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On the non-existence of free complete Boolean algebras
by
A. W, Hales * (Cambridge)

I Introduction

In the study of algebraic systems it is often useful to investigate
a ‘free” system of a given type, i.e. a gsystem which has any other system
of that type as a homomorphic image. Intuitively, one may look upon
it as the ‘“least constrained” system of the given type. Thus free groups,
free Abelian groups, free lattices, and free Boolean algebras have been
investigated extensively. In each of the above cases there is no difficulty
in proving the existence of such a free system. The polynomial method
of Birkhoff [1], p. viii, yields the desired result. If we consider algebraic
systems which have operations applicable to arbitrarily many arguments,
however, such as complete lattices and complete Boolean algebras, even
a generalization of this polynomial method may not suffice to prove the
existence of a free system. The difficulty in such cases arises from the
fact that the ‘“‘algebra” formed may have too many elements, i.e. may
not be a set. Crawley and Dean [2] have in fact developed a technique
which may be used to prove that there does not exist a free complete
lattice on three complete generators. Such a proof, given in Chapter 3,
depends upon an effective characterization of when two formally distinct
polynomials are actually equal.

In 1951 Rieger [9] asked whether or not there exists a free complete
Boolean algebra on « complete generators. The technique of Crawley
and Dean does not apply. Rieger’s question is answered in the negative
in Chapter 4 of this paper. The method involves constructing a class
of examples which establish the inequality of certain formally distinet
polynomials. This result was obtained independently by H. Gaifman [3, 4]
and the author in the summer of 1961.

* This paper is a revision of the author’s doctoral dissertation submitted to the
California Institute of Technology. The author wishes to express his appreciation to
his advisor, Professor R. P. Dilworth. He aldo wishes to acknowledge the support of
the National Science Foundation.
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Tn Chapter B the following more general result is proved in a similar
fashion. Let y be an infinite regular cardinal. Then there does not exigt
a free complete (y, co) distributive Boolean algebra on p complete

generators.

11. Preliminaries

In this paper lattice (also Boolean algebra) unions and intersections
are denoted by |J and (1), respectively. Set unions and intersections arve
denoted by \/ and A, respectively. In either case inclusion and proper
inclusion are denoted by < and <, respectively. If A is a subset of a given
st or an element of a Boolean algebra, its complement is denoted by A°
Ordinal numbers are usually denoted by small Greek letters and small
Latin letters. Oardinal numbers ave identified with the corresponding
initial ordinals.

Let a be an infinite cardinal. A lattice (or Boolean algebra) . is said
to. be a-complete it every subset of I with cardinality less than « hag
a least upper bound (union) and a greatest lower bound (intersection)
in L (Y). A sublattice (subalgebra) I’ of a lattice (Boolean algebra) I ig
said to be an a-complete sublattice (subalgebra) if unions and intersections
in L of subsets of I/ with cardinality less than « lie in L'. A sublattice
(subalgebra) L’ of a lattice (Boolean algebra) L is said to be an a-regular
sublattice (subalgebra) if uniony and intersections in I’ of subsets of L’
of cardinality less than a are also uniong and intersections in L. A field
of subsets of a set 8 (a collection of subsets of § cloged under finite union,
finite intersection, and complementation, and hence a Boolean algebra)
is said to be an a-complete field of sets if it is an a-complete subalgebra
of the Boolean algebra of all subsets of 8.

If A is a subset of a lattice (Boolean algebra) I, then the sublattice
(subalgebra) of L a-generated by 4 is the smallest «-complete sublattice
{subalgebra) of L containing 4, If § is a set and 4 is a collection of subsets
of 8, the field of sets a-generated by A is the subalgebra of the Boolean
algebra of all subsets of 8 a-generated by 4. The word “‘generated” i
used in place of the word “w-generated”.

A homomorphism of a latitice (Boolean algebra) L is said to be an
a-complete - homomorphism if it pregerves unions and interseetions of
subsets of L with cardinality less than a.

A lattice (Boolean algebra) which ig a-complete for every o is called
complete. A sublattice (subalgebra) of a lattice (Boolean. algebra) which
is an a-complete sublattice (subalgebra) for every a is called a complele
sublattice (subalgebra). A sublattice (subalgebra) of a lattice (Boolean

(*) This and subsequent terminology differs from that of some other authors,
who would replace “less than o” by “less than or equal to «” in this definition.
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algebra) which is an-a-regular sublattice (subalgebra) for every a is called
a regular sublaitice (subalyebra). Tf A is a subset of a lattice (Boolean
algebra) L, the smallest complete sublattice (subalgebra) of I containin

A is called the sublaitice (subalgebra) completely generated by A. A homog
morphism of a lattice (Boolean algebra) which i an a-complete homeo-
morphism for every a is called a complete homomorphism.

Any lattice I may be embedded ag a regular sublattice of a complete
lattice L*, the “normal completion” of I. Thig wag proved by MacNeille [6]
Stone [10] and Glivenko [5] have shown that if L is a Boolean a.lgebra‘
then L* is a Boolean algebra. : ’

Let y be a non-zero cardinal. A lattice (Boolean algebra) L is said
to bo o free lattice (Boolean algebra) on ¥ generators if I contains a subset
A of cardinality equal to p which generates L, and if any mapping f of 4
onto a subset A" of a lattice (Boolean algebra) I’ which generates I’
can be extended to a homomorphism f* of I onto L.

A free lattice on y generators can also be defined in a manner which
automatically establishes its existence. We denote the generators by
gy Qyy evey Qiy ooy Where 0 <4 <y, Then polynomials of rank » for each
finite 7 are defined inductively as follows:

DepiNtmion 1. Kor each i with 0 <4<y, a; is a polynomial of rank
r(ag) = 0. If 4t is w finite set of polynominls previously defined, and if
# has. cardinality », then the symbols | & and N # are polynomials
of rank 7(( J#) == r () ) = ma,x(n, }jnu{éc[a*(fl)—;-l]).

L€

The collection of all such polynomials is denoted by L(y). We now
define o valuation of L,(y) as a mapping f of {a;: 0 < i < ¥} onto a subset
of a lattice I which generates L. Such an f can be extended in a natural
way () #) :---:AL JJJ*(A), ete.) to a mapping f* from L,(y) to L. If 4,

l €

and 4, lie in L,(y), and if, for every valuation f of L,(y), we have 1*(4y)
= [*(dy), then 4, and A, are said to Le equal. Then L,(y) is a lattice in
the natural manner (under | ) and (7)), and morveover it is a free lattice
on the y generators a;.

