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Then B, occurs as a term in the representation (in the form (2), with
condition O) of w,, for some & < g, suy Tt = Iy. But then

Ty, < (Avg \ Ao A Braw) < iy,
k<max{g”,¢" kg)+1
a contradiction, since max (", o', k) -1 << gq.
Thus our original assumption, that I, is not (y, co) distributive,
hag led to a contradiction, and Theorem 2 is proved.

THEOREM 3. If y i8 an infinite regular cardinal, then there does not
exist a free complete (y, oo) distributive Boolean algebra on y complele
generators.

Proof. Theorem 3 follows from the remarks preceding Theorem 2
and Theorem 2 itself.
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On the Lebesgue measurability and the axiom
of determinateness

by
Jan Mycielski (Wroclaw) and S. Swierczkowski (Glasgow)

It is the purpose of this paper to show that the axiom of determi-
nateness (A) (see [2], [3]) implies that all linear sets are Lebesgue mea-
surable. We will use (A) in the following form: ewvery infinite positional
game with perfect information and a denwmerable set of positions is dei-
ermined. (Let us recall another form (see [2]) which does not use notions
of the theory of games: for every set P of sequences of natural numbers
there exists a function f defined on all finite (or emply) sequences of nat-
wral numbers, taking natural values and such that for every sequence
Tyy Mgy ooe .

("1: Flom); My £, M)y gy (0015 9, 5) ) eP

or for every sequence My, Ny, ...

(f(ﬂ)1 ”17’(""1),'”'27f("'llr”s)y”ay---) ¢P.)

(A) implies also the property of Baire of every linear set (see [2])
and the proof of the result of this paper, although more complicated,
is based on an analogous idea as the proof of this fact. Let us mention
that the development of the theory of meagure, e.g. the denumerable
additivity, is based on a weak form of the axiom of choice which is
a consequence of (A) (see [2], prop. C). Of course our result could be
formulated as follows: the existence of a non-measurable set implies
the existence of non-determined games of the prescribed form (and the
exigtence of gets P without the above mentioned property). Clearly the
axiom of choice is not used in this paper.

1. THEOREM. (A) émplies the Lebesgue measurability of every linear
set (1).

First we note that it is enmough to show for every subset X of the
closed interval <0,1) the following proposition:

(P) (A) implies | X|¢> 0 or [eX|¢>0. (%)
——memh'zatiou of this result, see section 2.

(%) |} denotes the interior measure and ¢X the complement of X in (0, 1).
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In fact, if there exists a nonmeagurable linear set, then it iy easy
to construct an X C <0,1> with interior measure 0 and exterior meag-
ure 1, i.e. (P) would digprove (A).

Let 7,1y, ... be a sequence of positive rational numbers satistying:

«
(i) Zrn <oo and  12>7>1n> ..
n=1
let Jx (k= 0,1,2,..) be the class of all subsets § of <0, 1> which have
the following properties;
(i) 8 is a finite union of closed intervals <a, b>, where @ and b ave

rational numbers;
(iii) The diameter 6(8) = sull]w-myl satisties 6(9) < 1/2%;
2,YeN

(iv) |8] =17y 75 ...- 7k, where |-| denotes the Lebesgue measure (%).

We take the mnotation 8§, =<0,1). An ordered (%-1)-sequence
8o, 84, .., Sk, where §;C 8;-, and §;eJ; is denoted by S;. The set of
all sequences Sy, is denoted by Jy. If 7 is a mapping of Jy into Jy4q, then
7(Si) denotes the ordered sequence Sy, 8y, ..., 8k, 7(Sk).

We consider the following game between two players I and II,
determined by the set X C <0,1> I chooses a set 8, eJ,, then II
chooges a set S,ed, with S,C 8y, then again I chooses S, e, with
8,C8,, ete. infinitely many times. If ﬁl 8s C X, then I wing; if

n=

oc
mls,,; ¢X, then II wins (exactly one of fthe two inclugions hold
e
o0
since, by (ii) and (iii), () 8x is a one point set).
=1

By (ii), the set LUIJ}G is denumerable, therefore the statement (A)
implies that I or IT has a winning strategy (4). Therefore, in view of (i),
(P) follows from the following theorem:

(T) (a) If I has a winning strategy, then

)

(Xlezn [ ] (1—2r,).

n=1
(b) If II has a winning strategy, then

0

loXle> [ ] (1—2r0s).

Nl

For proving (T) we need some lemmas.

() Hence the. only member of J, is the interval <0, 13,
(') In fact this requires a small reagoning or the application of Theorem 2 of [2].
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(L) Let 8, efn_lgand let v be a mapping of In im0 Jpa such that
©(8u) C 8y for every Su e Jn (T(Sn) e Jusa). Then there exisis a finite sequence
ey vy S e, 8L CS_1, such that

(=) i{Q ()] = 8] (L —2r) ()

and moreover the sets ©(Sy), ..., T(Sw) are disjoint.
Proof. We define the sets S by induction. Suppose that Sy ey 8
(j 2 0) have already been defined, we consider the set

i .
R; = s:’,_l_Hr(sf,).

