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The global dimension of the group rings
' of abelian groups

by
S. Balcerzyk (Torud)

Let R be a ring with an identity element; all modules that will be
considered are left mcodules. If 4 is a R-module then an projective re-
solution of A is an exact sequence

0« A<« Py« P «..

of R-modules, P,, P, ... being projective modules. If there exists a pro-
jective resolution of A such that Pr =0 for %> n, but there is no
such resolution with P, = 0, then we define the left projective dimension
of A as lLdimg A = n; if there exists no such number n then we put
l.dimR A = oo,

It is known that the (left) projective dimension of 4 is the supremum
of all numbers m such that there exists R-module B satisfying
Exth(4, B) # 0.

The (left) global dimension of the ring R is defined as

l.gl.dimR = supl.dimp 4
A

and A varies over all (left) R-modules. :

It is known that the global dimension of R is the supremum of
all numbers m such that there exist R-modules A4, B satisfying
Exty(4,B) # 0.

The (left) weak dimension of R-module A is defined as the supremum
of all numbers m such that there exists a right R-module B such that
TorE(B, A) 0. The (left) weak dimension of A is denoted by 1.w.dimgA4.

The weak global dimension of the ring R is defined as the supremum
of all numbers m such that there exist a left R-module A and a right
R-mcdule B such that TorZ (B, 4) s 0. The weak global dimension of R
is denoted by w.gl.dimE.

It is well known (see [5]) that

w.gl.dimR < lgl.dimE,
20%*
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and if R is left Noetherian ring then
w.gl.dimR =lgl.dimR.

Let IT be a group with an operation of multiplication; the group
ring R(I) consists of all elements of the form

Dltao

ocell
subjected to the conditions 7, € R, 7, = 0 for almost all o € II. The addition
and multiplication are defined in & natural way.

The structure of abelian groups IT and rings R such that the weak
global dimension of the group ring R(/7) is finite was determined by
A. J. Douglas in [3]. It was proved that w.gl.dim R(I]) is finite if and
only if the following conditions are satisfied:

(i) w.gl.dimR < oo,

(i) rankIT < oo,

(iii) 4f the group II contains an element of finite order ¢ then g¢R = R.

If all the above conditions hold then

w.gl.dimR (1) = w.gl.dim R +rank ] .

If we put B = Z (the ring of rational integers) then we get as a corol-
lary: If IT is an abelian group then w.gl.dim Z(II) s finite if and only if
the growp II is torsion free and of finite ramk; moreover

w.gl.dimZ (II) = rankIT+1.

The group of rational integers Z may be viewed as a Z(II)-module
if we admit elements of IT as trivial operators on Z. K. Varadarajan has
proved in [6] that if IT is an abelian group then l.dimgzuZ < co if and
only if II is torsion free and rank II < oo; moreover

rank /7
rankI7+1

if IT is a finitely generated grou
l.dimZ‘H)Z == { . . v & group »
in the opposite case .
In the present paper we determine the global dimension of the group
ting Z(IIy of an abelian group II. We prove that gl.dimZ(II) < oo if
and only if IT is a torsion free group of finite rank; moreover

rankI7+1
rank IT 42

it IT is a finitel; ted
ol dim Z (IT) = { . a . Yy genery group ,
in the opposite case .

The first of the above equalities follows by the result of A. J. Douglas,
because Z(II) is a Noetherian ring.
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1. In this section we state some results that will be needed in the
sequel. '

(1.1) If II is o finite cyclic group then gl.dimZ(II) = oo.
Proof. It is known (see [2], Chapter XII, § 7) that for even =

Extzm(Z, Z) = H'(II, Z) + 0;

hence gl.dimZ (II) = oo.
(1.2) If IT’ is a subgroup of an abelian group II then

gl.&im Z(IT") < gl.dim Z(I7) .

Proof. The ring Z(II) may be considered as a free Z(II')-module;
then
EX(‘:%(HI) (Z (U), 0) =0

for all p> 0 and all Z(II')-modules C.