We can extend Definition 1 as follows: if 4 iy a previously defined
polynomial, then the symbol A% is a polynomial of rank »(4°% = »(4)-+1.
We denote the extended colleetion of polynomialy by Bu(y). A valuation
of By(y) is definod as & mapping f of {a;: 0 <7<y} onto a subset of
& Boolean lgebra 3 which generates B. Bquality in B,(y) is then defined
analogously to that in L,(p). Bu(y) thus Decomes, in the natural way,
& free Boolean algebra on the y generators a.

A free Boolean nlgebra on y generators can also be described as

follows. Let & == 2%, i.o. the set of all functions from y to {0,1}. For

each ¢ less than », let e, be the evaluation map corresponding to g; i.e.,
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if f is in 8, then e(f) = f(@). Then the gubsgets (‘{f 8 of the form 6 1(1),
for ¢ <y, generate a field of subsets of 18 Thig field of gubsets is a free
Boolean algebra on the y generators ¢, (1).

TIn this thesis we shall be chiefly concerned with free complete lattices
and free complete Boolean algebras, defined as follows. Let y be a non-zero
cardinal. A complete latbice (Boolean algebra) L is said to be a free
complete lattice (Boolean algebra) on y complele generators if L containg
2 subset 4 of cardinality equal to y which completely generates L, and
if any mapping f of 4 onto a subset 4’ of a complete latbice (Boolean
algebra) I’ which completely generates I’ can be extended to a complete
homomorphism j* of L onto L.

We can attempt as above to define a free complete lattice on y
complete generators in terms of (infinite) polynomials, thus establishing
the existence of such a yystem. We denote the generators by a,, ay, ..., ai, ...
where 0 < ¢ < y. Then polynomials of rank r for each ordinal » are defined
inductively as follows:

DEeFINITION 2. For each ¢ with 0 <4 <y, a4 i8 a polynomial of rank
r(ag) = 0. If £ is a set of polynomials previously defined, and if s has
cardinality B, then the symbols |+ and [ 4 are polynomials of rank
r(U4) = 7(J 4) = max(8, sup(r(4) +1]).

€

The collection of all such polynomials is denoted by L(y). A valuation
of L(y) is defined as a mapping f of {as: 0 < ¢ < 9} onto a subset of a com-
plete lattice L which completely generates L. Such an f can be extended

in a natural way (f*(\J#) = Uﬂf*(A), etc.) to a mapping f* from L(y) to L.
Adedk

If 4; and 4, lie in L(y), and if, for every valuation j of L(y), we have
f*(4;) = f*(4a), then A4; and A4, are said to be equal. At this point we
are in trouble, however, for we cannot say that L(y) is a complete lattice
in the natural manner. It may (after the identification of equal elements)
notbea set, but a proper class instead; i.e., it may have too many elements.

If L(y) (after identifications) is a set, then in the natural manner
(under {J, M) it is a free complete lattice on y complete generators.
H there does exist a free complete lattice on y complete generators, then
its cardinality is an upper bound for the cardinality of any complete
lattice with y complete generators. Finally, suppose any complete lattico
on y complete generators has cardinality less than or equal to B. Let p’
be the smallest cardinal greater than B, and let Ly (y) be the collection
of polynomials in L(y) with rank less than #'. It is easily shown, by in-
duction on B, that Lg(y) is a set. Then Lp(y) (after identifications),
in the natural manner, is a - cotnplete lattice with y complete generators.
Tts normal completion I} (y) is complete and hag y complete generators—
henee the cardinality of L%(y) is less than or equal to A. But then Ly(y)
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(after identifications) has cardinality less than or equal to . This implies
that any U or (M of elements of Ly(y) is equal to an element of Lgr(y).
Thus, by induction on its rank, every polynomial in L(y) is equal to one
in Lg(y) so L(y) (after identifications) is a set.

We can extend Definition 2 in the same way we previously extended
Definition 1: if 4 iy a previously defined polynomial, then the symbol
A® is a polynomial of rank 7(4°) =r(4)+1. We denote the extended
collection -of polynomials by B(y). A valuation of B(y) is defined as
a mapping f of {as: 0 < ¢ < ¢} onto a subset of a complete Boolean algebra
B which completely generates B. Equality in B(y) is then defined analo-
gously to that in L(y). The conclusions of the preceding paragraph carry
over, i.e. the following are equivalent: B(y) (after identifications) is a set;
B(y) is a free complete Boolean algebra on y complete generators; there
exists a free complete Boolean algebra on v complete generators; and
the cardinality of complete Boolean algebras with y complete generators
is bounded.

To prove the non-existence of a free complete lattice (Boolean algebra)
on y complete generators we need only show that the cardinality of
complete lattices (Boolean algebras) on y complete generators is un-
bounded. Alternatively, we may exhibit an ordinal-indexed collection
(hence not a set) of pairwise unequal polynomials in L (y) (B('y)), proving
inequality by exhibiting an appropriate valuation for each pair. The
actual method used is a combination of the two, in the more difficult
case, for Boolean algebras (Chapters 4 and 5), the choice of the polynomials
suggests the method of constructing complete Boolean algebrag with y
complete generators of arbitrarily large cardinality. These complete
Boolean algebras, in turn, establish the pairwise inequality of the chosen
polynomials.

IIX. Free complete lattices

In this chapter we investigate the existence of a free complete lattice
on y complete generators. A free lattice on one generator is finite, con-
sisting of one element (the polynomial a, in L,(1)). A free lattice on two
generators is also finite, consisting of four elements (the polynomials
NAag; as}, ao, ayy and U {ao, 6y} in Lu(2)). Thus they coincide, respectively,
with. free completo lattices on one and two complete generators.

Orawley and Dean (2) have developed a technique which may be
used to prove that there does not exist a free complete lattice on three
complete generators. Such a proof is given here. The first step is to define
inductively a partial order on L(3).

DeriNirtion 1. If 4, B lie in L(3), then 4 > B if and only if one
of the following conditions holds:

Fundamenta Mathematicae, T, LIV 4
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(1) A= B=a for some 0 <4< 3,

(2; A= and A’ = B for some A’ in A,
(8) 4= ﬂ.?t and 4’ = B for all 4’ in &,
(4) B=® and 4 > B’ for all B’ in B,
() B=B and 4 > B’ for some B’ in H.

We establish some elementary properties of >.

Leyma 1. Let 4 = J#&, B =B, and C be polynomials in L(3). Then

(1) If 0 <4< 3, au = B implies a¢ = B’ for some B’ in B, and 4 > g,
implies A’ > aq for some A’ in £,

(2) 4 = B implies either A = B’ for some B’ in & or A’ =B for
some A’ in .

(8) C = A implies 0 = A’ for all A’ &, and B 2= C implies B’ > ¢
for all B’ in B.

