theorem 1.

2. Construction of M. Let p,,..,7:, .. be the set of rational
primes in some order, and K, the prime field of characteristic p;. Define
K as the complete direct sum of the Ky,:

K= Z* Km ’
i
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