

The global dimension of the group rings of abelian groups

bv

S. Balcerzyk (Toruń)

Let R be a ring with an identity element; all modules that will be considered are left modules. If A is a R-module then an projective resolution of A is an exact sequence

$$0 \leftarrow A \leftarrow P_0 \leftarrow P_1 \leftarrow \dots$$

of R-modules, P_0 , P_1 , ... being projective modules. If there exists a projective resolution of A such that $P_k=0$ for k>n, but there is no such resolution with $P_n=0$, then we define the *left projective dimension* of A as $1.\dim_R A=n$; if there exists no such number n then we put $1.\dim_R A=\infty$.

It is known that the (left) projective dimension of A is the supremum of all numbers m such that there exists R-module B satisfying $\operatorname{Ext}_R^m(A,B) \neq 0$.

The (left) global dimension of the ring R is defined as

$$l.gl. \dim R = \sup_{A} l. \dim_{R} A$$

and A varies over all (left) R-modules.

It is known that the global dimension of R is the supremum of all numbers m such that there exist R-modules A, B satisfying $\operatorname{Ext}_R^m(A,B) \neq 0$.

The (left) weak dimension of R-module A is defined as the supremum of all numbers m such that there exists a right R-module B such that $\operatorname{Tor}_m^R(B,A) \neq 0$. The (left) weak dimension of A is denoted by $\operatorname{l.w.dim}_R A$.

The weak global dimension of the ring R is defined as the supremum of all numbers m such that there exist a left R-module A and a right R-module B such that $\mathrm{Tor}_{R}^{R}(B,A) \neq 0$. The weak global dimension of R is denoted by w.gl.dim R.

It is well known (see [5]) that

 $w.gl. \dim R \leq l.gl. \dim R$,

and if R is left Noetherian ring then

$$w.gl. \dim R = l.gl. \dim R$$
.

Let Π be a group with an operation of multiplication; the group ring $R(\Pi)$ consists of all elements of the form

$$\sum_{\sigma \in \Pi} r_{\sigma} \cdot \sigma$$

subjected to the conditions $r_{\sigma} \in R$, $r_{\sigma} = 0$ for almost all $\sigma \in H$. The addition and multiplication are defined in a natural way.

The structure of abelian groups Π and rings R such that the weak global dimension of the group ring $R(\Pi)$ is finite was determined by A. J. Douglas in [3]. It was proved that w.gl.dim $R(\Pi)$ is finite if and only if the following conditions are satisfied:

- (i) w.gl. $\dim R < \infty$,
- (ii) $\operatorname{rank} \Pi < \infty$,
- (iii) if the group Π contains an element of finite order q then qR=R. If all the above conditions hold then

$$w.gl. \dim R(\Pi) = w.gl. \dim R + rank \Pi$$
.

If we put R=Z (the ring of rational integers) then we get as a corollary: If Π is an abelian group then w.gl. $\dim Z(\Pi)$ is finite if and only if the group Π is torsion free and of finite rank; moreover

$$w.gl. \dim Z(\Pi) = \operatorname{rank} \Pi + 1$$
.

The group of rational integers Z may be viewed as a $Z(\Pi)$ -module if we admit elements of Π as trivial operators on Z. K. Varadarajan has proved in [6] that if Π is an abelian group then $1.\dim_{Z(\Pi)} Z < \infty$ if and only if Π is torsion free and rank $\Pi < \infty$; moreover

$$\mathrm{l.dim}_{Z(I\!I)}Z = \left\{ \begin{array}{ll} \mathrm{rank}\,I\!I & \mathrm{if}\ I\!I \ \mathrm{is}\ \mathrm{a}\ \mathrm{finitely}\ \mathrm{generated}\ \mathrm{group}\ , \\ \mathrm{rank}\,I\!I + 1 & \mathrm{in}\ \mathrm{the}\ \mathrm{opposite}\ \mathrm{case}\ . \end{array} \right.$$

In the present paper we determine the global dimension of the group ring $Z(\Pi)$ of an abelian group Π . We prove that $\mathrm{gl.dim}\,Z(\Pi)<\infty$ if and only if Π is a torsion free group of finite rank; moreover

$$\mathrm{gl.dim}\,Z(\varPi) = \left\{ \begin{aligned} \mathrm{rank}\,\varPi + 1 & \quad \mathrm{if}\ \varPi\ \mathrm{is}\ \mathrm{a}\ \mathrm{finitely}\ \mathrm{generated}\ \mathrm{group}\,, \\ \mathrm{rank}\,\varPi + 2 & \quad \mathrm{in}\ \mathrm{the}\ \mathrm{opposite}\ \mathrm{case}\,. \end{aligned} \right.$$

The first of the above equalities follows by the result of A. J. Douglas, because $Z(\Pi)$ is a Noetherian ring.

