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to show that R* is a regular ring. Given (a, o) ¢ B*, determine o e M
and beR as in Lemma 3. Then we have

(“7 9)(b7 o)(a, Q) = (a, 9)7

and since (b, o) ¢ R*, R* is in fact |regular. This éompletes the proof of
Theorem 1 (3).
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Skolem-type normal forms for first-order languages
with a generalized quantifier*

by
G. Fuhrken (Minneapolis, Minn.)

Let L be a first-order language with countably many non-logical
constants and let « be an ordinal number. With L and a we associate
a new language L, which is obtained from I by adding to the symbols
of I a new quantifier @ which is read ‘““there are at least x,...”". Let V, be
the get of all sentences of L, which are logically valid (where @ is counted
among the logical symbols).

Mostowski raised the question () whether V, is axiomatizable. For
a =0 he showed that the answer is negative (provided L has a suf-
ficient supply of non-logical constants). One can show (see [3] and [5])
that for the majority of ordinals Mostowski’s proof cannot be adapted.
In fact for a = 1 the answer is positive as shown by Vaught (see [16]).

Another natural question to ask is the following: What is the relation-
ship between the various V’s? (Note that the formation rules for I, are
independent of the particular «.) Here we obtain as partial results:

(1) ¥, C V. for any ordinal o for which &, is regular;

(2) Vo C V, for any ordinal a.

The following negative results are known (assuming that L has
a sufficient supply of non-logical constants):

(3) Vo g_l V. for any ordinal a> 0;

(4) V, $ Ve for any limit ordinal a and any successor ordinel §;

(B) Vqu _¢_ Vs for any ordinals a and B for which s, is reqular and . s
singular;

* The paper is mainly based on §2 of Part I of the author’s Doctoral Disserta-
tion [2]. The main results have been summarized in [6]. The author takes the oppor-
tunity to express his gratitude to his Thesis Advisor Professor Robert L. Vaught and to
Professor William Craig for the stimulation and help received. It was in Professor
William Craig’s Seminar conducted at the University of California in Berkeley in 1961
that the author learned about the problems treated in this paper and obtained the first

results in this direction.
(1) In [10]; see also [11].
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(6) Ve ¢_ Vs for any ordinal « and f such that (i) m<x, ‘mplies
™ < N, for all cardinals m; while (ii) M < 85 and 8g < 2", for some car-
dinal .

This leaves the following conjectures:

(A) V.= Vs whenever

() @ and B are both successor ordinals;
or (b) 8, and s are both singular;
or (c) « and # are both weakly but not strongly inaccessible ordinals;
or (d) « and B are both strongly inaccessible ordinals (greater than ).

(B) V. C Vs whenever

(a) a is a successor ordinal or s, is a singular;
and (b) B is a weakly inaccessible ordinal.

(1) and (2) are obtained from.results of first-order model theory
with the help of Skolem-typé normal forms. By a.Skolem-type normal
form of a sentence we mean, roughly, a sentence which may contain
additional predicates, in which the quantifiers occur only in certain
special contexts, and which has the property that it is satisfiable if
and only if the original sentence is satisfiable. The method may be used
to establish other results, e.g. a compactness theorem for I, is obtained.
For a further application, see the following note by Vaught (this vol-
wme, pp. 303-304).

1. Preliminaries. (?) Let Z have as non-logical constants countably
many predicates; the list of (individual) variables is vy, vy, ...; the (prim-
itive) sentential connectives are negation and conjunction; the (primitive)
quantifier is the existential quantifier; the identity predicate is the only
logical predicate. )

) The symbols of L, are the symbols of L together with the new quan-
tifier. The syntactical notions like being a formula, being a subformula,
being a sentence of L, are defined in the usual way with the obvious
modifications. In particular:

(11) For every formula ¢ of L, and every variable v, there is a unique
formula Quap of L,. Quup in turn determines v, and @, and can only
obtained in this way.

(1.2) A variable occurs free in Quv,g if, and only if, it occurs free
in ¢ and is distinet from v,.

