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est divergente pour chaque ¢ ¢ IJ et qu’elle est convergente pour chaque
¢ ¢ B. Il nous reste & démontrer que la suite {§x(p, F')} est convergente
pour tout ¢ ¢ 1.

Bn effet, si ¢ ¢ B, alors ¢ ¢ By, pour tout n. La suite {($x(p,Fn)} est -

convergente pour chaque ¢é¢ K, pour chaque n et Ilima"rk(cp,ﬁ',,) = Fy(p).
fe->00

En passant dans (37) & la limite avec &, ce qui est permis en vertu de

la convergence uniforme de la série

P
Z o 8u(py L)

=l

nous obtiendrons
lim Gx(p, F) = D o Falg) = I'(9)
ce qui termine la démonstration.
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Concerning some problems raised by A. Lelek
by ‘
L. R. King, J. H. Roberts, and G. M. Rosenstein, Jr.* (Durham)

1. Introduction. A. Lelek raises in [3] a series of questions about
fixations in Euclidean n-dimensional space, £". We may ask when each
of the following properties hold for a collection C of subsets of &".

(I) There ewists a 0-dimensional compact set Z C & such that
Z 00 for every CeC.
(II) There is an arc A C & such that A ~ € %0 for every O ¢C.

(III) There emists, for every ¢ > 0, a finite sequence Zy, ..., Zy of closed
and mutually disjoint subsets of & such that 8(Z;) < ¢ for i=1,..,%

k
and (\J Z))~ 050 for all CcC.
qes]

Let C* be the union of all sets belonging to C. Denote by A(C) the
set of all points » € 8" such that there is a sequence C;, 0,, ... of elements
of G such that {p} = Lim0; (see [2] for the definition of Lim): Lelek
asks the following questions:

ProBrLEM 1. Is it true that if C* is a bounded subset of the plane and
there emists an &> 0 such that C is o disjoint collection of connected sets
of diameter greater than e, then (I) holds?

ProBLEM 2. Is it true that if C* is @ bounded subset of the plane and
C is a disjoint collection of connected sets then (IIL) émplies (I)?

Pro®BumM 3. Is it true that if C* is a subset of the plane, C is a disjoint
collection of connected sots and dim A(C) <0, then (IT) implies (IIT)?

In thig paper, we give negative answers to these guestions by con-
structing two counter-examples. The collections € and D defined are
collections of subsets of the umit square, 32

2. Preliminary definitions and results. We first define some
subsets of J* which will be used in both constructions. Let ¢ be the usual
metric on 3% let B(w,r) (B(w,r)) be the open (closed) ball of radius r

* The authors wish to thank Dr. R. Dnda for his suggestions which have made
this paper easier to read. .
This vesearch was supported by the National Science Foundation T.S.A.
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about » in 3% Let L={(»,y)ed: 0=10}, R={z,y)ed: 2= 1},
B={(@y)ed: y=0} T={m,y) e y=1}

DerNITION. For a positive integer n and for integers ¢ and § such
that 0 <4< 2"—1 and 0 <§ < 2"—1, let @u(é,§) = {(z,y) e 3% 27" < g
<(E+1)27 27" <y < (412" Then Q= {Quli, §): 0 < i< 2 —1;
0<j<<2"—1} is called an n-tiling of 32

DEFINITION. If (@, ..., Q) is a finite sequence of elements of @,
such that .

1. @1 and @y, intersect in an edge for 1< ¢ << k~1,

2. QT =0,

3. @B 0,

4 Qu#Q it i1,

k
then @ =‘U Q¢ is an n-path through J2,
=]

Notice that for any n-path @ through 3, both @ ~ T and @ ~ B
contain a non-degenerate continuum.

If X is a ket we define %(X) to be the cardinal number of X.

Theorems 2.1 and 2.2 below are well-known, so no proofs will be
given. )

TBEOREM 2.1. If Z is a zero-dimensional subset of 32, then there ewists
a continuum K separating L and R, K ~ Z = 0.

TEROREM 2.2. Let Z, ..., Zy be disjoint closed subsets of 3* such that,
for all 4, Zy does not intersect both L and R, nor does it intersect both B and T.
Then there exists a continuum K separating L and R which is disjoint from
k .
U Z.. ,
i=1
Let X be the set of all non-degenerate continua contained in 3.
Since k(X) =e¢=1%k(J), X may be indexed by an ordinal number A
(whose cardinality, therefore, is ¢) such that E({aed: a< f}) <ec for
overy fed: ¥ = (K ae A} If KeX, k(K) = o.

