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Remarks on real-compact spaces
by

R. Engelking (Warszawa)

The theory of real-compact spaces is in many respects analogous
to the theory of compact spaces (1). This fact is well known and has been
emphasized more than one. For example, in [2] a general scheme of def-
initions of varions compactness concepts is given, from which the com-
pactness and the real-compactness can be obtained as particular cases.
The term real-compact, which now replaces the original term @-space,
stresses both the above analogy and the fact that the real line B plays an
important part in the theory of real-compact spaces. The part is analogous
to that played by the interval I in the theory of compact spaces.

Many theorems concerning compact spaces have counterparts in the
theory of real-compact spaces. Real-compactness is, like compactness, mul-
tiplicative and hereditary with respect to closed subspaces. The well-known
characterization of compact spaces as closed subsets of preducts of inter-
vals corresponds to the characterization of real-compact spaces as closed
subsets of products of real lines. Tt ig well known that for any space X
one can find a compact space pX, called the Cech-Stone compactification
of X, containing X as a dense subspace and such that every function f:
X1 (or more generally, every mapping of X into a compact space) can
be extended to fX. Similarly, for any space X one can find 2 real-compact
space vX, called the Hewitt real-compactification of X, containing X
28 a dense subspace and such that any funection f: X —»>E (or more gener-
ally, any mapping of Y into a real-compact space) can be extended
to vX. Finally, for many theorems about rings of all continuous functions
defined on compact spaces there exist analogous theorems about rings
of continnous functions defined on real-compact spaces.

The purpose of the paper is to give a counterpart of a theorem on
extension of mappings with values in compact spaces and to make some
simple remarks concerning the class of all real-compactifications of a space.

(t) The definition and an outline of the theory of real-compact spaces can be
found in [3]. The terminology used here is as in [4]. All spaces, if the contrary is not
stated, are assumed to be completely regular (Tychonoff) and all mappings to be con-
tinuous. The (closed) unit interval [0, 1] is denoted by I; E denotes the real line.
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1. Extension of mappings. The following theorem is proved
by Tajmanov in [5].

TeEOREM 1. Let A be o dense subspace of am arbitrary topological
space X, and let f: A Y be a mapping of A into the compact space Y. The

mapping | has an eviension from X to ¥ if and only if, for any pair F,, F,
of closed disjoint subsets of Y, we have

FAE) A Fy) =0,

where the bar denotes the closure operation in the space X.
The same theorem, in dual formulation (2), is proved by Eilenberg
and Steenrod in [1], p. 280.

The counterpart of Theorem 1 in the theory of real-compact spaces
is the following theorem.

TEEOREM 2. Let A be a dense subspace of an arbitrary topological
space X and let f: A —>Y be a mapping of A into the real-compact space Y.
The mapping f has an extension from X to Y if and only if, for any se-

quence {F;}il; of closed subsets of ¥ such that ﬁ Fy =0, we have -
i=1

where the bar denotes the closure operation in the space X (3).
Before proving Theorem 2 we shall prove two lemmas.

LeMmA 1. Let A be a dense subspace of an arbitrary topological space X,
let {Xs}ses be a family of topological spaces, and let Y be a closed subspace
of the product _g Xe. Any mapping f: A~Y has an emtension from X

€

to Y if and only if the junction fs = psf: A—>X,, where ps: P Xs—>X,
seS

is the projection on the s-axis, has an exmtension from X to X, for

every & in S.

Proof. The “only if” part is obvious. We shall prove the “if” part.
Let f3: X >X,, for every se 8, be an extension of fs. The funection

(%) This formulation is as follows

THEOREM 1°. Let A be a dense subspace of an arbitrary topological space X and
let f: A—Y be a mapping of A into the compact space Y. The mapping | has an extension
from X to Y if and only if, for every finite open covering {U., of ¥, there exists a finite
open covering (V). of X such that the covering {A ~ V)7, of the subspace A is a refine-
ment of {f~(UY*.