C[The nf)tipn .of an assignment a over a relational system U (of ap-
propriate similarity type) satistying a formula of I, in A, and of a sentence

of L, being true in 9 is' defined in the usual way with the additional
stipulation:

(%) For the model-theoretic notions see [12], [13], {14], and [9].

e ©
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(1.3) @ satisfies Quap in W iff there are at least w, elemenis © in A
for which a(n/x) satisfies ¢ in U, where a(njo) is the assignment over U
which differs from a at most at the n-th place and has the value z af this
place.

Let I' be a set of sentences of L,. The following two properties hold:

(L.4) If I' has a model of power sz, then I' has a model of every power
8, for which a <y <p.

(1.5) For every sentence g of L, there is a first-order sentence ¢’ of L, with
the property that for every relational system U, A is a model of p A1Qv,v, = v,
if and only if U is a model of @' AT1Quyvy = v,. Let I be the set of all ¢’
for ¢ in I. I' and I'" have the same models of power less than x,. Note
that @' and I'" do not depend on the particular a.

(1.4) is in essence to be found already in [10]. It is a downward
Lowenheim-Skolem theorem and can be proved by adapting the proof
of the corresponding first-order theorem given in [13], obtaining at the
same time a stronger version of (1.4). (1.5) is a consequence of the obser-
vation that in a relational system of power less than x, the %,-quantifier
acts trivially, i.e. no assignment satisfies any formula Qu.¢.

We shall make use of the following theorems of model theory about
firgt-order theories 7' with countably many non-logical constants:

(1.6) Assume that among the non-logical constants of T' there is a unary
predicate U. If T has an infinite model ¥ for which |U% < |4} (%), then
T has an infinite model A for which |U™ < |4] = 5,.

This is Vaught’s Léwenheim-Skolem theorem form two cardinals.
For a proof of (1.6) see [9]: This theorem is stated there for complete T
only, but this special case easily implies the general one.

(1.7) Assume T and U are as in (1.6). Let W be a new unary pred-
icate and A the set of all sentences

ATy eee A Vnea [ W0 A oo A Wy = [ = ¢7]]

where @ is any formula of (the language of) T' having no other free variables
tham Vg, ..., ey, and ¢ is obtained from ¢ by relativising quantifiers
o W.If T w A { \vg[Uvy— Wrol, \/ v, TW,} is consistent, then T has a model
A for which |UY| < |4 = &,, and conversely, if T has an infinite model A
for which |U| < |A|, then the above set of sentences is comsistent.

This is a lemma underlying the proof of (1.6), though it is not
stated explicitely in [9].

®*) UY¥ is the interpretation of U in s |X| is the cardinality of X.

Fundamenta Mathematicae, T. LIV 20
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(1.8) Assume that among the non-logical constants of T there is
a binary predicate B, and that for every model Aof T, RY is a linear
ordering of A. Assume furthermore that s, s regular. If T has a model of
power 8, every proper initial R-segment of which is of smaller power, then
T has a model of power s, every proper R-segment of which is countable.

This generalizes (1.6). The proof is similar to the proof of (1.6) and
runs, roughly, like follows:

First observe that T has a model %, which has a proper elementary
extension %, such that ‘all old elements precede all new elements’. (This
corresponds in the proof of (1:6) to a model of T with a proper ele-
mentary extension “baving the same U”.) In fact, if ¢ = 0 take for 9,
the model given by hypothesis and for 2%, any proper elementary exten-
sion of Uy (Note that B™ is of type w.) If a > 0 take for ¥, the model
given by hypothesis. Let B, be a denumerable elementary subsystem
of %y, and let X, be a proper initial R-segment of A; which contains B,
Let B, be an elementary subsystem of 2, which containg X, and is of
the same power as X, Repeating this process we obtain an elementary
chain (*) By, By, ... of elementary subsystems of ,. Take for 9, the
union of this chain.