DEFINITION. If & and y are two points in &, let L(x, y) be the straight
line segment with & and y as end points.

THEOREM 2.3. If M 4s a connected point set in &, U is an open set
containing M, and % and y are points of ‘M, then there are points @, vy i
in M such that L= L(®:, m4.,) is contained in U for 0 <4< n where
Ty =& and Tni1 =y and such that if 0 <i<j<n, LinL; #0 only if

. - b .
j =i+1. Moreover, G = Uch 18 a continuum contained in U and is
i~

topologically a closed interval which can be linearly ordered from w to y.

Proof. This follows from [4], Theorem 77, p. 56, and some plane
geometry. :

icm°®
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3. Example I. A, The construction of example I. Let ¢
be the set of all P such that for some %, P is an n-path through 32 § is
a countable set, so we write § = {P,, P, y -} For each positive integer ¢
and each ¢ in 4, we define 0 so that

al) 01'(1 __C;_ -PM

b) If /3 < a and Kﬁ_C_Pi’ then Kﬂ ~ O # 0,

) 0B <a, Oﬁ;QO,»,,,

d) Let Bi, mﬂl;:J(x C,',e. Then ZG(C{GMB.-G) <1,

The definition iy inductive. :

For a=0. Let Oy = {a,} where a;yeX, if K,CP,; let Cp=0
if K, iy not contained in P,. Then 0, satisfies conditions a)-d). Assume
that Ok has been defined for all ¥ <n and satisfies conditions a)-d).
Let Cno = {@w} Where ay EK°_kL<Jn0k° if EgCPpj let Cpp=0 if K, is
not contained in P,. Conditions a), ¢), and d) ave clearly satisfied for Cy,.
Suppose that I, C P,. We need only prove K, —kL<)nOm # 0 to satisfy b),

but from d) and the induetion hypothesis we see- that %(C) <1 for
k<m, s0 70(K0—IU On) = ¢ 5 0.. :
o<

(%) Assume that o e A, that a > 0, and that for all 8, 0 < B < «, and
for all positive integers T, Cxs has been defined and satisfies conditions a)-d).

ASSErRITON 3.1 k(Bw) < k({f e A: B < a}) < ¢ for all positive integers 1.

Proof. For all & e By there is a 1< « such that @ e (y. Let f(w)
be the least such 1 in the well-ordered set {8e A: B < a}. Define g::
Bu—>{eed: f<a} by giw)=p®). Suppose gix)=giy) =p. Then
@,y € Cip but neither # nor y is in Bi. As %(Cj—Bi) <1, # =y. Thus,
gi is a one-one mapping, and the first inequality holds. The second in-
equality is true by our choice of 4.

AgsermioN 3.2. If B < a and Kz C Py, then Kz ~ By # 0.

"Proof. Since K;C Py, K~ By =Ky mZL<Ju CudEzn Oy ;go by b).

©0
Now lot Oy = {014} v B Where ai, GK“—H B, if K.CPy; leb
Cia = By, it K, £ Py. Then 01, C Py, for Bi =ﬂL<J O0pC Py andif K.C Py,

01 i in Py, That properties ¢) and d) hold is clear. Since Bi ~ Kj 0
for B < a it K C P, by Assertion 3.2, we need only show that K, ~ C#0

00
if KX,C P,. It suifices to show that there is an ay, in Ku——{L;{ B;,. But
X ® . .
k(B) < ¢ by Assortion. 3.1, so k (Ka»—iulB;a) > 0; that is, the set is not

empty, Now assume that Oy, has been defined for % > n and satisfies a)-d).
20+
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o N1
Let Ona = {@tna} v Bua Where @, e Ku—(,q By, uH Ci) if K, C Py; let
i =

Ona = Buo if Ko § Pa. Clearly a), c), and d) hold. By (x) assumption,
in order to show property b), it suffices to show that if K,C P,, K,—

—1
—( Coj B v nU Cia) # 0. This may be proved by showing that, for ¢ =1, ...,
i=1 t=1

0 -1
n—1, k(Cw) < ¢, for in that case, using Assertion 3.1, k(|J By, unU Ci)
qwal fml

< ¢ = k(K,). From d) we know that &(0y—By,) < 1 for ¢ <n and from c)
we know that BiC Cp for é<m. Thus, #(Cw)=k(Buwv (0s—By))
L %(Ba) +k(Cia—Bi) < ¢+1 =¢.