Xt |Rs| > 2|854|r then R; contains a subset P of diameter 0(P) < 0(Ry)[2
< 1/2" such that |P|> |Sn—y|1m; moreover P can be a finite union of
rational intervals. Then there exists a set 857" C P which belongs to Jy.
In this way we define consecutively the terms of the sequence &, &, ...
till we arrive to S such that |Ru| < 2/8%—1|m, ie. (=) holds. Since for
every 1=1,2,..,m—1 we have «(S,)C 8" C 8, — er(Sf.,), it fol-
i1

lows that the sets 7(S,) are disjoint, ¢.e.d.

Let 7 be a strategy for player I, i.e. a mapping of |JJu into

k=0

AU Jar+1 such that 7 (Jox) C Jopsa-
=0

Let us denote by I.(Sh—,) a set {Ss, ..., S} given by (L), it is clear
that, owing to (ii), a function I, exists effectively (i.e., without using
the axiom of choice). We put

= U oo U L% (San-n))

8, L{7(8) B,eL(z(5y) '§2(n—1)‘11(‘(§z(n-:)))

Aw= U 7(8ea)-

Bone 17

and

Now we prove two other lemmas
n
(L) 1dal = [T —2ry) and Apyy C A for n=1,2, ..
i=1

Proof. We observe that by (L) all the sets 7(Sy,) occurring in the
union 4, are disjoint (n being fixed). Now we prove the inequality-of (Ly)
by induction. For n = 1 it holds clearly by (IL;). Suppose that it holds
for some n. We have by (I,):

L U 7Sl = [o(Sen)| (1 —270m4m) 5
Syt € Le(x(8yn))

0 0

S} denotes the sequence 82, 87, ..., 8%_,, 85.

=
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and thus by (L) (the disjointness),

| Anaf = Z U

Sm‘ n g s’(“+ ye7, ,(r(S,,,))

= D 1o (Ban)] (1 —2roniy)

§mel"

= I U ‘t’ Szn ] (L— 272(,,+1))

,S'mtl

(S2(1L+1)) |

n+l

= | dal(L~2rouany) =7, | | (1 —2m)
frel

and this concludes the proof of the inequality. The inclusion of (L)
clearly follows from (L,), q.e.d.

(Li). For every point
o0
peNAn

Ne=1

there exisis a strategy op for player II, such that if I plays by means of v

and II by means of oy then ﬁ 8u = {p} (81, 8, ..
Nl

choices of the players).

Proof. The sets 7(Sen) (8o € I¥) being digjoint (for fixed n), let us
denote by 8%, this (unique) sequence S, e I" for which P e 7(Sen) and
8% = <0, 1). Suppose that o, is a strategy for player II such that

denote the consecutive

op(T{Sn-v)) =85,  for wm=1,2,..
b )

. o0
It is clear that p enr-l 8, it the choices 8, are performed by means of ©
and ¢ and by (iii) we have the conelusion, q.e.d.
Proof of (T). (a). If v is a winning strategy for player I, then
by (L)

o0

N4 C X
and by (L)

| mA,.| >n [](1 —2ryy).
Tl
Then (a) follows.
The proof of (b) is analogous (

by means of 1 na
to (Ly) and (Ly)), q.e.d. ¥ of some lemmag analogous
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2. Remark. Our Theorem permits getting a stronger consequence
of (A):

If E is a separable metric space and u is a denumerably additive finite
measure on the field B(E) of Borel subsets of B, then every set X C E is
pu-measurable i.e. there arve such By, B, ¢ B(E), that

B, CXCB p(By) = p(Bs) .

Without loss of generality we can suppose that u is not purely
atomic. Let # be a homeomorphism of X into the Hilbert cube H (%).
Let A be the set of atoms i.e. 4 = {#eHE: pu(x) > 0}. Since p is finite
A is denumerable and the set B* = H—h(4) is borelian in H. Let be
m(X) =,u(h_1(Y)) for each Y ¢B(E*). It is clear that <{&*, B(E*),m)
is a finite atom-free separable Borel measure-space. Then this space is
pointwise isomorphie (by a Borel homeomorphism (%)) to the Lebesgue
meagure-space over a segment of the real line (see e.g. [1], § 4.1). It
follows assuming the conclusion of the Theorem that all the subsets
of B* are m-measurable and all the subsets of E are u-measurable.

and

(®) Tts existence requires only a weak form of the axiom of choice ¢ which
follows from (A) (see [2]).
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