As in the proof of (1.6) we can even find A, and A, which are in
addition denumerable, homogenous, and have the same kinds of elements,
and thus are isomorphic by a Cantor-type argument. Hence %, like 20,
has a proper elementary extension 2, which is isomorphic to A, and
“every new elements follows every old element”. Repeating this process
we arrive at an elementary chain U, %, ... of isomorphic models where
“new elements are allways added at the end”. The union of such a count-
able chain is again denumerable, homogeneous, and has the same kind
of elements as A,. The process can thus be continued into the transfi-
nite and ends after e, steps with the desired model.

(1.9) Assume that T and R are as in (1.8). If T has o model U for
which R™ is of type o, then for every ordinal a, T has a model A of power
Na such that every proper initial R-segment of U is of smaller power.

This is a consequence of a theorem in McDowell and Specker [7].
Let % be the model given by hypothesis. We may assume A = o and
a> 0. Expand U by the addition and the multiplication on w, i.e. form
B,=(A, +,-). By the theorem just mentioned every model which is
elementarily equivalent to 8, has a proper elementary extension of the
same power where ‘“new elements are added at the end only”. We thus
obtain an elementary chain B, B,,... of proper elementary extensions,
continuing the process into the transfinite by taking unions at the limit
stages. The appropriate reduct of B,, is the desiréd model.

{*) I.e. a chain with respect to being an elementary subsystem.
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(1.10) Assume T and B are as in (1.8). Let 0 be a (weakly) inacces-
sible ordinal (greater than o). If W is a model of T for which R* is of
type 0, then A has an elementary subsystem B which has the property
that (i) R® has o type which is an initial ordinal cofinal with w; and (ii)
B is an initial R-segment of A.

This is a rudimentary form of a theorem in [8]. The proof is similar to
the argument in the beginning of the proof of (1.8) where the case a >0
is considered. The only difference is that one has to choose X,, X,...
such that they are initial segments which correspond to initial ordinals
and that they form a properly increasing chain. :

2. The Skolem-type normal forms. (°) The first Skolem-type
normal form is designed for the study of L, when « is a successor
ordinal, say « = f+1. The idea behind the normal form is as follows:
Let & be a model of power ¥,. Choose a subset U of 4 of power ;.
Instead of saying ‘‘the set § has power at least %, we shall say “there
is a biunique correspondence between a subset of § and 4’°. Instead of
saying “the set § has power less than x,” we say ‘“there is a biunique
correspondence between S and a subset of U”. Furthermore, the col-
lection of correspondences is replaced by one ternary relation which “par-
ametrizes’’ these correspondences.

DEFINITION (2.1). Let Ly be a language obtained from I, by adding
to the non-logical constants a new unary predicate U and a new ternary
predicate F.

With every set X of sentences of L, we associate a set X* of first-
order sentences of L¥. If X is finite, 2* will be finite.

First, with every formula ¢ of L, we associate (by recursion) a first-
order formula ¢* of L¥ having the same free variables as ¢.

(i) If ¢ is quantifier-free, then ¢* is ¢;

(ii) If @ is of the form —y, then ¢* is "Ip*;

(iii) Tf @ is of the form y; A y,, then ¢* is pf A 9i;

(iv) If ¢ is of the form \/v.p, then ¢* is Vovayp*;

(v) If ¢ is of the form Qv,y, then ¢* is

VA s VO [9* A 0RO V841

where vy is the first variable after all variables in y*. .
I* is the set of all ¢* with ¢ in Z, together with the following
sentences:

(vi) /\'Uo[/\’lh \/V/\ 03 [F'0g ¥y 03—>0p == 03] /\'/\ 03V 05 A\ 0 [P0 00, >0, =05]]3

(%) For a further Skolem-type normal form, see [1].
20*
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(vii) For every subformula of X of the form Quv,y, the universal
closure of

Vor[ Avia Vonly* A F0s 00 021V A 02\ s [9* = U041 A Fogvn v 14]]

where v is the first variable after all variables in y*.