‘We have now defined Cy, for all positive integers ¢ and all « in 4.
Let C; = L{;Oi"' Let C= {0t i=1,2,..}. Cis our collection for this
example.

B. The properties of example I. (1) C* is a bounded subset of
the plane.

(2) For all i, Cs~n T £ 0 and Os ~ B % 0. We have noticed that any
n-path intersects I' in a set containing a non-degenerate continuum;
that is, there is an ae A such that K,C Py~ T'C P;. Therefore, T ~ (s
DK, 0D K, ~ Oy 0 by property b) of Cj. Similarly, C¢n B 0.

(3) For oll 4, 6(Cy) >1 by (2).

(4) C has property (IL), for T is such an arc.

(8) For all 4, C(C Py, since O C Py for all a.

(8) If ¢ # 4§, Oy and O are disjoint. Suppose e Oy~ ;. Let a be
the least 1 ¢ A such that @ € Cyy; let 8 be the least A ¢ A such that z e 0j;.
We may assume without loss of generality that o < f. If a < §, then
>0, and we By, s0 x¢ U;p unless o e By = H C;» which is not the

<,

case by our choice of 8. Thus, o = f. We may now assume without loss
of generality that ¢ <j, for that if j > ¢, then j > 1, and x ¢ Cjs unless
@ € By which we have seen is not true. Therefore, i = j.

(7) Cuis connected for all . If Oy is not connected for some s, Oy = A u B
where A and B are mutually separated in P;. There ig, therefore, a closed
(and hence compact) set F separating A and E in P;. If F contains no
continuum, F would be 0-dimensional ([1], p. 22) and could not separate
in the two-dimensional Cantor manifold Py ([1], p. 93). Therefore, F
contains a continuum K; that is, K CFC P,C 3. Thus, K €3, or for
some aed, K=K, But, Fn CiDK,n CiDKyn C,,,;éo, a coon-
tradiction.

(8) C does mot have property (III). If C did have property (III), there
would be a finite collection Z, ..., Zi of mutually disjoint closed subsets

of 3 such that 8(Z:) < 1/4 for all i and for all iy O Lﬂ Zy 5= 0. Because
i=1

©
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of the small diameter involved, no Z; intersects both B and T, nor does
any Z; intersect both L and R. By Theorem 2.2, there is a closed con-
nected set K separating L and R which is disjoint from the closed set
k . .

U Z;. As 3 is normal, there is an open set U containing K and not
i=1

E
intersecting Lv R v _U1Z¢. Since K separates L and R, there is a point
=

@, in K~ T and a point 4, in K ~ B. By Theorem 2.3, there is a closed
connected set @ contained in U which is topologically: a closed interval
from 2, to ¥, and which can be linearly ordered from z, to %,. Since

k k k
GCT, @\ Ze=0. Tet 1 = (6, | Z0; >0 and B(&, m)~ |J Ze = 0.
== ] =1

Let # be such that 1/2" is less than 7/3)/2. Let @ = {Q €Q,: Q C B(G, 7))
We will prove that, there is an n-path @ such that @ C v Q.

We call a finite sequence (@, ..., Q:) of elements of Q admissible
provided

() @« and @, intersect in an edge for i=1,...,1—1,

(b) @ €@y,

() Qi Qyif i #j.

An admissible sequence (@, ...,Q:) covers a point = ¢J* provided

'
xelJ@Qs.

=1

ASSERTION 3.3. If © € G and there is an admissible sequence covering w,
then if y s in B(w, 1/2"""), there i3 an admissible sequence covering both »
and y.

Proof. Let (Qy, ..., @) be an admissible sequence covering 2. If this
or any other admissible sequence covering » covers ¥, the assertion is
proved, so we assume that this sequence does not cover y. Let » be the

least 4 such that » € @¢; then (@, ..., @) is an admissible sequence cover-
ing #. Let Qf, ..., Q4 be the elements of the n-tiling which are distinet

8
from @, but which intersect Q. Then y € B(z,1/2""*) C @y v ‘L=J1Qé C B(z,n)

8 v
CB(G,7); a8 y ¢ @y y € Q. Lot @* be a Qi such that y < ;. If @* and
fml

Q. have an edge in common, (Qy, .., @, @*) is an admissible sequence
covering @ and y. Suppose that @, and @* have only a corner point in
common. Then there are two elements of the n-tiling such that eac.h
has an edge in common with each of @, and @*. If one of tlllese t\.wo is
not among @i, ..., @y, let @’ be that one; then (@i, ..., @» @', @) is an
admisgible sequence covering # and y. If both are among Q1 s Qs
let @' be the ome of the two with the lowest subscript and let @ .be
the other; then (@, ..., @', @», @”,Q*) is an admissible sequence covering
@ and v.
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ASSERTION 3.4. There is an admissible sequence (Qy, ..., Q) covering y,.