Proof. The proofs of (1) and (2) are clear from Definition 1 above.
We prove the first half of (3) by induction on r(0); the second half will
follow by duality. If r(C) = 0, then O = a; for some ¢ with 0 < i < 3,
and the result follows from part 4 of Definition 1. Assume the result
for all (" with 7(0") less than §, and suppose we have ¢ 2 A with r(0) = i.
If 0 =G, then either part 2 or part 4 of Definition 1 applies. If part
4 applies, we are done. If part 2 applies, there is a ¢’ in C guch that
0’ > A. But then r((") is less than §, 80 by induction hypothesis ¢ > 4
for all 4’ in 4. Thus 0> A’ for all A’ in # by part 2 of Definition 1.
A gimilar proof applies if 0 =NC.

We now prove that > is a partial order.

Lemma 2. For 4, B, 0 in L(3), we have
LHdAd=4

and
(2) A>Band B> (C imply A > 0.

Proof. (1) ™ A =a; with 0 <i <3, part 1 of Definition 1 gives
the result. Suppose (1) is true for all A’ with 7(4') less than j, and suppose
r(d)=j. If 4 =1J#, then A’ > 4’ for all 4’ in 4 by induction hypo-
thesis. Parts 2 and 4 of Definition 1 then give A > 4. A similar proof
applies if 4 = N 4.

(2) We prove this by induction on the ordered triples <r(d),7(B),r(0)5,
ordereq _lgmcographica,lly. When <r(d),r(B),»(0)) = <0,0, 0>, part 1
of r])eh]fxt?on 1 applies. We assume that (2) is true for all triples less
than ¢, ',7"), and that <r(4),r(B),r(0)) = <, 7> with 4> B
and B> (. There are ten cases to comsider: (i) j=§ =0, 0=C;
() j=1'=0, 0=Ug (i) /=0, d=Ud; (iv) J'=0, 4 =14
) B=US, " =0; (vi) B=U$, 0 =J€; (vii) B= Us, ¢=NG¢;
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and the duals of (v), (vi), and (vii). We give proofs of (i) and (vii); the
proofs of the other cases are very similar. '

(i) j=7" =0, C=JC. Since B>, it follows that B> ¢ for
all ¢" in €. But (r(4), r(B), r(0")) is less than <j, §’,§'>, so that 4 > ¢’
for all ¢' in C by the induction hypothesis. Hence 4 > C. .

(vii) B=J%, 0 =C. Since B> C, we have either B> 0" for
some {'in C or B’ > C for some B’ in B. In the first case, by the induction
hypothesis, A > ¢, and hence 4 > 0. In the second case, Lemma 1
gives 4 > B'. Then, again by the induction hypothesis, 4 > C.

‘We have thus shown that > is reflexive and transitive, and is therefore
a partial order (where we identify 4 and B if and only if 4 > B and
B> A). If A4 is a subset of L(3), then { A and [+4 are, respectively,
the least upper bound and greatest lower bound of # under this partial
order (this follows from Definition 1 and Lemma 2, Part 1). Thus, if g
is an infinite regular cardinal, and Ig(3) the subset of L(3) consisting
of polynomials of length less than £, Ls(3) is a B-complete lattice with
three complete generators (under the partial ordering). Its normal com-
pletion L#(3) is a complete lattice with three complete generators. Thus,
if 4, B in L(3) are not identified by > (i.e. not both 4 > B and B > 4),
then, taking B greater than max(r(4),7(B)), 4 and B are unequal in
the natural valuation of L(3) in L§(3), and hence A and B are unequal
in the sense of Chapter 2. Finally, by induction on the ordered pairs
{r(d), r(B)>, ordered lexicographically, it is easy to show that 4 > B
implies f*(4) = f4(B) for all valuations f of L(3). Thus elements in L(3)
are identified by > if and only if they are equal in the sense of Chapter 2,
i.e. coincide in every valuation. Thus Definition 1 gives us an effective
method of deciding when two polynomials in L(3) are equal.

For convenience we write,for 4, Bin L(3), 4| JB = B4 =J{4, B}
and ANB=BN4d={4, B}

Now define polynomials #; in L(3) for all ordinals ¢ as follows:

Ty = G,
wME%UMﬂMUMﬂ%UmﬂmM,
and, if 4 is a limit ordinal,
wo={op: § <4},

We next prove that the z; are a pairwise ‘“unequal” collection of
polynomials.

LevmA 3. If © <j, @3 = % but ¢ non = x4.

Proof. We first prove two preliminary statements:

(a) If 0<4,thenzinon > a,,a,and ay, a;, a, > ;. We easily verify that,

for 0 <4, (@M (@) == aU (@ ap). From this (a) follows.
4%
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(b) It A, B are in L(3), then alJa, = 4, B = a, and al (e, 4)
> a\J (N B) imply ;4 = e, B. Suppose agl J(ay(N4) = U (e, B)
> a, N\ B. Then if alJ (@) 4) > ar, we have 6l Jay = a\JA =0y, a con-
tradiction. If alJ(a,4) = B, we have aJa, > a,, a contradiction.
If a,>a\JB, we have a> @[ )a,, & contradiction. Thus the only
remaining alternative is a;(\A4 > a;(").B. Note that (b) is valid if g, a,
and a, are permuted.
" Now from (a) iti is clear that @ > &y, %ynon =, for 0 < 4. Suppose
that § <% implies @; <, whenever k<4 If ¢ is a limit ordinal
then @y = J{®y:j <} > for all j<i. If ¢ and ¢—1 ave not limit

ordinals, @4 > @2 implies a, J (al N (aa U (ao M (e U (@ N m;_l)))))
> 6l (al N (e U (e U a2 mi-z))))), e mi>me. I ie1 i
o limit ordinal, then = 4 (a1 N{sUaN@mUan mt_l)))))
>%U(% N (@ U o () o U e m,>)))) =g for all j<i—1, and

hence @ > U {@y: § <i—1} = a1 = @ for all § < 4. Thus, by induction,
x; < % whenever j < k.

To show this inclusion is proper, assume the contrary. Then there
is a smallest ordinal ¢ such that @; > @ for some j < 4. Then ¢ ig not a limit
ordinal, since otherwise w¢ == | {m: k < 4} < a4y implies @y > w4, 2 con-
tradiction to the minimality of 4. Suppose § is not a limit ordinal, Then
@ = ay\J (al N (az2 U (ao Mo U (@ N m,-_l))))), and successive applica-
tions of (b) give @1 > @ (" #j-1 > @, (") #y—1. T §—1 is not a limit ordinal,
251000 2> @y and dy, ¢, NON 3> 4y () ¥, imply that @y, > @41, & contradic-
tion. If j—1 is a limit ordinal, then @y > a,, #;_;, and hence we> @y () 1
for some % < j—1. Continuing in this way if & is a limit ordinal, we
get a descending chain of ordinals which must end in a finite number
of steps at an ordinal %', not a limit ordinal. But then, as above,
Ty 2 0y [ B~y implies @ >@;4, a  contradiction. Finally, if 4 is
a limit ordinal, we conclude from z;non gy, a, and wy = U {mee b < g}
=m=a,J (a; N (ag U (u., NlecU (@ N wi_l))))) that a2 @ for some
k <9 It k is a limit ordinal we repeat the process to obtain a des-
cending chain of ordinals which must end in & finite number of stieps
at an ordinal ¥, not a limit ordinal. This ig just the preceding case,

however, a.?ld hence yields a contradiction. Thus oy 2 oy but @y non 2= my
‘whenever i < j.