Note that X* does depend on the particular a. Z*u {Qugv,= 1,
—1Qv, Uv} may be called a Skolem-type normal form of X.

THEOREM (2.2). Assume that o is a successor ordinal, say a = f+1.
Let X be a set of sentences of Ly, and let Z* be the sel of first-order semtences
associated with X by (2.1). Under these assumptions, a relational system U
of power 8, is a model of X if and only if for some unary relation X and
some ternary relation Y over A (U, X, Y) 45 a model of Z* o {1Qu, Un,}.
X may be chosen to be of power xg.

Proof. Assume first that o is a model of X of power s,. Choose
a subset X of A of power ;. Let 4 be the set of all subsets of 4 for
which there is a subformula Quxy of X and an assignment a over 9 such
that 8 = {zeA]a(nfr) satisfies p in A}. 4 is at most of the power of A.
Let J be a set of biunique correspondences such that for every S in A
there either is a jeJ with domain § and range 4, or there is a jeJ
with domain § and range included in X. We can choose J to be at most
of the power of A. Let f be a biunique function from J into 4. Finally, set
Y = {{f(),®,i@)|jed and 2 edomj} and B = (Y, X, ¥). We shall
show that B is a model of Z* v {71Qu, Un,}.

Clearly, B is a model of ~1Qu,Uv,. Since f is biunique, and since
each jed is biunique, the sentence (vi) of (2.1) is true in B, too.

Next we shall prove (by induction) that for every subformula ¢
of X and every assignment a over

() a satisfies @ in A if and only if a satisfies o* in B.

We shall only treat the case that ¢ is of the form Quay.

Assume first that a satisfies @ in 9% Thus § = {® ¢ Ala(ny/x) satisfies
v in A} is of power at least N,. Since § is in #, there is a jed with
domain § and range 4. (There can be no jeJ with domain § and range
included in X, the j’s being biunique.) Thus for every wed there is
a 2z €8 such that <f(f), 2, #) ¢ Y. The rest follows by inductive assumption.

Assume now that e satisties ¢* in %B. Since 4 has power 8, and
since fixing the first argnment of ¥ yields a biunigue function, there
are at least §, elements # ¢ A for which a(nfz) satisfies »* in B. The rest
follows again by inductive assumption.

From (x) it follows in partieular that ¢* is true in B for every o in 2.
Tt remains to show that all sentences (vii) of (2.1) are true in B.
) Let Quay be a subformula of 2. Put § — wed|a(n/z) satisfies ¢
in A}. Since § isin #, there is either a jed with domain § and range 4,
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or there is a jeJ with domain § and range included in X. In the first case,
using (x) and “taking f(j) for v, the first disjunct in (vii) holds; in
the second case, again using () and ‘‘taking f(j) for ", the second
digjunct in (vii) holds.

For the proof of the theorem from right to left, assume now that
(A, X, Y) is a model of 2* u {1Quv, Uv,} of power .. Thus 4 has power
8, and X has power less than s,. We shall show that for every subfor-
mula ¢ of X and every assignment a over U

(%%) @ satisfies ¢ in W if and only if a satisfies ¢* in (A, X, ¥).

Again we shall only treat the case that ¢ is of the form Quuy.

Assume that a satisfies ¢ in . Thus § = {# € A|a(n/z) satisfies v in A}
is of power at least w,. Since (vii) of (2.1) is true in (A, X, ¥), we only
have to rule out that a satisfies \/oxA\va[p* >V Vpsa Ujys AFDE0n D]
in (%, X, Y). But since § has power at least s, and X has power less
than &., and since in view of (vi) fixing the first argument in ¥ yields
a biunique function, the above iy ruled out indeed.

The reverse implication follows similarly as in the proof of ().

From (#+) it follows in particular that % is a model of 2.

Remark. Definition (2.1) and Theorem (2.2) can be modified in va-
rious ways.