The ring Z(IJ) may be viewed as a left Z(Il)-module and a right
Z(IT")-module. If A is an arbitrary (left) Z(II')-module then Z(I)®zum4
becomes a left Z (IT)-module; if this module is considered as Z(II')-module,
then it is a direct sum of modules isomorphic with 4. If we apply Propo-
sition 4.1.4 (Chapter VI of [2]) then we get for an arbitrary Z (II )-module B

(1) ExtZm(Z (I Q@zm 4, 0) ~v Bxtg(Z () @z 4 0)
where
@0 = Homgm(Z (), C) -

I Bxthg #0 and BExtZu(4,0) %0 then by (1) it follows that
Extym # 0 and the proof is finished.
(1.3) If I, CIT,C... i an increasing sequence of abelian groups and

II = fj IT,, then
n=1
supgl. dim Z (IT,) < gl.dimZ(II) < 1+supgl. dimZ (/1) .
n n

Proof. The first inequality follows by (1.2), and the second one is
a consequence of Corollary 1 of [1] when applied to the ring Z(II) as
a direct limit of rings Z(I1)-

(1.4) Let R be a ring with an identity element and let 8y, 3, - e ele-
ments of R which are non units and non zero divisors; if F' is a free R-module
and vy, Uy, ... are free generators of F then the system of equations
(2) By —Sn41%nt1 = Vn (W= 1,2,..)

admits no solutions in F.
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Prootf. Let F* be the complete direct product of mcdules Rv,:

F* = ﬁ Roy, .
n=1 :

The R-medule F* contains F. If we denote

Dok = Spy18n4y2...85 for Ek>m,
Pan =1,
Pax=0 for k<n,

Yn = {Parvi} ¢ F*,

and
then we have

*
Yn—Snt1Yn+r = {Pnr08} — Snt1{Pimta e} = vk .

Let us assume that the system of equations (2) admits solutions
@y, &y, ... in F; then the elements u, = z,—y; belong to F* and
Up = Sn41 Un1 Moreover, u; = 8,...84%s and u,; is of the form u, = {ryvx}
71 € B. Since @, = u, +y¥ ¢ F, then rp-+pi =0 for k> N. ’
Let us compute the coefficient r at vy of @yi.. We have myy,
— * B
= Uysz+ Yh42 and YRio = {Pyiorve}. Consequently, 8y...8yiar = ryqy
= —PiN1 = —S85...85+1 and Syis-7 = —1; thus s is it i
the contrary to our assumption. ’ e B8 e I & on
2. In this section we determine the i i
) global dimension of th
ring of a free abelian group. ° g
Lemwma 1. If Lgl.dimR = m < oo, IT is an infinite eyclic group then
Extgi (4, B)~ Bxth(4, B)

for any R-modules A, B (elements of IT operate trivially on A and B).

Proof. If o denotes a generator of /7 then th i
> e

contains the polynomial ring R[o]. s e A
At first we prove

Ext#i (4, B)~ Ext%(4, B) .

It was proved in (4] that if 4, I" are K-algebras then in the situation
(4-rd, 4-rB) there exists a spectral sequence

3] H'(I', Ext(4, B)) = Bxthexr(4, B) .
b4
If we put K= 2, A= R, I'= Z[o] then A®xI'= R[o] and we obtain
(3) HP(Z{o], Bxth(4, B)) = Bxtp(4, B)
V4
for any R(IT)-modules 4, B.
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Since dim Z[o] = 1, then the property (Q) of polynomial rings (see [4],
pp. 82-83) implies
@ H*(Z[6],0)=0 for p>1,
H\Z[s], O)~ C

for any symmetric Z[o]-mcdule C.

Tf we admit elements of IT to operate trivially on both sides of A
and B, then Ext(d,B) becomes a symmetric Z [6]°-module.

By the ‘“maximum term principle” of spectral sequences, by (3)
and (4) we get

Bxt@(4, B) ~ H'(Z[0], ExtR(4, B)) ~ Exti (4, B) -
The elements of IT operate trivially on A; then RIN®paA ~A.