1. In this section we state some results that will be needed in the sequel.

(1.1) If Π is a finite cyclic group then $gl.\dim Z(\Pi) = \infty$.

Proof. It is known (see [2], Chapter XII, § 7) that for even n

$$\operatorname{Ext}^n_{Z(\Pi)}(Z,Z)=H^n(\Pi,Z)\neq 0;$$

hence $\operatorname{gl.dim} Z(\Pi) = \infty$.

(1.2) If Π' is a subgroup of an abelian group Π then

$$\operatorname{gl.dim} Z(\Pi') \leqslant \operatorname{gl.dim} Z(\Pi)$$
.

Proof. The ring Z(H) may be considered as a free Z(H')-module; then

$$\operatorname{Ext}_{Z(\Pi')}^p(Z(\Pi),\,C)=0$$

for all p > 0 and all $Z(\Pi')$ -modules C.

The ring $Z(\varPi)$ may be viewed as a left $Z(\varPi)$ -module and a right $Z(\varPi')$ -module. If A is an arbitrary (left) $Z(\varPi')$ -module then $Z(\varPi) \otimes_{Z(\varPi')} A$ becomes a left $Z(\varPi)$ -module; if this module is considered as $Z(\varPi')$ -module, then it is a direct sum of modules isomorphic with A. If we apply Proposition 4.1.4 (Chapter VI of [2]) then we get for an arbitrary $Z(\varPi')$ -module B

 $(1) \qquad \operatorname{Ext}_{Z(\varPi)}^{m} \! \big(Z(\varPi) \otimes_{Z(\varPi')} A \,,\, {}^{(\varphi)}C \big) \approx \operatorname{Ext}_{Z(\varPi')}^{m} \! \big(Z(\varPi) \otimes_{Z(\varPi')} A \,,\, C \big)$ where

$$^{(\varphi)}C = \operatorname{Hom}_{Z(\Pi')}(Z(\Pi), C)$$
.

If $\operatorname{Ext}^m_{Z(H')} \neq 0$ and $\operatorname{Ext}^m_{Z(H')}(A,C) \neq 0$ then by (1) it follows that $\operatorname{Ext}^m_{Z(H)} \neq 0$ and the proof is finished.

(1.3) If $\Pi_1 \subset \Pi_2 \subset ...$ is an increasing sequence of abelian groups and $\Pi = \bigcup_{i=1}^{\infty} \Pi_n$ then

$$\sup_n \operatorname{gl.dim} Z(\varPi_n) \leqslant \operatorname{gl.dim} Z(\varPi) \leqslant 1 + \sup_n \operatorname{gl.dim} Z(\varPi_n) \;.$$

Proof. The first inequality follows by (1.2), and the second one is a consequence of Corollary 1 of [1] when applied to the ring $Z(\Pi)$ as a direct limit of rings $Z(\Pi_n)$.

(1.4) Let R be a ring with an identity element and let $s_2, s_3, ...$ be elements of R which are non units and non zero divisors; if F is a free R-module and $v_1, v_2, ...$ are free generators of F then the system of equations

(2)
$$x_n - s_{n+1}x_{n+1} = v_n \quad (n = 1, 2, ...)$$

admits no solutions in F.

Proof. Let F^* be the complete direct product of modules Rv_n :

$$F^* = \prod_{n=1}^{\infty} Rv_n.$$

The R-module F^* contains F. If we denote

$$p_{nk} = s_{n+1}s_{n+2}...s_k$$
 for $k > n$,
 $p_{nn} = 1$,
 $p_{nk} = 0$ for $k < n$.

and

$$y_n^* = \{p_{nk}v_k\} \in F^*,$$

then we have

$$y_n^* - s_{n+1} y_{n+1}^* = \{p_{nk} v_k\} - s_{n+1} \{p_{(n+1)k} v_k\} = v_k$$
.