Proof. Buppose not. We notice immediately that there is an ad-
missible sequence covering @,. Then, if we consider & as ordered from
@y t0 Yo, there is a last point @ € G which can be covered by an admissible
sequence, for the intersection of @ and the union of all elements of all
admissible sequences is a closed subset of @. Suppose @ is not y,. Clearly,
there iy a point y € @ ~ B(w,1/2""") which follows 2. By Assertion 3.3,
¥ may be covered by an admissible sequence, contradicting the choice of #.

ASSERTION 3.5. There is an n-path @ such that Q Cua.

Proof. Let (@4, ..., Qx) be an admissible s;equence covering ¥,. Then
Q sz @i is an x-path through 3* which is contained in w Q.

If @ is an n-path through 3 such that Q@ C vQC B(@,y), then
QnngZ4=0 and there is a j such that @ = P;. But C;C Py, 50

k
C,nHZ; = 0, so the proof of (8) is complete.

(9) C does not have property (I) by [3], Theorem 2.

(10) dim 4 (C) = —1. As the diameter of every O in C ig lafge, it
Lim €y exists for any sequence of elements of C, it contains more than
one point. Thus 4 (C) = 0.

) C. Conclusions. We may summarize the results of section B of
this part by the following theorem:

‘ THEOREM 3.6. There is a countable collection C of mutually disjofmt
connected subsets of 3* such that properties (1) and (III) do not hold for C

while property (IX) does hold for C, such that dim A4 (C) <0, and such
that 6(C)> % for all € in C.

This theorem provides an answer to questions 1 and 3.

) We point out that a countable collection C having the desired prop-
erties. may be effectively constructed, although we have not done so.
The construction rests on the fact that there are connected sety in J
which intersect both 7 and B but which do not separate I and R. In
each n-path, n = 1,2, ..., we construct such a connected set ¢ whose
closure D is a continuum having the following properties:

' (a) D= U D where D is a collection of arcs, only a finite number of
which have diameter greater than s for any &> 0.

(b) D is an are with respect to its members.
(e) Cis -composed of one element of each member of D.
The details of this construction are extremely involved. Since a com-

plef.;e.c‘onstrucﬁon would contain many Dages of tedious arguments and
definitions, we have ommitted the construction. .

e ©
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4. Example IL The construction of the example. Example IT
is constructed by choosing a subset D of our collection C of example I.
If n is a positive integer, let Ts be the set of all (@, y) in 32 such that
y = 1/2" and (44 +1)/2"*® < o < (46+3)/2""2 for ¢ an integer, 0 < 1< 2"—1.
For all n and 4, Tns is a closed set such that §(Tne) = 1/2"7, If ¢ 7,
Tut ~ Ty = 0. For any positive integer n, let 9, be the set of all n-paths
P through 3% such that for all positive integers m, 1 << m < n, there is
a non-degenerate continuum contained in P ~ Ty for some non-negative
integer 4. T, is finite for any # and 9, C T where T is defined as in

example I. Let 4’ =nU2ﬂ‘,, C 9. Then 9’ is countable, and ' = {Px,, P,, ...}

where P e¥. Let R; = Py, for every positive integer 4; let D; = C, for
every positive integer 4. Let D = {Dy: ¢+ > 1}.

The properties of example IL. (1) D* is a bounded subset of
the plane.

(2) DinT #0 and Dy~ B # 0 for all i.

(3) 8(Ds) =1 for, all 4.

(4) D has property (II).

(8) Ds C B¢ = Py, for all 4.

(6) If i 4, D¢ and Dy are disjoint.

(7) Dy s connected for all 1.

The above statements are corollaries of the corresponding statements
for example I.

(8) D has property (III). Let {> 0 be given. Let n be a positive
integer such that 1/2" < ¢. Then, for all 4, T is a closed set such that
6(Tnt) < (.

ASSERTION 4.1. For all but a finite number of positive integers §, there
is an integer i, 0 < i < 2"—1, such that Tni~ D; 5~ 0.