(*) The dual formulation of Theorem 2 can be obtained from Theorem 1’ by re-
placing “compact™ by “real-compact”, “finite” by ‘“countable”, and n and m by oo.
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f*: X~ P X, where j*(@) = {f4(®)}, is an extension of f: A—>B£Xs.
: se8

Since A is dense in X and Y closed in SE}; X;, we have

ME) =M CPFA) =f4)CY=Y

and f*: XY, lLe. f has an extension from X to Y. ‘
LEmma 2. Let A be a dense subspace of an arbitrary topological space X
and let f: A—E be a real-valued function defined on A. If for any sequence

(P of closed subsets of B such thal 401 F; =0, we have

where the bar denotes the closure operation in the space X, then the function f

has an ewtension from X to E. ' .
Proof. Let J; denote the open interval from —¢ to ¢ and let

F,=E\J: and G =X\ (B, for i=1,2,..

o, )= AT = 0, by
Since (N Fi= ﬂ(E\J¢) =E\};J1J.;—O, we have Qlf (F3) y
=1 T

=1

the assumption. And it follows that
) 6 = () XN FT = TN\ = X
1=1 i=1 =

Let fi =fld nGufori=1,2,.. be the function f reduced to 4 ~ G-
We have 3
flA ~Gh) = j(A\f“(Fc)) C f(A\f’l(F.)) CE\F:i=dJ:CJi

. From the assumption of our lemma

and i o G o extension f¥: 6¢—Ji. Since

and Theorem 1 we infer that there exists an
the set A ~ Gy is dense in G¢C Gipa, We have

f:+11G( =f:‘ for i =1,2,
The mapping f*: X >E defined by the equation
f*(x) = ffw), where € Gy,

_B is the desired extension of f.

i i i e X !
is continuous. It is easy to see that f s foom the inclusion

Proof of Theorem 2. The “only if” par
@) C (7 )

where f*: X Y is an extension of f.
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For the proof of the “if” part, let us i
X notice that the space ¥ hei
real-compact, can be regarded as a closed subspace of the pll'iduc’c ;e;;g
8y

where By = F for any s e S. By Lemmas 1 and 2 it sufficies to shosveihat

for every s ¢ § and any sequence {Fy};2; of closed subsets of Zs = F such

that () Fy = =il .
@ ’Dl i=0 we have ¢D1 fs (Fi) = 0. The lagt equality follows from
the fact that

15 F) = (pef) ™ (F4) = 17X A p(F),
2(F) is closed in P X;, and
g€l

NIYapl ) =Y mpgl(ﬁp,> —0.

o Remark 1. If we t:fnke for X the space of all ordinal numbers legs
: anl or equal to 2 (the first uncountable ordinal number) with the order
opology, for A = ¥ the space XN\Q and for f the identity map, we infer

that the assumption of - i
ooy & P of real-compactness of ¥ cannot be omitted in

Remark o2o In the proot of Theorem 2 we have regarded only the
:sequences {#1Yil1, where Fy is of the form Y~ p; YF) for F = FCE
Le. the sequences {Fi}21, where F; is the #z-set (*); hence in Theorem 2’
one can replace ““closed subsets” by ‘“z-sets”. This modified formulation
e Y which is not real-compact. In fact

v nféagzzl;igi?pacuﬂcations. By a real-compactification of a space X
N : Tary real-eompa.ct Space containing X as a dense subset.
ore preen.sely, a real-compactification of g space X is a pair (r,7X
where .TX 18 a real-compact topological space and #: X—>an a ho’meo)-’
flnorptlnsm of X onto. a dgnse subspace 7(X) of »X. For brevity, we shall
em? ¢ real-compactifications of g space X by rX, X, rX ’etc ; the
f‘:':fzt?, ?, e, ete. deno13.es the embedding of X in rX,,rIZX,,'er,"etc.
e H}; tvj;z'y. We can define a partial order = in the class of all real-,

pac. lcations of X, Namely, we say that nX is greater then 7, X
and write 7. X > 7, X if there exists a mapping f: 7, X >r, X guch t];a,t