Let us assume that the system of equations (2) admits solutions $x_1, x_2, ...$ in F; then the elements $u_n = x_n - y_n^*$ belong to F^* and $u_n = s_{n+1} u_{n+1}$. Moreover, $u_1 = s_2 ... s_n u_n$ and u_1 is of the form $u_1 = \{r_k v_k\}$, $r_k \in R$. Since $x_1 = u_1 + y_1^* \in F$, then $r_k + p_{1k} = 0$ for k > N.

Let us compute the coefficient r at v_{N+1} of x_{N+2} . We have $x_{N+2} = u_{N+2} + y_{N+2}^*$ and $y_{N+2}^* = \{p_{N+2,k}v_k\}$. Consequently, $s_2...s_{N+2}r = r_{N+1} = -p_{1,N+1} = -s_2...s_{N+1}$ and $s_{N+2} \cdot r = -1$; thus s_{N+2} is a unit in R on the contrary to our assumption.

2. In this section we determine the global dimension of the group ring of a free abelian group.

LEMMA 1. If l.gl. dim $R = m < \infty$, Π is an infinite cyclic group then $\operatorname{Ext}_{R(D)}^{m+1}(A, B) \approx \operatorname{Ext}_{R(D)}^{m}(A, B)$

for any R-modules A, B (elements of II operate trivially on A and B).

Proof. If σ denotes a generator of Π then the group ring $R(\Pi)$ contains the polynomial ring $R[\sigma]$.

At first we prove

$$\operatorname{Ext}_{R[\sigma]}^{m+1}(A,B) \approx \operatorname{Ext}_{R}^{m}(A,B)$$
.

It was proved in [4] that if Λ , Γ are K-algebras then in the situation $(_{A-r}A,_{A-r}B)$ there exists a spectral sequence

(I)
$$H^p(\Gamma, \operatorname{Ext}^q(A, B)) \Rightarrow \operatorname{Ext}^n_{A \otimes K\Gamma}(A, B)$$
.

If we put K = Z, $\Lambda = R$, $\Gamma = Z[\sigma]$ then $\Lambda \otimes_K \Gamma = R[\sigma]$ and we obtain

(3)
$$H^{p}(Z[\sigma], \operatorname{Ext}_{R}^{q}(A, B)) \Rightarrow \operatorname{Ext}_{R[\sigma]}^{n}(A, B)$$

for any $R(\Pi)$ -modules A, B.

Since dim $Z[\sigma] = 1$, then the property (Q) of polynomial rings (see [4], pp. 82-83) implies

(4)
$$H^p(Z[\sigma],\,C)=0 \quad \ \, \text{for} \quad \ \, p>1\;,$$

$$H^1(Z[\sigma],\,C)\approx C$$

for any symmetric $Z[\sigma]^e$ -module C.

If we admit elements of Π to operate trivially on both sides of A and B, then $\operatorname{Ext}_R^o(A,B)$ becomes a symmetric $Z[\sigma]^e$ -module.

By the "maximum term principle" of spectral sequences, by (3) and (4) we get

$$\operatorname{Ext}_R^m(A, B) \approx H^1(Z[\sigma], \operatorname{Ext}_R^m(A, B)) \approx \operatorname{Ext}_{R[\sigma]}^{m+1}(A, B)$$
.

The elements of Π operate trivially on A; then $R(\Pi) \otimes_{R[\sigma]} A \approx A$. The ring $R(\Pi)$ is a sum of an increasing sequence of free cyclic $R[\sigma]$ -modules; then

$$\operatorname{Tor}_n^{R[\sigma]}(R(\Pi), A) = 0$$
 for all $p > 0$

and we can apply Proposition 4.1.3 (Chapter VI of [2]) to the inclusion $R[\sigma] \rightarrow R(H)$. Thus

$$\operatorname{Ext}_{R[\sigma]}^{m+1}(A,B) \approx \operatorname{Ext}_{R(H)}^{m+1}(R(H) \otimes_{R[\sigma]} A,B)$$

and by the preceeding formulae we have

$$\operatorname{Ext}_{R[H]}^{m+1}(A,B) \approx \operatorname{Ext}_{R}^{m}(A,B)$$
.