First, instead of using the universe of U as the standard set of power
Nq, We can choose an arbitrary subset of A4 of power s, for this purpose.
This requires the addition of a new unary predicate V to L and a change
in the definition of ¢*. In particular condition (v) of (2.1) has to be changed
by replacing

Vs AVt VO [ AP 0n0k11] DY VA V1V 0n V01 —9* A F0r0n v311]

and a similar change in (vii). With this changed notion of normal form
(2.2) can be stated for relational systems of power at least s, imstead
for those of power s, only (¢).

Secondly, one can drop the requirement that the sets U and V serving
as standards for the cardinality of sets are chosen from the subsets
of A, thus admitting to enlarge the universe. This requires a further
unary predicate W denoting the old universe. It also requives a further
change in the definition of ¢*. In particular condition (iv) of (2.1) has
to be changed by replacing \/onyp* by Voa[Wva A 9*], and similar changes
in (v) and (vii). With this changed notion of normal form (2.2) can be
stated for arbitrary relational systems; 9 is, however, no longer obtained
as a reduct but as a relativized reduct. This change is also necessary if
one wants to extend the results to languages with uncountably many

(®) This form was mentioned in [4].
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non-logical constants and # in the proof of (2.2) is no longer at most
of the power of A. .

The second Skolem-type normal form is designed for the study of
L, where o is any ordinal. The idea behind this normal form is as follows:
Let U be a model of power x,. Choose a linear ordering of 4 such that
every proper initial segment has power less than 8,. Instead of saying
“the set § has power at least s, we shall say “there is a biunique
correspondence between a subset of § and A”; instead of saying “the
set S has power less than .’ we say “there is a biunique correspondence
between § and a proper initial segment of A”. The collection of corres-
pondences is again replaced by a ternary relation.

DermviaroN (2.3). Let L be the language obtained from I, by adding
to the non-logical constants a binary predicate R and a ternary predicate F.

With every set X of sentences of L, we associate a set Z* of first.
order sentences of L}. If X is finite, Z* will be finite.

First, with every formula ¢ of L, we associate a first-order formuls
¢* of I having the same free variables as g.

(i)-(v) as in (2.1);

2™ is the set of all ¢* with ¢ in X together with the following sentences:

(vi) as in (2.1);

(vii) for every subformula of X of the form Quayw, the universal
closure of

Ve[ AVhr1 V0 [9* A Popva 0]V
Vis2 A\ Ort1 [0 > RUpy1 Vg A B0y Opa]]
where v is the first variable after all variables in y*;

(viil) a sentence saying that R ig a linear ordering of the universe.

Note that 2* does not depend on the particular a. Z* U {Quvy, = v,,
A21Qv, Bom,) may be called a Skolem-type normal form of X.

THEOREM (2.4). Let X be a set of sentences of L, and Z* the set of first-
?rdfar sentences assoc?'ated with 2 by (2.3). A relational system A of power
N, 98 @ mode_l of X if and only if jor some binary relation X and some
ternary relation Y over 4, (A, X, ¥) is a model of 2% U {Av Qv Ro,v,)
X may be even chosen 1o be well-ordering. ’ o

. The proof of (2.4) is similar to the proof of (2.2).

Remark. First, the remarks followi
! L eI ng the proof of (2.2) can be
rej?eatedf With smtabl‘e mpfhhcations. Secondly, if , is regular, the defi-
nition of X* can be simplified by using the observation that a subset of

the corresponding ordered set is of ower i i
et 1s pondmg power less than &, if and only if the

@ ©
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8. Applications. THEOREM (3.1). Assume that s, is regular, and let X
be o set of sentences of L.. If X has a model, then X has a model when
considered as a set of sentences of L.

Proof. If X has a model of power less than x,, then the assertion
follows from (1.5) and the first-order Lowenheim-Skolem theorem. If
Y has a model of power at least x,, then by (1.4) X has a model of
power %,. We may therefore assume that we have a model A of X of
POWeT K-

Let 2* be the set of first-order sentences associated with X' by (2.3).
By (2.4) there are X and Y such that (U, X, Y) is a model of 2* and X
is a well-ordering of A of type w,. From (1.8) taking X* for T, we
obtain a model (B, X', ¥') of 2* of power 8, and where X’ is a linear
ordering of B every proper initial segment of which is countable. Ap-
plying (2.4) again we see that B is a model of 2 considered as a set
of sentences of L.