Proof. If P ¢Tn where m > n, then there is an ¢ such that P ~ T
contains a non-degenerate continuum; that is, P~ Typi D K for some
B e A. Now P = Py, for some j, so as Kz C Py, by Assertion 3.2 we have
Dy Tne= Cry Tui D B}c,ﬂ ATl Bkjp ~ Kg # 0. This eompl_etes the

proof, for we have noted that, for all m, T, is finite, hence, LJ Pm is
m<n

finite.

We now make up a finite collection of disjoint closed sets whose
diameters are less than ¢ and such that D; intersects for all § their union.
Bach Ty is an element of this collection and for each j such that

Dy nTj—le =0 the set consisting of one point from T ~ D; is in
=1

this  collection. Clearly, this collection satisfies the conditions of prop-
erty (III). -
(9) D does not have property (I). Let Z C 3* be compact, dimZ = 0.
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ASSERTION 4.2. There is a positive integer n and a non-negative integer
§ such that Sy = {(w,y) € 3% (4] +1)2" " < o< (45 +3)/2" ™ and 0 <y < 1/2"
is disjoint from Z.
Proof. The contrary would imply Z ) B, contradicting dimZ = o,
We now construct some P ¢ §’ missing Z. Let 8y, be disjoint from Z.
Then TupnZC 8ap~nZ = 0. Let T be T,. For every i, i = 1, ..,n-1,
let T; be some Ty. Let T be Tap. For i =0, ...,n, let a; be the left
hand end point of Ty and let b; be the right hand end point of T4.

n—1 n+1
Let I =\ Tas, tpa); let B = U L(bi, bysa). Then I' v 2w B' & Ty is

a simple closed curve. Let J be that curve together with the hounded
domain of & enclosed by it.

Now J may be homeomorphically mapped onto 3* in such a way
that L’ goes onto L, R’ goes onto R, T goes onto itself, and T, goes onto B.
By Theorem 2.1, there is a closed connected set J' separating L’ from
E’ and not intersecting Zn J. Since Z and K’ are disjoint closed sets,
there is an open set U containing K’ and not intersecting Z v L' v R,
Sinee K’ separates L' and R, there is a point %y in K'~ T and a point
% in K'~ Ty. By Theorem 2.3, therefore, there is a closed connected
set K contained in U which is topologically a closed interval from s,
to ¥, and which can be linearly ordered from @y 10 Yy. Lot = (K, Z vy
VI'u B)<1/2™" Then B(E,n)~ Z =0. Let m be an integer such
that 1/2™ < 7/3)/2. Then m > n+2.

We will show that there is an element of Tm contained in B(K,5)u
U Snp. Let Q' = {Q eTm: @ C B(K,n) ~nJ}. If we call a finite sequence
(@15 ..y Qi) of elements of Q' admissible provided it satisfies conditions
(a), (b), and (c) preceeding Assertion 3.3 and if we gay that such a sequence
covers a point provided that point is in the union of the elements of the
Sequence, then we may prove by the same method used to prove Assertion
3.4 that

ASSERTION 4.3. There is an admissible sequence (Qy, ..., Q)

ASSERTION 4.4. If ¢ is an integ
such that Ty C Sup.

Proof. We can show that 7,
no smaller than 2. To. do this, we need only show that

dp-+1 _ 42" Y (2p 1)) +1 402" 2p +1)) +8  4p+3
2n+2 < 2n+k+2 < ( 2nfk+2 )}+ < p+

covering y,.
er greater tham n -1, there is an integer k

+e2-3ep+1) 18I0 Spp if & is an integer

= 3 y
2n+2

that 2°7(2p+1) < 2"**—1, and that 12"tk < 1jom,

inequalities hold by an easy computation.
For each integer ¢ such that n+2<ig

of some Ty, which is contained in Snp.

We see that these

m, let @ be the midpoint
Let @, = yy; let @,y De

icm
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((4p +1)/2"*" +1/2™**, 1)2™"") which is in Thy1zp ~ Sap. Lot omey be that
point of B which has the same first coordinate as #m.

Let (@, ..., @) be a sequence such as is guaranteed by Asser-
tion 4.3. We construct a finite sequence of elements of T, (Q1, ..., Q)
such that

(a) Qi C Sup for 1 i,

(b) @: and Qiy, intersect in an edge for 1< i<t—1; Qf and Q
intersect in an edge, , .