LEMMA 2. If II is a free abelian group then

$$1. \operatorname{gl.dim} R(\Pi) = 1. \operatorname{gl.dim} R + \operatorname{rank} \Pi$$
.

Proof. If $1.gl. \dim R = \infty$ then by (1.2) we have

$$1.gl. \dim R(H) \geqslant 1.gl. \dim R(\{1\}) = 1.gl. \dim R = \infty$$

and both sides of the equality are infinite.

If $l.gl. \dim R = m < \infty$ and Π is a free abelian group of rank 1 then by formula (3), p. 74, of [4] we get

l.gl.
$$\dim R(\Pi) = 1$$
.gl. $\dim R \otimes_Z Z(\Pi) \leqslant \dim Z(\Pi) + 1$.gl. $\dim R$,

 $\dim Z(II)$ being the left projective dimension of Z(II) considered as a module over the enveloping algebra of Z(II). By Theorem 6.2 (Chapter X of [2]) we have $\dim Z(II) = \dim_{Z(II)} Z_i$; then

$$1.\mathrm{gl.}\dim R\left(H
ight)\leqslant 1.\dim_{Z(H)}Z+1.\mathrm{gl.}\dim R=1+m$$

and from the Lemma 1 it follows that $l.gl. \dim R(\Pi) \ge m+1$. Consequently.

$$1. \operatorname{gl.dim} R(\Pi) = 1 + 1. \operatorname{gl.dim} R = 1. \operatorname{gl.dim} R + \operatorname{rank} \Pi$$
.

If Π is a free abelian groups and $\sigma_1, ..., \sigma_r$ are free generators of Π and $\Pi' = \{\sigma_1, ..., \sigma_{r-1}\}\$, then the group ring $R(\Pi)$ is naturally isomorphic with the group ring of infinite cyclic group $\{\sigma_r\}$ over the ring $R(\Pi')$ and the induction step follows by the preceeding part of the proof.

If Π is a free abelian group of infinite rank then by using (1.2) and the Lemma for groups of finite rank we have

$${\rm l.gl.\,dim}\,R\,(I\!I)\geqslant {\rm l.gl.\,dim}\,R+r\quad \ {\rm for\ any}\quad \ r=1,\,2\,,\,\dots$$
 and the lemma follows.

3. In this section we determine the global dimension of the group ring $Z(\Pi)$ of an abelian group of rank 1. This ring is a commutative one, then we may omitt the letter l in all dimensions.

LEMMA 3. Let II be a non cyclic torsion free abelian group of rank 1; then $\dim_{Z(II)} Z_r = \operatorname{gl.dim} Z(II) = 3$ (Z_r denotes the cyclic group of order r and Π operates trivially on Z_r).

Proof. There exists an increasing sequence of infinite cyclic groups $\Pi_1 \subset \Pi_2 \subset ...$ such that $\Pi = \bigcup_{n=1}^{\infty} \Pi_n$. Then by (1.3) and Lemma 2 we have

$$(5) 2 \leqslant \operatorname{gl.dim} Z(\Pi) \leqslant 3.$$

Let σ_n (n=1,2,...) be generators of the groups Π_n such that for some integers $t_n > 1$ we have

$$\sigma_n^{t_n} = \sigma_{n-1} \quad (n = 2, 3, ...).$$

If we denote

$$s_n = 1 + \sigma_n + \sigma_n^2 + ... + \sigma_n^{t_{n-1}}$$
,

then $1 - \sigma_{n-1} = (1 - \sigma_n) s_n$.

We show next that the exact sequence

$$0 \leftarrow Z \stackrel{s}{\leftarrow} P_0 \stackrel{d'_1}{\leftarrow} P_1 \stackrel{d'_2}{\leftarrow} P_2 \leftarrow 0$$

where

$$P_0 = Z(\Pi)$$

 P_1 is a free $Z(\Pi)$ -module on free generators $x_1, x_2, ...,$

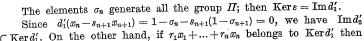
 P_2 is a free $Z(\Pi)$ -module on free generators $y_1, y_2, ...,$

ε is the unit augmentation.

$$d_1'(x_n) = 1 - \sigma_n,$$

$$d_2'(y_n) = x_n - s_{n+1} x_{n+1},$$

is the shortest projective resolution of $Z(\Pi)$ -module Z.