The ring R(I) is a sum of an increasing sequence of free cyclic
R[o]-modules; then

TorP(R(IT), A) =0 forall p>0
and we can apply Proposition 4.1.3 (Chapter VI of [2]) to the inclusion
R[o]—R({II). Thus

BxtHi(4, B) ~ Bt (RUTD) ®ra 4, B)
and by the ‘preeeeding formulae we have

Exthii(4,B) ~ Exty(4,B) .
Lemma 2. If IT is a free abelian group then
lL.gl.dimR(I) =1l.gl.dimE 4-ranklT .
Proof. If L.gl.dimE = co then by (1.2) we have
lgl.dimR(IT) > l.gl. dmB({1}) = Lgl.dimR = oo

and both sides of the equality are infinite.
Iflgl.dimR = m < co and ITis a free abelian group of rank 1 then

by formula (3), p. 74, of [4] we get
lLgl.dimRB () =1.gl.dmE ®z ZI) < dmZ (1) +1.gl. dimE,

dimZ(IT) being the left projective Jdimension of Z(II) considered as
a module over the enveloping algebra of Z(II). By Theorem 6.2 (Chapter X
of [2]) we have dimZ(Il) = dimzgm Z; then

Lgl dimR () <1.dimgnZ +1.gldimR =1+m
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and from the Lemma 1 it follows that l.gl.dimR(T) > m-+1. Con-
gequently,
lLgldimR(IT) =141lgl.dimR = l.gl. dimR +rank 7.

If I1 is a free abelian groups and oy, ..., o, are free generators of IT
and IT' = {0y, ..., 0,1}, then the group ring R(II) is naturally isomorphic
with the group ring of infinite cyclic group {s,} over the ring R(II') and
the induction step follows by the preceeding part of the proof.

If IT is a free abelian group of infinite rank then by using (1.2) and
the Lemma for groups of finite rank we have

lLgldimR(II) >lgl.dimR+r for any r=1,2,..
and the lemma follows.
8. In this section we determine the global .dimension of the group

ring Z(II) of an abelian group of rank 1. This ring is a commutative one,
then we may omitt the letter 7 in all dimensions.

Lmyva 3. Let IT be a non cyclic torsion free abelion group of ramk 1;
then dimgzmZ, = gl.dimZ(IT) = 3 (Z, denotes the cyclic group of order »
and IT operates trivially on Z,).

Proof. There exists an increasing sequence of infinite cyclic groups
II,CII,C ... such that I = | II,. Then by (1.3) and Lemmsa 2 we have
n=1

(5) 2<<gldimZ(I7) <3.

Let on (n =1,2,..) be generators of the groups I, such that for
some integers t, > 1 we have

E=op m=2,8,.).

If we denote .
Sa=1+4on+cp+...+oli ",
then 1 —ouy = (1 —o0y)8,.

‘We show next that the exact sequence

0 Z<PEp & p o,
where

P, 0= Z (1, ):

Py is a free Z(II)-module on free generators DByy By eeey
P, i3 a free Z(II)-module on free generators ¥y, ¥s, .-
¢ is the unit augmentation,

@i(22) = 1 — 0y, ’

(Yn) = Bn—Sny10pr1,

A

is the shortest projective resolution of Z (IT)-module Z.
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The elements o, generate all the group II; then Kers = Imdy. )
Since  di(@n— Sn18ns1) = 1 —0n—Snia(l—0ons) = 0, We have Imdy
C Kerd,. On the other hand, if 7@ +...+ "t belongs to Kerd; then
pecause of the relation
@y = A3(Y1) -+ i1 Bia
we have
718+ o+ Tl = dé(’”{?h +.. +r;ty'n) + 7%ty

and 2, is in Kerd;. Consequently, di{ronyi) =7(1—0p1) =0 and
r = 0, because Z(II) has no zero divisors.
Tt Tmd. would be a projective module then the exact sequence
0« Imd « P& Pe0

would split and then we would have a Z (IT)-homomorphism g: PP,
such that ods is the identity on P,. Thus for all » =1, 2,... we have

Yn = 0di(Yn) = 0 (%n — Sny1%nt1) = 0(@n) —Sni1 0 (@n+1)

contradicting (1.4) (Sn4+1 are non units in Z (I1)).
The group Z, admits a free Z-resolution

0 <—Z,.<—R,,3‘— R, <0

where R, = R, = Z, di'(m) =rm. .