Remark. (3.1) can be regarded as a strengthened version of (1.6).
Conversely, for the case a a successor ordinals (3.1) could have been
obtained using (1.6) instead of (1.8).

TamorBM (3.2). Let X be a st of sentences of Ly. If 2 has a model,
then X has a model when considered as a set of sentences of L,, where a is
any ordinal.

Proof. If 5 has a model of power less than s, we argue as in the
beginning of the proof of (3.1). Otherwise, as there we shall assume that
we have a model A of X' of power .

Tet Z* be the set of first-order sentences associated with X by (2.3).
By (2.4) there are X and Y suck that (U, X, ¥) is a model of Z* and X
is a linear ordering of A of type w. Let T be the first-order theory of
(%«, X, ¥). By (1.9) T has a model (B, X', Y’) of power s, for which
X’ is a linear ordering of B every proper initial segment of which is
of smaller power. (B, X', ¥') is in particular & model of 2* Now con-
gidering Z* as obtained from a set of sentences of I, and applying again
(2.4) we obtain the required model B of Z.

TrmorBM (3.3) (7). Assume that o is @ (weakly) inaccessible ordinal
(greater than ©). Let X be a set of sentences of L.. If Z has o model, then
there is an ordinal p, o> f ond B cofinal with o, and Z has o model
when considered as o set of sentence of Lg.

The proof uses (2.3) and (2.4) as well as (1.10) and is similar to the
preceding proofs.

TunorEM (3.4). Let £ be a set of sentences of IL,. If every finite subset
of X has o model, then X has o model.

(") This theorem as well ag its corollary 3.5 is due to Dana Scott.
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Proof. If some finite subset of X has only countable models, then
every finite subset of Zhas a countable model and in this case the assertion
follows with the help of (1.5) from the first-order compactness theorem
together with the Lowenheim-Skolem theorem. We shall therefore agsume
that every finite subset of X has an uncountable model and hence by
(1.4) a model of power x,.

Let 2* be the set of first-order sentences associated with X by (2.1).
We are going to apply (1.7) taking Z* for 7. Tirst, we observe that
every finite subset 7' is contained in the * of some finite subset of X
Furthermore, every finite subset of 4 is contained in the corresponding
set for some finite subset of 7' Since by assumption every finite subset
of X has a model (%, X, ¥) of power s, by (2.2), every finite subset
of T has & model (%, X, ¥) of power &, with countable X, and hence
by (1.7) every finite subset of T'w A {A2[Uvy~>Wrg), Vo, 1 Wo,} has
a model. By the first-order compactness theorem the above set itself
has a model, and hence by (1.7) Z* has a model (A, X7, X') of power &,
with countable X. By (2.2) % is a model of .

Remark. (3.1) is a compactness theorem. Using ultraproducts
one can show that L, is compact for every « for which ™, < 8y, for
each n e o, tmplies [] <man e 0y < x,. (8)

As corollaries of (3.1) and (3.2) we obtain immediately the assertions
(1) and (2) of the introduction. (8.3) yields as a corollary

(8.5) Assume that « is a (weakly) inaceessible ordinal (greater than o).
There is an ordinal 8, B < a and B cofinal with o, such that Vg CV..

To prove (3.5) from (3.3) one has to apply (3.3) not to L,—the g
would depend on the sentence to be falsified—but to a language ob-
tained from L, by dublication of the non-logical constants so that the
sentences which are not logically valid “can be written with disjoint
predicates” and thus can be falsified in one model.

From (3.4) one obtains as a further corollary that the ordering of

the natural numbers is mot characterizable (up to isomorphism) in L, as
a relativized reduct.