. .
(*) By a zset in the space X we mean the set of the form g—2(0), where g: X—E.

very closed Gs-ze In the norm: 18 a z-set. Eviden: y 1!
spac £l €] € counterimage, by any
E 1 t tk al pace a et. Evident] th 1 ge,
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fry = ;. If there exists an f which is a homeomorphism, we shall say
that real compactifications X and 7,X are equivalent. It is easy to see
that ~X and 7,X are equivalent if and only if the relations X > r,X
and X > nX both hold.

Lemma 1 and the possibility of regarding any real-compact space
as a closed subspace of a product or real lines imply

TrHEOREM 3. The real-compactification nX of a space X is greater
than the real-compactification X of this space if and only if every function
f: X —>E which can be extended over v, X can also be estended over 1,.X, i.e.
if from the existence of a function fy: v, X —H such that f,r, = f follows the
existence of a function f;: rX —FE satisfying the equality f,r, = f.

By Theorem 2 we have the following two theorems, containing
intrinsic criteria for the relation ».X > X and for the equivalence of
real-compactifications: .

THEOREM 4. The real-compactification X of a space X is greater
than the real-compactification v.X of this space if and only if, for any se-
quence {Fi}ie. of closed subseis of X, we have the implication

THEOREM 5. The real-compactifications nX and r.X of a space X
are equivalent if and only if, for any sequence {Fi}ijz of closed subsets of X,
we have the equivalence

ro(Fy) = 0) .

)
,3
N
It
=
Ii
e

Il
A

i=1 i

In the sequel we shall regard equivalent real-compactifications of
a space X as equal. The Hewitt real-compactification vX is the greatest
element in the class of all real-compactifications of a space X, partially
ordered by the relation >. The question about the existence of a smallest
one is answered by the following

THEOREM 6. T'he smallest element in the class of all real-compactifica-
tions of a space X, partially ordered by the relation =, ewists if and only
if X s locally compact. The smallest real-compactification of a locally

" compact space X is the one point compactification of X (%).

() The one point compactification of a locally compact space X is the set
X = X U {co}, where co is not a member of X, with the topology whose members
are open sets of X and the sets U u (wX\F) such that U is an open and F a compact
subset of X. The mapping w: X+ wX, where w(x) =2, is the homeomorphism of X
onto the dense subset o(X)= X of wX.

Fundamenta Mathematicae, T. LV 21
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Proof. If X isloeally compact, then, for any real-compactification »X
of the space X, the set 7(X) is open in X since 7 (X) = »X (cf. [3], p. 45).
Hence the mapping f: »X >wX defined by the formula

riy) H yer(X),
{oo it yerX\r(X)

is continuous because the counterimage of an open set U w (wX\F) C 0X
is open in r»X. Since fr = w, we have rX > owX.

Now let us suppose that wX is the smallest real-compactification
of the space X. The space wX, as an image of X, is compact and thus
it is the smallest compactification of X. From this fact we infer (cf. [3],
p. 150) that X is locally compact and wX is equal to oX.

Finally, let us notice the following

THEOREM 7. A space X has a unigue real-compactification if and
only if @t has a unique compactification (8).

Proof. It suffices to prove that a non-compact space X which has
exactly one compactification possesses only one real-compactification.

Let X be a non-compact space with unique compactification. We
then have wdX = pX. From the inclusion »X C X it follows that either
vX = X, or vX = fX. Since every space X with unique compactification
is pseudocompact (cf. [3], p. 95), i.e. every function f: X —-F is bounded
and every real-compact and pseudocompact space is compact, we infer
that X #£0X = pX = wX, ie. the smallest and the greatest real-com-
pactifications of X are equal. Thus the space X has a unique real-com-
pactification.

fly) =
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