 $\subset \operatorname{Ker} d_1'$. On the other hand, if $r_1x_1 + ... + r_nx_n$ belongs to $\operatorname{Ker} d_1'$ then because of the relation

$$x_i = d_2'(y_i) + s_{i+1}x_{i+1}$$

we have

$$r_1x_1 + \ldots + r_nx_n = d'_2(r'_1y_1 + \ldots + r'_ny_n) + rx_{n+1},$$

and rx_{n+1} is in Ker d_1' . Consequently, $d_2'(rx_{n+1}) = r(1-\sigma_{n+1}) = 0$ and r=0, because $Z(\Pi)$ has no zero divisors.

If $\operatorname{Im} d_1'$ would be a projective module then the exact sequence

$$0 \leftarrow \operatorname{Im} d_1' \leftarrow P_1 \stackrel{d_2'}{\leftarrow} P_2 \leftarrow 0$$

would split and then we would have a $Z(\Pi)$ -homomorphism $\varrho\colon P_1 \to P_2$ such that $\varrho d_2'$ is the identity on P_2 . Thus for all n=1,2,... we have

$$y_n = \varrho d_2'(y_n) = \varrho (x_n - s_{n+1}x_{n+1}) = \varrho (x_n) - s_{n+1}\varrho (x_{n+1})$$

contradicting (1.4) (s_{n+1} are non units in $Z(\Pi)$). The group Z_r admits a free Z-resolution

$$0 \leftarrow Z_r \leftarrow R_0 \stackrel{d_1^{\prime\prime}}{\leftarrow} R_1 \leftarrow 0$$

where $R_0 = R_1 = Z$, $d_1''(m) = rm$.

Let S be the tensor product of the above resolutions, P, R, $S = P \otimes_{\mathbb{Z}} R$. S is a free, acyclic $Z(\Pi)$ -complex. In fact, the spectral sequence of the complex S filtered with respect to the first index is

$$E^0_{p,q} = P_p \otimes_Z R_q;$$

since P_p is Z-free, then

$$E^1_{p,0} = P_p \otimes_Z Z_r$$
,

$$E_{n,q}^1 = 0 \quad \text{for} \quad q > 0.$$

Moreover $E_{p,0}^2=0$ for p>0 because P_p are Z-free and $E_{0,0}^2=Z\otimes_Z Z_r=Z_r.$ Consequently, $Z(\Pi)$ -complex S is a projective $Z(\Pi)$ -resolution of Z_{τ} . By inequality (5) it is sufficient to prove that the module

$$M = \operatorname{Im}(S_2 \to S_1)$$

is not a projective one. We have an exact sequence

$$0 \leftarrow M \leftarrow S_2 \stackrel{d_3}{\leftarrow} S_3 \leftarrow 0;$$

if M would be a projective $Z(\Pi)$ -module then there would exists a $Z(\Pi)$ homomorphism $\varrho \colon S_2 \to S_3$ such that ϱd_3 is the identity on S_3 . A free $Z(\Pi)$ -base of S_3 consists of elements $z_n=y_n\otimes 1$ $(n=1,\,2,\,...)$. By the definition of differential operator d_3 we have

$$\begin{aligned} z_n &= \varrho \, d_3(z_n) = \varrho \, d_3(y_n \otimes 1) \\ &= \varrho \left[(d_2' y_n) \otimes 1 + y_n \otimes d_1''(1) \right] \\ &= \varrho \left[(x_n - s_{n+1} x_{n+1}) \otimes 1 + y_n \otimes r \right], \end{aligned}$$

and if we denote $\xi_n = \varrho(x_n \otimes 1)$ then

$$z_n = \xi_n - s_{n+1} \xi_{n+1} + \varrho (y_n \otimes 1).$$

If $\overline{S}_3 = S_3/rS_3$ then \overline{S}_3 is a free $Z_r(\Pi)$ -module and the cosets \overline{z}_n of z_n are free generators of \bar{S}_a . Moreover, there are elements $\bar{\xi}_n \in \bar{S}_a$ such that

$$\bar{z}_n = \bar{\xi}_n - \bar{s}_{n+1} \bar{\xi}_{n+1} .$$

It is easy to see that the elements \bar{s}_n (n>1) of $Z_r(\Pi)=Z(\Pi)/rZ(\Pi)$ are non units and not zero divisors in $Z_r(\Pi)$; this contradicts (1.4) and the lemma is proved.