4. Some counterexamples. We ghall indicate, briefly, some
examples of sentences of I, which show the non-inclusions (3) to (6)

from the introduction. None of the examples originates with the author.

They are not the simplest ones; they are rather chosen because their
critical properties are obvious.

Let B and G be binary predicates and B Dbe g ternary predicate.
(4.1). Let ¢ be a first-order sentence saying that R is a linear ordering

(*) Announced in [3].
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without last element. The sentence pA~1Qu,Rvv, is satisfiable as 2 sen-
tence of L, if and only if a # 0.

(4.2). Let ¢ be a first-order sentence saying that R is a linear
ordering of the universe. Let furthermore y be the conjunction of the
following sentences:

(i) /\"70[/\")1 Ve A\ v [Fo00—0s = v5]A AV \ 0, A\ 03[ F Vols¥y >0y = 773]]5

(1) Ao ALV 0s[Bv,00—Fvy0,0,];

(ii) V2 AV AV AV [F0, 0505 Rugty].

The sentence gApAQueRv,vA Av, 1Qv, Rvv, is satisfiable as a sen-
tence of L, if and only if a is a succesor ordinal. (The sentence v says
that fixing the first argument in ¥ yields a biunique funetion (i) whose
domain contains the predecessors of this element (ii) and whose range
is uniformly bounded (iii).)

(4.3). Let @ be as in (4.2). Let furthermore y be the conjunction of
the following sentences:

(1) AvV o Ava[Gyv, -0, = v];

(i) V2 A\ 01 A\ 0a[ G010~ R, 0,];

(1) AoV vV va[Boyvy A Guywy].

The sentence pApA QuyRv,v,A A0, 1Qu R, 0, is satisfiable as a sentence
of L, if and only if s, is singular. (The sentence says that & is a function
(i) whose domain is bounded (ii) while its range is cofinal in the uni-
verse (iii).)

(4.4). The sentence A\vy Av;[ A%[Roy0 > Ruav,]—>v, = 0] AQoy\/ 9, R0,0,
AT1Qu,\/ v, Royv, 1 satisfiable as a sentence of I, if and only if, for some
cardinal m < K., 8, < 2™.
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icm

The completeness of logic with the added quantifier
‘‘there are uncountably many”

by
R. L. Vaught (Los Angeles, Calif.)

The language L, is obtained from an ordinary first order language L,
having eountably many symbols, by adding a new quantifier @, to be read
“there are uncountably many...such that..”. Mostowski [10] (1) raised
the completeness problem for I, i.e., the question whether the set ¥,
of (semantically) logically valid sentences of I, is recursively enumerable.

The compactness of the language L, has been established in Theo-
rem 3.4 of the preceding article by G. Fuhrken. The purpose of this
note is to point out that the two results and the argument employed
by Fuhrken to prove compactness also lead at once to a positive answer
to Mostowski’s question.

One of these two results is (2.2), Fuhrken’s first normal form theo-
rem for L. When modified as in the second (but not the first) part of
the Remark following its proof, this theorem gives us the following in-
formation: Let I’ be the first order language obtained from I by adding
two new unary predicates U and W, and one new ternary predicate.
We can define a recursive function correlating with each sentence ¢ of I,
a sentence ¢’ of L’ in such a way that:

(A) o has a model if and only if o' has a model W of power 8, in
which U™ has power at most .

The second resiﬂt, (1.7), is easily derived from. the proof of the author’s
‘Léwenheim-Skolem theorem for two cardinals’ (Theorem 6.2 of [9]).
(However, this fact for the case when T is incomplete and its sig-
nificance were only observed recently, by Fuhrken.) Let L' be the first
order language obtained from I’ by adding one new unary predicate W,.
(1.7) describes a certain recursive set X of sentences, such that, for any
sentence ¢ of L'

(B) 8 has a model U of power x, tn which U™ has power at most s
if and only if Xu {8} is consistent.

() The terminology of the preceding paper by G. Fuhrken will be used; num-
bers refer to its theorems, numbers in brackets to its bibliography.
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