Let ‘ZS be tlhe tex’xsor product of the above resolutions, P,R,8=PRzE.
S is a free, acyclic Z(II)-complex. In fact, the spec.tral sequence of the
complex § filtered with respect to the first index is

-E;,q = Pzz ®Z -Rq;
since P, is Z-free, then
Bpo=Ppy®2z%Zr,
E,a=0 for ¢>0.

Moreover B = 0 for p> 0 because P, are Z-free and Fyo= Z@zZ- ;_— ?.
Consequently, Z(II)-complex § is & projective Z (IT)-resolution of Z.
By inequality (5) it is sufficient to prove that the module

M =TIm(8,~8)
is not a projective one. We have an exact sequence
d.
0« M<BSy< 8« 0;

if M would be a projective Z (IT)-module then the?e WO.’llld exists a AZ (fIII)
homomeorphism g: §,—>8, such thab ods is the identity on S;. ee
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Z(II)-base of S, consists of elements s, — ¥n®1 (n=1,2,..). By the
definition of differential operator d, we have

#n = @dy(2n) = ody(yn ®1)
= e[(dyn) ® 1+ yn ® di'(1)]
= 0[(Tn~Sn11%n41) @ 1+ 91 ® #] ’
and if we denote & = o(w, ® 1) then

= En—8pi1&pt1 ey ®1).

If 8, = 8,/r8, then §, is a free Z,(/I)-module and the cosets Z, of 2,
are free generators of §;. Moreover, there are elements £, ¢S, such that

Zn = &n~Sns1bns1 -

It is easy to see that the elements & (n>1) of Z(IT) = Z(IN[rZ(IT)
are non units and not zero divisors in Z,(II); this contradicts (1.4) and
the lemma is proved.

4. In this section we prove the following theorem.
TEEOREM. If II is a torsion free abelian group which is not fimitely
generated then
gl.dim Z (IT) = dimg Z, = rankIT +2

for any non trivial finite cyclic group Z, (II operates trivially on Z,).
Ij IT is a finditely generated torsion free abelian group then for an arbitrary
ring R
Lgl.dimR(MT) = 1. dimpgy A = rank JT+1. gl.dimR

if LdimgA4 = Lgl.dimR and IT operates trivially on A.

Proof. The second part of the theorem is a consequence of Lemmas 1
and 2.

Let IT be a torsion free abelian group which is not finitely generated.
If rankJT = oo then the theorem follows by (1.2) and by Lemmas 1 and 2..
If rank IT =1 then the theorem follows by Lemms 3.

Let us assume that the theorem is proved for all groups of rank < »
(r>1) and rankT = r. Tt is easy to prove that the group IT contains
a subgroup I7, of rank # which is not finitely generated group and is an
extension of a group II;~ Z by a torsion free group Iy’ of rank r—1

0 ~>IIy>IT, I} >0 .

Thus the group Iy is not finitely generated.
By (1.3) we can deduce that

(6) r+1<gldimZ(In) < r+2.

o © _
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Thus by (1.2) it is sufficient to prove the formulae of the theorem for the

grou% o?;ny Z(IT}')-module A and a Z(IT,)-module O we have a spectral

O i, HUR, 0) = Bxtha(4, 0
(4

(see [2], Chapter XVI, § 6). If we put 4 =.Z., and for ¢ vc:ilija,kze a,(f(g"()).
module such that elements of JI; operate trivially and Extzmin(Zy, ,

then
HYI;, C)=0 for ¢>1,

H\IL;, 0)=C
and by the induction hypothesis
Bxtypn=0 for s>r+1.
0

The “maximum term principle” of spectral sequences yields

Bxti{g(Zr, 0) ~ Bxtian(Zr, 0) # 03

then gl. im Z (I7,) > dimgmy Z» =7 +2

A .
and the theorem follows by an application of (6) to the group Il
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