We are now in a position to prove

TueorEM 1. There does not ewist a froe compleie lattice on three complole
generators.
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Proof. From Lemma 3 the #; form an ordinal indexed collection
(hence not a set) of pairwise unequal polynomials in I(3). Alternatively,
given any infinite regular cardinal g, L3(3) is a complete lattice with
three complete generators and has cardinality greater than or equal
to B (since Lf(3) contains the p unequal elements x;, for ¢ < ). Thus
the cardinality of complete lattices with three complete generators is
unbounded.

IV. Free complete Boolean algebras

We now investigate the existence of a free complete Boolean algebra
on y complete generators. If » is finite, the free Boolean algebra on n
generators is finite, and in fact is isomorphic to the collection of all
subsets of a set of cardinality 2#. It therefore coincides with the free
complete Boolean algebra on n complete generators.

We now prove that there does not exist a free complete Boolean
algebra on o complete generators. To do this we would like to use a tech-
nique similar to that of Chapter 3, but this does not appear to be possible.
In Chapter 3 we were able to give an effective method of deciding when
two polynomials were equivalent. The presence of the distributive law
in Boolean algebras appears to prevent this. We must therefore use a more
subtle technique.

The first step is to choose an ordinal indexed collection of polynomials
in B(w) which we wish to prove pairwise unequal. To do this we must
firgt establish how strong a distributivity condition holds in Boolean
algebras. Theorem 1 is due to Tarski [11] and Von Neumann [7], Ap-
pendix, p. 7.

TaeorEM 1. A Boolean algebra is continuous; that is, whenever ﬂb;

€.

exists, we have () (alJ by) ewists, and
iel

aU (b0 =) (@Ub)

el

(and dually).

Proof. Trivially we have a | J () bs) <alJ b for all ¢ in I. Now
i€l

assume < a |_J b for all 4 in I. Then et o <a® () (e b)) = a* M b
for all iel. Then a* o < Q(acﬂ by) = a¢ N (ﬂ_ b;). Thus a | (¢ ) @)
i€ €

<al(eeN (ﬂ by)), so aUm<aU(‘ﬂlbs), 80 wgaU(ﬂﬂtb;). Thus
€ € '
alJ (N b) is the greatest lower bound of {a|J bs: eI}, so alJ (‘Q be)
iel €
= (N (e b). The dual is proved similarly.
iel

We now ask if, in a Boolean algebra, a stronger distributive law
than continuity holds. The following theorem, which appears to be new,
ghows that the answer is mo:
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THEOREM 2. A continuous lattice can be rvegularly embedded in a Boolean
algebra.

Proof. Let I be a continuous lattice. Since L ig distributive, it ig
isomorphic to a collection C of subsets of a set 8 under finite set union
and intersection (Birkhoff [1], p. 140). Adjoin ¢ (the null set) and § to ¢,
obtaining ¢, We now look at the field ' of subsets of § generated by (.
Then F it a Boolean algebra in which ¢’ (or 0) is embedded. To show
this embedding is regular, let {e;: ¢ € I} be a collection of elements in ¢/
with least upper bound ¢ in . Suppose f in F is an upper bound for
foi: i €T). Wo may write 7 a3 (o VA A (o VI A o A (anes V foa),
where n is finite and each f; is an element of €' (this follows from the
way F was constructed). Then f, \/ fz is an upper bound for {o: i eI}
Now, since the lattice ' is continuous, the lattice 0’ is also continuous,

and we have f, (Ho«) =H (fa ) 0s). But since ¢ <fy V fi for all

i, wehave fy 6 < N (LU ) = fa /o forall 4 e 1. Thus ‘L} (faMes)
<f; N fi- In other words, f, N (‘LJI ) <fhMh Thuws U (RN (H o)

<AUGN A, or BU (o) </ U - This implies o</ V /. Simi-

larly, for 1 <k <, 0 < far—1 V fax. Thus o < f. We have therefore proved
that ¢ is still the least upper bound for {os: ¢ € I} in F. A dual argument
shows that all greatest lower bounds are preserved, so U is regularly
embedded in F.

;- It is easy to show, using continuity and inducting on r(4),
that any polynomial A in B(w) is equal to a polynomial of the
form (ay () B) U (a3 N 0), where neither a, nor aj appear in either B
or 0, But if we define

w=a, m=@MOBU@NI, @m=@MNBUw@NMNOoO,..,

we obtain at most 2* unequal 2,8, since 22 is the size of a frec Boolean
alge}?ra on three generators (a,, B, 0). Thus we cannot choose our poly-
nl.ma,'Is in a8 simple a way as we did in Chapter 3. Roughly, we cannot
build just one chain (or & finite number of chaing), but must instead build
o chains simultaneously.

First, for notational convenience, lot us relabel our w generators,
We thus suppose that the set of generators is {aes: 0 <j < w} 'V {(bist
4 #y,. 0<1, j <w). We define polynomials asy, where ¢ is arbitrary
and j < o, as follows: '

Sesrg = U {aes N aup N i 0 <k < o, & o )
and, if ¢ is g limit ordinal,

=) {or 0 < <i}.

icm®

Free complete Boolean algebras 5B

We wish to show that, for fixed 7, the asy are pairwise unequal.
To do this we construct, for each cardinal a, a field of sets containing
elements A;; (for 0 < j < 0, 0 <4< @) and By (for 0 <4, § < w, & #7),
with Ay4; < Ay whenever 4> 4'. We take the normal completion of
this field of sets. We then show, if f is the valuation such that f(a,) = Ay
for 0 <j < w and f(bgs) = By for 0 <4, j < o, ¢ ], that f*(ags) = sy
for 0 <j < @, 0 <¢< a This establishes that, for fixed j, the ass; are
pairwise unequal. We have also, in the process, constructed complete
Boolean algebras with o complete generators of arbitrarily large car-
dinality.

Our construction will, in fact, be more general, depending on a cardinal
parameter y (the number of complete generators) in addition to o. The
case y = w is the relevant one for this Chapter. The general construction
will be nsed in Chapter 5.