(¢) ¥n €@, Tmi1€Qi, and @ e UIQ} for n <i<m+1,

(@) Q5 Qf if 4 j. ’

Because of our choice of the @'s, each @ is on the bottom edge of
at least one element of ¥, and on the top edge of at least one element
of 3, if we picture J* in the usual way, with the point (0, 0) in the lower
left corner and the point (1, 1) in the upper right corner. Since m > n -2,
any element of &, which contains an interior point of 8., is contained
in Sup. Let @; be that element of T, which is directly below Qi and which
has an edge in common with Qi. Clearly, #, € @] for z, ¢ T\, which includes
the common edge of Qx and @i. We easily see that we can construct an
L-shaped path of elements of Ty from @, to @41, from @, t0 @y4e, and
so on, ending with one from @y t0 @4 and such that each path joins
the preceeding one in such a way that all of the requirements (a)-(d) are
satisfied. For example, to construct a path of the described type from
@y t0 @,11, assuming that one exists to @, with @u(s, 2™ ") the last element
of the path, we first choose @u(s,2" "—1). We choose successively
Qm(s+1,2™7"~1), @Qu(s+2,2™ "—1), and so on, using the plus sign if
the first coordinate of @,;; is larger than that of @,, the minus sign if it
is not, until we choose the first Qu(v, 2™ *—1) such that ,,; € Qum(v, 2™ "~
—1); we then choose Qum(v, 2™ "—2), ..., @u(v, 2" "' —1), completing the
desired path.

From the method of constructing the sequences involved, we note
that the sequence (@, ..., @k, @1, ..., @) satisfies the requirements in the

k H
definition of an m-path so that @ =‘U Q‘UiLJ Q¢ is an m-path. We
=1 =1

now need only prove that ¢ is in §,. However, we see that for 1 <i<n,
@ ~ T contains a non-degenerate continuum as T;~Q separates T ~ @
and B ~ @ in the Cantor manifold Q. On the other hand, because of the
gize, shape, and orientation of the sets involved, as 2; ¢ Ty, for n <i < m
and a8 #1€Q, Ty, ~ Q@ contains a non-degenerate continuum. Thus, @ is
in & and @ C B(X, n) n Snp-

Therefore we have an element R; of ' which contains no point of Z,
for @ is such an element. But DinZC RinZ =Q A Z C (B(K, n) ~ Sup)
nZ =0, so (9) is proved.
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Conclusions. We summarize the results of the preceeding section
of this part by the following theorem:

TreorEM 4.4. There is o countable collection D of mutually disjoint
connected subset of 3* which has properiics (11) and (XXI) but which does
not have property (I).

This theorem provides a negative answer to problem 2. We point
out that the particular collection congtructed also is a suitable set for
rejecting problem 1. Algo, since D is a subcollection of C, there iy an
effective method for constructing D.
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Most knots are wild

by
J. Milnor (Princeton)

Let BEmb(X, R") denote the topological space consisting of all
embeddings of a compact space X into the n-dimensional euclidean
space R". This is a Baire space (). We will say that most embeddings
of X in R" have some given property P if the set of all fsEmb(X R")
which satisfies this property P containg a dense G,.

THEOREM 1. Most embeddings of the circle in euclidean 3-space are
wildly FEnotted.

THEOREM 2. For n =
knotted.

(Note however that knotted embeddings do exist for all n > 3.
See Blankinship [2].)

Proof of Theorem 2. We will show that Bmb (8", R*) contains
a subset Bmb (8", B™") xF (8", R) which is a dense @4, and consists
entirely of unknotted embeddings.

Let F(8', R") denote the Banach spa,ee consisting of all mappings
from & to R". We will identify (8", B*) with the product F (8%, B*™) x
%P (8, B). Since n—13 3, the subset Emb(S', B*™) CF (S, R"™) is
a dense @;. (Hurewicz-Wallman [6], p. 56.) Therefore Emb(S1 R x
xF(8', B) is a dense G5 in F (&', B*), and hence a fortiori it is a dense
Gy in Bmb (8, B™).

But an argument due to Bing and Klee shows that every

> 4 most embeddings of the circle in R™ are um-

{7, g) e Bmb (8, B* ™) xF (8", R) C Emb (&', E")
can be transformed into the standard embedding by an isotopy of R™
First consider an isotopy of the form

hi(z, y) = (2, y+1p (@),

(*) See Lemma 2. J¥ is a Baire space if every countable intersection of dense open
subsets is dense. A subset S ¢ F is called a @, if § can be expressed as a countable
intersection of open subsets.
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