4. In this section we prove the following theorem.

THEOREM. If II is a torsion free abelian group which is not finitely generated then

$$\operatorname{gl.dim} Z(\Pi) = \operatorname{dim}_{Z(\Pi)} Z_r = \operatorname{rank} \Pi + 2$$

for any non trivial finite cyclic group Z_r (II operates trivially on Z_r).

If Π is a finitely generated torsion free abelian group then for an arbitrary ring R

$$l.gl. \dim R(\Pi) = l. \dim_{R(\Pi)} A = \operatorname{rank} \Pi + l.gl. \dim R$$

if $l. \dim_R A = l. gl. \dim R$ and Π operates trivially on A.

Proof. The second part of the theorem is a consequence of Lemmas 1 and 2.

Let Π be a torsion free abelian group which is not finitely generated. If rank $\Pi=\infty$ then the theorem follows by (1.2) and by Lemmas 1 and 2. If rank $\Pi = 1$ then the theorem follows by Lemma 3.

Let us assume that the theorem is proved for all groups of rank < r(r>1) and rank II=r. It is easy to prove that the group II contains a subgroup Π_0 of rank r which is not finitely generated group and is an extension of a group $H_0' \approx Z$ by a torsion free group H_0'' of rank r-1

$$0 \to \Pi_0' \to \Pi_0 \to \Pi_0'' \to 0$$
.

Thus the group $\Pi_0^{\prime\prime}$ is not finitely generated.

By (1.3) we can deduce that

(6)
$$r+1 \leq \operatorname{gl.dim} Z(\Pi) \leq r+2.$$

Thus by (1.2) it is sufficient to prove the formulae of the theorem for the group Π_0 .

For any $Z(\Pi_0^{\prime\prime})$ -module A and a $Z(\Pi_0)$ -module C we have a spectral sequence

$$\operatorname{Ext}_{Z(\Pi_0')}^p(A, H^q(\Pi_0', C)) \stackrel{\Rightarrow}{\underset{p}{\to}} \operatorname{Ext}_{Z(\Pi_0)}^n(A, C)$$

(see [2], Chapter XVI, § 6). If we put $A = Z_r$ and for C we take a $Z(\Pi_0)$ module such that elements of Π'_0 operate trivially and $\operatorname{Ext}^{r+1}_{Z(\Pi'_r)}(Z_r, C) \neq 0$, then

$$H^q(\Pi_0', C) = 0 \quad \text{for} \quad q > 1$$
,

$$H^1(\Pi_0',\,C)=C$$

and by the induction hypothesis

$$\operatorname{Ext}_{Z(\Pi_{\mathbf{A}}^{\prime\prime})}^{s}=0 \quad ext{ for } \quad s>r+1.$$

The "maximum term principle" of spectral sequences yields

$$\operatorname{Ext}_{Z(H_0)}^{r+2}(Z_r,\ C) \approx \operatorname{Ext}_{Z(H_0')}^{r+1}(Z_r,\ C) \neq 0$$
;

then

gl.
$$\dim Z(\Pi_0) \geqslant \dim_{Z(\Pi_0)} Z_r \geqslant r+2$$

and the theorem follows by an application of (6) to the group Π_0 .

References

[1] I. Berstein, On the dimension of modules and algebras (IX), Nagoya Math. Journ. 13 (1958), pp. 83-84.

[2] H. Cartan, S. Eilenberg, Homological algebra, Princeton 1956.

[3] A. J. Douglas, The weak global dimension of the group-rings of abelian groups, J. London Math. Soc. 36 (1961), pp. 371-381.

[4] S. Eilenberg, A. Rosenberg and D. Zelinsky, On the dimension of modules and algebras (VIII), Nagoya Math. Journal 12 (1957), pp. 71-93.

[5] D. G. Northcott, An introduction to homological algebra, Cambridge 1960.

[6] K. Varadarajan, Dimension, category and K(II, n) spaces, J. Math. Mech. 10 (1961), pp. 755-771.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 12. 6. 1963