Let @, y be infinite cardinals with y regular. Let f = y*+a-y, and
8 = 2% i.e. the set of all functions from B to {0,1}. For each 6 < f, let
¢5s be the evaluation map corresponding to 6; i.e., if f is in 8, e(f) = f(d).
Note that each 8 < B can be wniguely written in one of the following
forms: y-i--§, where 0 <C4,§<y; or y?+a-j+4, where 0 <j <y and
I<i<a

Define subsets Biy (0 <4, <y, ¢ #§) of § as follows:

Biy = 6.5+4(1) -

Define subsets di; (0 <i<a, 0§ <y) of § as follows:
Ay = G;%i-u-f(l) ’
Aivrg =T V s Adig ABRIV I A 6arassn(D)],
ufﬁ;y o<k<i+1

and, if ¢ is a limit ordinal,
Aiy=
0

Ay -

Let F be the field of subsets of § p-generated by {Bys: 0 <4,j <y,
12}V {di: 0<i<a, 0<j<y) Then F iz a Boolean algebra in
which we denote union and intersection by |J and (M, respectively (where
| and ) eoincide with \/ and A, respectively, when applied to finite
collections). )

Teyvma 1. If 0 <k <i<Ca 0 <] <y, then Ay is properly contained
in .Ar;,].

Proof. Suppose that i <h implies Ay << Agy for all k<4 (this
is obviously true for h=1). Trivially ds; < An;. ¥ b is a limit
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ordinal, then A, =k/\h Apy < Apy for all k<h. If b iy not a limit
<
ordinal, then

Arg =0 V (di-1s A dn-1k A BT VI A epkagia(1)].
0%;?7 4,24

But it is obvious that
V' (dp-1g A An-1,6 A\ Bri) < Ap-ss .

If h—1 is not a limit ordinal, then
A Eragiil) S A Gatagrr(l) < Apeag,
0<k<h 0<ESh~1
80 Aps < Ap-ry. Finally, if h—1 is a limit ordinal, then

-1 -1
Ds/k\<h Opryagri(1) < Cpptarg+ (1)

mskgc’%—l
for all ¥’ <h—1, g0
~1
A Gryagin(l) < Apyy
o<k<h

for all ¥’ < h~1. But, if &' is a limit ordinal less than h—1, A1y < Ay
by induction. Thus

A Otag+i(l) < Ay

for all ¥ < h—1, so

-1
0</k\<h itk (1) < Apeyy

Thus 4; < Ay But by induction 4,1y < Azy for all k < h—1,
80 Ap; < Agy for all k <h. We have thus proved, by induction, that
k <4 imples A < Ag,.

To show that the inclusion iy proper, let % be given and define

a function f from B to {0, 1} as follows:
fA+aj+h) =1 for

=0

0h<gk,
otherwige.

If % is not a limit ordinal, then f is an element of

-1
0<4\<k Gatagen(l),

80 f iy an element of Ay, If % is a limit ordinal, then f is an element of

-3,
0<u/<\‘ " €atans+n(l)
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for all ¢ < k, so fis an element of 4;,,; for all £ <, and hence of 4,; for
all t < k. Thus f is an element of Ay ;. But 7 is not an element of B; for
any & <y, since f(y-i+h) =0, and f is not an element of

/\ 9;‘}M-i+h (1) H
0<h<k+1
since f(y*+a-j+k+1) = 0. Hence f is not an element of A1, and
therefore is not an element of A, for any ¢ > & -+1. Therefore A ; properly
contains 4; for all ¢ > %, and the lemma is proved.

LemmA 2. Every element of F can be written in the form

AV @y,
ye¥ zeZy
where the x,. are chosen from a subset of {Ai7} \/ {4i3 V {Bus} V {Bi;}
which has cardinality Tess than y (the subset varies with the element).
Proof. We must show that elements of the stipulated form are
closed under intersection and unions of less than y elements, and also
closed under complementation. That they are closed under intersections
follows from the regularity of y. To show that they are closed under
unions, note that by distributivity
AV ay) =

veY zeZy

V(A 2yemn) s
pellZy ye¥ )
where the x4, come from the same set as the x,,. But elements of

the form \/ ( A @y.), with the same restriction on the z,,, are closed
yeY z€Zy

under unions, again by the regularity of y. Then another application
of the distributive law returns us to the original form. To show that
elements of the stipulated form are closed under complementation, note
that

AV 2T =V (A 20) -
veY geZy yeY zeZy

An application of the distributive law returns us to the original form.
Thus the lemma is proved. (Note that we have also proved that every

element of ¥ can be written as \/ ( A x,.), with the same restriction
ve¥ zeZy

on the z,,.)
Levma 3. If 0<<i<a, 0<<j <y, then
Apyy = LIJ (4eg M Asr () Bx) -

0<h<y
k]

Proof. We must show that 4;.,;, obviously an upper bound, is
the least upper bound of {(ds; ) Aex N\ Bux): 0 <k <y, k#4} in F.
Suppose # in F is an upper bound for this collection. We have, from
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Lemma 2, that @ = A ( \/ @), with the stipulated restriction on the
ye¥ z€Zy

Zy5. Then each \/ oy, 18 an upper bound for this collection. If we can

zeZy
prove that each /\ w,,,, containg A1y, then @ will contain Aupqy, and
we are done. (I\Tote that the stipulated restriction on the ay,, implies
that Z, may be assumed to have cardinality less than ;.)
Let us therefore assume that

= Ap B Bf
(el{’lAmg,ng) \/ (ayw 'pc.ll,é) V (D\</w ru'“a) V (a\</“ tn'ua) ]
where i, vz, 72y va <7, is an upper bound for {(dyy ) Ak ) By

0<k<y, k+#4j}. We wish to prove that 4 > A4, Without loss of
generality we may assume that y, > 0, py == i1, and ¢ == j, sinee Abiay
is digjoint from Aiiqy.

Let

A = max(supn,, SUp g,, SUP&,, SUPY,, SUP,) -1 .
e<n e<ra e<yy <y <y

Since y is regular, A is less than y. Now define a function f from p

to {0,1} as follows:

f+a g+k)=1 for
fly-te+u) =1  for

<0 <

f(®*+a-A+k)=1 for e < 0
fly-j+4)=1;
and
f=0 otherwise.

Since f(y-j+4) =1, fis in 6.54(1), 8o fis in By, (note that 4> ¢
= ). Since f(»*+a-2+k) =1 for 0k <4, f i in o,a“ a+x(1) for
0 <k <, and hence in 4;,. Since f(y*+a-g+k) =1 for 0<% < pyy
where py=i+1 and ¢, =, f is in epya.grx(l) for 0 <k < i1, so f is
in Ay, Hence f is in Ay A Ays A\ Bya, and hence f must be in 4.

Since f(y*4-a- g, +k) =1 for 0 < k <min(p,+1, a), 0< ¢ < 9, Wo
gee that f is in

-1
0<k<mﬁpé+1,u)ey’+a.a’+k(l)
for 0<o<yy, s0finin 4y 4 for 0< o<y, Thus f is notin \/ 2oty
Osp<yy
Bince f(y-,-+u,) =1 for 0 < o<y, f I8 in evvt wu, (1) for 0.< o <y

80 f i8 in .Btu for 0 < ¢ < y,, Thus f is not in V Ba,u
0<e<m
There are two remaining possibilities: 7 is in \/ Bys,y Or fig in

V A '8 0<o<ys
v uppose f ig in , yq‘B 1, Then, for some o with 0 <o <<,
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fis in B, . Thus f(y-7,+8)=1. But, since 2>s,, this implies
that 1, =1, 8 = 'u,, for some 7 with 0 <7 <y,. But then we have
A= By s By =B \V Br s, =8> Ay, and we are done.

Now suppose fisin vV Am g . Then, for some o with 0 < ¢ < 7,

. 0<e<m
fis in Am Mg LA m g then 4 > Am g VAm My = 8> A4, and
we are done Suppose 4 non >

2> A n,- Then let m be the smallest ordinal
such that there exists an ordinal 8 5 4 with f in 4., but 4non > .42, (since
A > n4, M, is such an ordinal). Now = cannot be 0; if it were f in Ay,
would imply f(y*+a- 8) = 1. This, since 6 % 4, would imply that there
exists & ¢ with 0 < o < y, such that ¢, = 6. But then 4 > 4 2, = Aoa,
a contradiction. Also = cannot be a limit ordinal; if it were, the mxmma,hty
of # would imply that 4 > A%, for all #' with 0 <z’ < x. But then
A> \ AL, = ALe, a contradiction.

0<n’<n
Thus = = =’ +1. There are then two possibilities: f is in

/\ e;'-;}i-u-a+k(1)5
o<k
or f is in
V' (dws A\ Awe A\ Bok) -
o<k<y
k+#6
Suppose that f is in A ephaosr(l). Then f(y2+a-8-m) =1.
o<k N

Since 0 5= A this implies that, for some ¢ with 0
§o = 0, po = n. But then 4 > 43 , > A7, 2
Now suppose f is in

V (Axs A\ Awr A\ Bor) -
0<kk<y

<0<y, we have
contradiction.

Then, for some %' with 0<k <y, ¥ %0, we have that f is in
Ao N\ Ay \ Bowr. We distinguish two further cases: &' =1 and k' =A.
Suppose k' 5~ A. Since f is in 4,4, and = was chosen minimal, we must
have A > dy,. Sinee f is in A, where %' s 1, and = was chosen
minimal, we must have A > Ay, . Since f is in Bsw, we must have
f(y-0+%)=1. This implies, since % =1, that for some o with
0< o<y, we have ;= 6, u, = ¥%'. But then 4 > Bf,,u, = Bgw. Thus
A= (A% ASp N BS¥) = A%,, a contradiction.

‘Finally suppose k' = 2. Since f is in By = By, we must have
fly-6+2) =1. But since 1> supu,, this implies that 6 =j. Thus

0<Vy
Anonz A;. But we kpow that 4 > Apq = Aly;. Thus => 941,
or ' >4-+1. Since fis in Ay = Ay,, f must therefore be in Ajyq.
In other words, f is either in

~1
6'y”+a-l+k(1) ’
0<hSi+1
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or fisin
\/ (A(,l /\ .Ai,k; ,/\ B/I,k) .
oh<y
)

TEfis in A 6prears(l), then f(y2-+a-A-4i-41) = 1. But, since
0<k<i+1 . o
A> supg,, this is impossible, On the other hand, if f iy in
e<7a
V (A A Asp A\ Big),

ogh<y
k#a

then for some k' with 0 <k’ <y, %' s 4, wo know that f ig in By .
Thus f(y-A-+%") = 1. But, since A> supt,, this is impossiblo. The
<1
existence of # has thus led to a contradietion, and the proof of Lemma 3
is complete.
‘We note that, if 0 i< a, 057 <y, and ¢ i3 a limit ordinal, then

Aig = A Asi =o<(7)<¢Ak’j'

o<k<i

Lei,af= us write F = F,, to indicate its dependence on y and a. Then
we denote the normal completion of F,, by Fy..

THEOREM 3. Fya, and hence Fy., is completely gemerated by {do;:
0<j<yV {Bun 0<4,§ <y, ¢ =4}, and has cardinality ot least a.

Proof. From Lemma 3 it follows that {do;}V {Bss} completely
generates F,q, and hence ¥y,. From Lemma 1 it follows that, for fixed ,
the 445 for 0 < i< a are pairwise unequal. Thus F, ., and hence I},
have cardinality at least a.

THEOREM 4. There is no free complete Boolean algebra on « complete
generators.

Proof. Fy, is completely generated by
{Ao: 0<f <0}V {Bis: 0 <4, § < o, § 5§}

a set of cardinality . Also Fi. has cardinality at least a. Hence there
exist complete Boolean algebras with w complete generators of arbitrarily
large cardinality.

Alternatively, consider the valuation f such that f(ays) = 4oy for
0<j <o and f(by) = By for 0<¢,§< o, i#j. Then, by Lemma 8,
Hag) = Agy for 0<i<a, 0 << o Hence, for fixed j, we conclude
from Demma 1 that the a¢; for all ordinals ¢ arve pairwise unequal,

V. (a, f) distributivity
In this chapter we generalize the results of Ohapter 4. We shall be

concerned with Boolean algebras in which a certain type of distributive
law holds.
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DEFINITION 1. A Boolean algebra B is said to be («, 8) distributive,
where a and § are cardinals with a > o and § > 3, if the following identity
is valid whenever, Y has cardinality less then o, Z has cardinality less
than 8, and all the |’ and (’s exist in B:

MU mye) = U (N @yem) -
ye¥Y zeZ ¢€ZY yexr
Note that this identity implies its dual and vice versa.

If B is (a, f) distributive for all 8, then it is said to be («, co) dis-
tributive.

A complete (a, 8) distributive Boolean algebra B is said to be a free
complete (a, B) disiributive Boolean algebra on y complete generators
if B contains a subset 4 of cardinality ¢ which completely generates B,
and if every mapding f of 4 onto a subset A’ of a complete (a, ) dis-
tributive Boolean algebra B’ which completely generates B’ can be
extended to a complete homomorphism f* of B onto B'.

Replacing (a, B) by (a, oo) everywhere in the above definition, we
obtain the definition of a free complete (o, oc) distributive Boolean
algebra on y complete generators.

We can define a new equality on polynomials in B(y) as follows:
A, 4, in B(y) are equal (a, ) if and only if, for every valuation f from
{as: 0 <4 <y} into a complete (a, f) distributive Boolean algebra, f*(4,)
= f*(4,). Then the statements of Chapter 2 carry over, i.e. the following
are equivalent: B(y) (after the identification of equal (a, ) elements
is a set; B(y) (after the same identification) is a free complete (a, f)
distributive Boolean algebra on y complete generators; there exists a free
complete (a, ) distributive Boolean algebra on y complete generators;
and the cardinality of complete (a, f) distributive Boolean algebras
with y complete generators is bounded.

Defining equal (a, co) in the obvious way, the above statements
carry over if (a, ) is replaced by (a, co) everywhere.

‘We wish to investigate the existence of a free complete (a, ) dis-
tributive Boolean algebra on y complete generators. Theorem 1, which
was first proved by Tarski [12], settles the question for y < a.

TueorEM 1. If y < a, the free complete (a,p) distributive Boolean
algebra on y complete generators is isomorphic to the collection of all subsets
of a set of cardinality 27.

Proof. Let B be any complete («, ) distributive Boolean algebra
with the y complete generators {z;: 0 <4 < y}. Then, applying the dis-
tributive law, we obtain

I= N @Ua)=U(N %),
o<i<y o<y

pey
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where e =g} if (p('b) =0, and Bt p1t) = .ﬂ)f if (p(’b) =1, Now choose

any ¢ in 9. Then [\ g I8 either eontained in or disjoint to- each
o<i<y

@¢ and each . The collection of all elements in /3 which either contain
or are digjoint to () ;. are easily seen to form a complete sub-algebra
0<i<y

of B containing the #¢, and hence must include all of B. Thus | J @, is
Osgd<cy

either 0 or an atom in B. Thus I is a union of not more than 2" atomns,
g0 B is isomorphic to the collection of all subsets of a set of cardinality
at most 2’. On the other hand, the Boolean algebra of all subsety of
2" ig (a, p) distributive and is completely gonerated by {67(1): 0 =4 << ),
The mapping f taking e;*(1) to @ for each ¢« y extends naturally to
a complete homomorphism f*, so Theorem 1 is proved.

We now suppose that y > a, and ask if there exists a froe complete
(a, co) distributive Boolean algebra on y complete generators. It is easily
seen that, if a is a singular cardinal, (a, oo) distributivity implies (a*, oo)
distributivity in a complete Boolean algebra, where a* is the smallest
cardinal greater than «. We thus agssume that a is regular. If we can
show that, for y = e, such an algebra does not exist, the question will
be settled for all y = a.

We therefore suppose that y is an infinite vegular cardinal, and prove
that there does not exist a free complete (y, oo) distributive Boolean
algebra on y complete generators. Our method will be a direct extension
of that of Chapter 4.

We first choose an ordinal indexed collection of polynomials in B (y)
which we wish to prove pairwise unequal (y, co). First we relabel the
generators as {ao;: 0 <j <y} V {biy: 0 <4,§ <y, 43 §}. Then we define
polynomials ay;, where ¢ it arbitrary and § <y, as follows:

g = U{aes M g N bt 0 < <y, k 554},
and, if ¢ is a limit ordinal,
' tg = oy 0 <k <i}.

Thus the polynomials are obvious generalizations of those in Chapter 4.

Now, for any infinite cardinal a, congider the valuation f from
{001} V {biy} to 7}, defined by f(ayy) = Aoy and f(byy) = Byy. It follows
from Lemma 3, Chapter 4, that f*(aqs) = A4y for 0 < i < o 0<j<y.
Morem_rer, from Lemma 1, Chapter 4, the 4., for fixed § and for 0 i <«
are p?.lrwise unequal. ALl that remains (to show the ay; for fixed j are
Dairwise unequal (y, o)) is to show that Iy is (y, oo) distributive.
This will also, of course, show that there exish complete (y, co) digtributive

Boolean algebras on y complete generators of arbitrarily large cardinality
(namely the F,). '
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To show that Fy, is (y, oo) distributive it is sufficient to show that
Fya i8 (y, oo) distributive. (Pierce [8]).

THEOREM 2. F,, is (v, o) distributive.

Proof. Let us assume the contrary. Then, for some cardinal Yo < %,
and for some choice of elements Ly in F,,, we have

(1) LJ ( ﬂ To.(e)) 5

ney Do) >>
yexr pe¥Yo e<vo

e<yg
where the | J’s and M)’s all exist in By

By taking relative complements, we may assume that each (M) w,aq
o<yg

= 0, and that all the | Jw,, ave equal.
yeY

Now note that for 0 < <a, 0 j <y we have
Aig =Aai VIV (dig A A%s2s)].
i<k<a

Using this, the dual of Lemma 2 of Chapter 4, and the complete
distributivity of \/ and A, we see that each element of F,.is a set union
of elements of the form '

[ ne
(2) (54\“1‘1")".%{,) A (UQ"Apo,q,,) /\ (aé\hBr,,s,) A (ax..Bg"'"”)’
wheve 1, v, 75, ¥4 <y, and with the added condition (condition C) that
for each 0 <y, such that m, < a there exists a v << vy Such that me+1
= Pry e == ¢;. It is then easy to see that in (1) we may assume that each
Zew 18 actually of the form (2), with condition C.

We thus assume that in (1) each (V) @4 = 0, all the L) @,y are
e<yo yexy
equal, and each x,, is of the form (2), with condition .
For convenience assume ¥ is well ordered. Now define elements Yo
(0 < o<y in Y by induction as follows: :
Yo = the fivsh ¥ in ¥ wuch that wy, # 0 (since |J @oy > 0, such a 7,
yex
must exist),
Yo = the fivst y in ¥ sueh that (k( \ @h) () Ty # 0, oF, if no such y
<e
exists, ¥, = yq.
The function ¢ such that @(e) = y, for 0 < o < y, lies in ¥™, Thus
M Doy, = 0. Liet gy bo the smallest g <y, such that M Dhgy, = 0.
k<g

e<vo

Suppose g, is not & limit ordinal, i.e. g, = ¢’ --1. Then, since 0’ < 9,
() Bry, # 0. Bub () Brg, < J Moy = | #yy. Therefore, by continuity,
k<g’ kg’ yey yeY

VLEJF[wQ'W N (kf;llwk,wk” = (kQ;'wM'w‘) N (vgwe’m) =kq'wlc,1/k #0.
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Thus, for some ¥ in ¥, and hence for yy, we have @y, M (ID Tregy) 7 0,
e<g’
Thus we have that () @y, # 0, a contradiction.
k<eo
Now suppose that g, is a limit ordinal. We shall examine ka,u,,
1<

Q0
more closely. For each % < go) @ry, 18 of the form (2), with condition C,
Thus, forming the intersection kﬂ ry, formally (remember g, <y, so
<go

By,
kgo "
Doy, =

krjqn e

with 1, 9, ¥s, 74 < 9, where each ferm occurs in the representation
(in the form (2), with condition C) of &, for some % < g,.
Now construct a function f in 2° as follows:

= A @1,,), and reindexing the terms, we can write
k<go

(A Amgn) A (A Apya) A CA Br) N CA Bi )
o<yy o<yy a<yg o<y

fP+ae-nto)=1 for O0<o<min(m+l,a), O0sSo<y,
Hyrads)=1 for 0<KLo<y,,
f=0 otherwise.
Since, for 0 <o <y, f iz in eﬂm.nd.m(l), f I8 in
0z <min(m +1,u)
N Amn,. Since for 0 <o <y, f is in a,,., +a,(1), [ 18 in /\ B,
o<y1 a<yg

Then, since (1) #xy, =0, f cannot lie in both A B? w and A A,o e
k<eo o<y 0 C o<y, 00
Thus f is either in V B, w, OF i V Az,

g "

Suppose f is m \ B = Then, for some o with 0<

o SO <Yy,
f(y-to--u) = 1. Therefore there exigts a = with 0 < v <y, such that
Ys =1, 8& =%. But B, , occms as a term in the representation (in
the form (2), with condition C), of Bpy, for some & < g, say b= k.
Likewise B, u, OCCUIS a8 & term in the representation of @, for some
k < gq, say k= ky. Then

By < B Bl =0
k<max(r7;],,kg)+1 by < Broa, A Biyu, !

a eontradiction, since max (%, ky)--1 < gy, and g, was chogen minimal,
Finally suppose f is in V Ap s Then, for gome o with 0 < ¢ < 9y,

fisin 4, < Ay, We know

that dp , oceurs as a term in the represent;atlon (in the form (2), with
condition C) of @y, for some % < gy, say k = k,. But then

pu,aa A Am,.a =0.

. Suppose, for some 0 < gy, ﬂ Dry, S

n. . m,
k<max(q’ky)+1 1/,,
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This is a contradiction, since max(o’, k) +1 < gy, and g, was chosen

minimal. Thus, for all ¢’ < gy, {‘] | Bry, DOD K Ap g

Now let ¢ be the sma,llest ordmal less than or equal to a such
that there exists a j, 0 <j <y, with f in Aq; bus, for all ¢ < g,
ﬂ D, O Aiy (ps is such an ordinal).

Sinece f is in A4y, f is in 4,;, and hence f(y2+a-j) = 1. Thus there
exists a v <y, such that n, =j. Then 4, , must occur as a term in
the representation (in the form (2), with condition C) of 234, for some
k< goy 82y k=1F. If i =0, then

m mk,ﬂk

Fhrrl ,.n, < AO.! ’

a contradiction, sinee k;+1 < g,. Suppose ¢ is a limit ordinal. Since
N a:k,,,knon < A4y, we must have m, < 4. Moreover, it follows from

k<ls+1
condition C that Am,-x-l,n, is a term in @y, . Bub m.+1<<i and f is
in Am 410 . Hence, by the minimality of ¢, there exists a o’ < g, such
that () @ < Amﬁm{ But then
k<g’
4 —
r< r)’,kl’)+1mk;"k < Amr+1,nr A Am‘,-i-l,n{ =0,

a contradiction, since max(p’, k) +1 < gq.
The only remaining alternative is that ¢ = 4’
two possibilities: 7 is in A ejta.i+x(1), Or f is in
k<t

+1. There are then

V (A A Ave A Big) -
o<y
Pt

If f is in A €uha.j+r(1), then f(32+a-j+4) = 1. Thus there exists
ki

a 8 <y, such that n, = j, ms > 4. But Ama,% occurs as a term in the
representation (in the form (2) with condition C) of a4, for somé

k< gy 52y b=k, Thus [ @ny, < Amm, < 444, a contradiction, since
k<ly+1

ks +1 < gy
Now suppose f is in
V

ock<y
k#j

(Ais N\ Avg N\ Big) .

Then  there is a % with 0<Kk <y, Kk 4, such that f ig in
Ay,, A Aiwe A\ Bj. Since 4 was minimal and 4’ <4, there exist

0"’y @' < g, such that kD”mk,,,k < Ay and kD”wk,,,k < Ay Since f is in
o o

By, fly-i+%) =1. Thus there exists a A< y; such that r; =74, 8, =Fk'.
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Then B, occurs as a term in the representation (in the form (2), with
condition O) of w,, for some & < g, suy Tt = Iy. But then

Ty, < (Avg \ Ao A Braw) < iy,
k<max{g”,¢" kg)+1
a contradiction, since max (", o', k) -1 << gq.
Thus our original assumption, that I, is not (y, co) distributive,
hag led to a contradiction, and Theorem 2 is proved.

THEOREM 3. If y i8 an infinite regular cardinal, then there does not
exist a free complete (y, oo) distributive Boolean algebra on y complele
generators.

Proof. Theorem 3 follows from the remarks preceding Theorem 2
and Theorem 2 itself.
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On the Lebesgue measurability and the axiom
of determinateness

by
Jan Mycielski (Wroclaw) and S. Swierczkowski (Glasgow)

It is the purpose of this paper to show that the axiom of determi-
nateness (A) (see [2], [3]) implies that all linear sets are Lebesgue mea-
surable. We will use (A) in the following form: ewvery infinite positional
game with perfect information and a denwmerable set of positions is dei-
ermined. (Let us recall another form (see [2]) which does not use notions
of the theory of games: for every set P of sequences of natural numbers
there exists a function f defined on all finite (or emply) sequences of nat-
wral numbers, taking natural values and such that for every sequence
Tyy Mgy ooe .

("1: Flom); My £, M)y gy (0015 9, 5) ) eP

or for every sequence My, Ny, ...

(f(ﬂ)1 ”17’(""1),'”'27f("'llr”s)y”ay---) ¢P.)

(A) implies also the property of Baire of every linear set (see [2])
and the proof of the result of this paper, although more complicated,
is based on an analogous idea as the proof of this fact. Let us mention
that the development of the theory of meagure, e.g. the denumerable
additivity, is based on a weak form of the axiom of choice which is
a consequence of (A) (see [2], prop. C). Of course our result could be
formulated as follows: the existence of a non-measurable set implies
the existence of non-determined games of the prescribed form (and the
exigtence of gets P without the above mentioned property). Clearly the
axiom of choice is not used in this paper.

1. THEOREM. (A) émplies the Lebesgue measurability of every linear
set (1).

First we note that it is enmough to show for every subset X of the
closed interval <0,1) the following proposition:

(P) (A) implies | X|¢> 0 or [eX|¢>0. (%)
——memh'zatiou of this result, see section 2.

(%) |} denotes the interior measure and ¢X the complement of X in (0, 1).
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