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are ApiPyiQpiBpi intersects every link of Dy, every non-end link of D,
contains a link of y,;. In particular, the non-end link ¥ of D, which
intersects Fypz contains a link of y,; and therefore a point @ of K 4% +k,.
Then @ is at distance from Z less than 2/p < ¢, a contradiction. Thus,
no composant of 7' contains two components of M.

The following theorem can be proven by an argument which is
a simplification of the argument for Theorem 10:

THEOREM 11. A closed and compact point set M is a subset of a chainable
continuum if and only if every component of M is either a single poini
or a chainable continuum.

Indeed, if M is such a closed and compact point set, there exists an
indecomposable chainable continuum T, containing M, no composant of
which contains two components of M.
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Metric characterizations of Banach and Euclidean spaces
by
E. Z. Andalafte and L. M. Blumenthal (Columbia, Missouri)

Introduction: One of the most important classes of metric spaces,
both intrinsically and for its great usefulness in theoretical physics, is
formed by the (metrically) complete, normed, linear spaces. This class
was axiomatized and studied by Banach in 1922, and in the same year
(and quite independently) the class was defined and investigated both
by Hahn and by Wiener.

The usual formulation of the abstract Banach space (over the reals)
is in terms of three primitive concepts: (1) addition (with each (ordered)
pair of elements ,y there is associated a unique element «-+y—the
ordered sum of & and y); (2) scalar multiplication (with each real number 1
and each element z there is associated a unique element A-x—the scalar
maltiple of by 1); and (3) normation (with each element @ there is
associated a unigue real number |jz|—the norm of ). The three primitive
notions are subjected to ten postulates, which are stated in another part
of this paper. A normed linear space is a Banach space provided it is
complete (that is, if {ms} is an infinite sequence of elements such that

lim [l + (—1) @yl = Lm |l —a4] = 0,
1,500 2,700

then an element « exists such that lim o —a:| = 0).
100

The concept of distance is introduced in a normed linear space by
defining the distance zy of two elements ,y to be the norm of their
difference,

ay = llz—yl,

and it i easily seen that in terms of this definition, every normed linear
space is a metric space (that is, (1) ay > 0, (2) 2y = 0 if and only if & =y,
(8) my = y», and (4) @y -+yz > oz for each three elements @, ¥, 2 of the
space). The class of Banach spaces is, therefore, a (proper) subclass of
the class of all metric spaces, and the problem arises of characterizing
metrically this subclass among the members of the whole class. More
precisely, the problem is to obtain conditions, expressed wholly and
explicitly in terms of the metric, in order that an arbitrary metric space


GUEST


24 E. Z. Andalafte and L. M. Blumenthal

may be a Banach space, with distance expressed in terms of the norm
in the usnal way. Alternatively, the problem is to define a Banach space
in terms of just one primitive notion (distance) instead of the customary
three concepts stated above. This problem is solved in Part I of this
paper, with the unimportant (and easily removed) restriction that there
is not more than one metric line joining two distinet points of the space.

Previous contributions to this problem were made by Aronszajn
and by Fréchet.

In 1935 two short articles by Aronszajn [1] appeared in the Comptes
Rendus de U’ Académie des Sciences, Paris, in which a metric characterization
of normed linear spaces was stated. The characterization, which appeared
without proof, made use of the concept of center of symmetry, m(p, g),
of a symmetry f transforming a point p into a point ¢, and the following
interesting property: if x, y, and » are points of a metric space &, then
wm(z, z)ymy, 2) = foy, where juxtaposition of two symbols is used to
denote the distance of the points represented by them. This property
is a metric restatement and generalization of a condition used by Young [6]
in 1911 to distinguish Euclidean geometry from hyperbolic and elliptic
geometries in a space satisfying the axioms of Hilbert’s groups I, II, III,
and V, namely the axioms of connection, order, congruence, and continuity.

In 1958 Fréchet [5] provided metric definitions of sum, product
by a scalar, and norm for elements in general metric spaces, by means
of the concept of ““center of gravity” of pairs of points. His work also
provided conditions under which the sum, scalar product, and norm
are uniquely defined, but it did not yield a characterization of normed
linear spaces among melric spaces.

For our characterization theorem of Part I we make basic use of
our complete metrization of Aronszajn’s assumption (which we had,
in fact, formulated before observing its connection with the form in
which Aronszajn used it) which we call the Young Postulate because
of its similarity to the condition used by Young:

THE YOUNG POSTULATE. If p, q, and r are points of a metric space M,
and if ¢ and v’ are the mid-points of p and ¢, and of p and r, respectively,
then ¢'r' = %qr.

The first major result we obtain is that a complete metric space with
a unique metric straight line joining any pair of its distinet points, is a normed
Uimear space (Banach space) if and only if it satisfies the Young Postulate.

Part IT of this article is based on our metrization of a norm
postulate used by Ficken [4] who showed that an inmer product
can be defined in a complete, real, normed linear space if and only if,
for elements p and ¢ of the space, the equality of the norms of p and g,

llpll = ligh ,

e ©
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implies [|A-p+p-gll = llu-p +21- g for all real numbers A and p. It is

natural to seek a metrization of this statement and to apply it to finitely

compact metric spaces with unique straight lines which satisfy the Young

Postulate, since such spaces are shown in Part I to be normed linear spaces.
Ficken’s postulate may be written

implies

Ilp +gll = llp—all M-p+p-gl=1lAp—n-ql,

for all real numbers A and u, %o it is natural to metrize the property in
the following way:

TaE FICKEN POSTULATE. If f 48 a foot of a point p on a line L (p not
on L) and if ¢ and v are points of L with fq = fr, then sq= sr for each point
s of a line L(p,f) joining p and f.

This postulate is then used to provide a metric characterization
of Buclidean spaces as finitely compact meiric spaces with unique straight
lines, in which the Ficken and Young postulates are satisfied. It is to be
noted that the proof of this characterization theorem is purely metric in
form, making no explicit use of the properties of normed linear spaces. We
thus obtain, ineidentally, a generalization of Ficken’s theorem which
concerned only normed linear spaces.

1. Characterization of normed linear spaces with unique metric lines

1. Preliminary remarks. Before proceeding with the charac-
terization of Huclidean spaces and certain normed linear spaces, it is
necessary to give some fundamental definitions and state some theorems
needed in the sequel. It is assumed that the reader is familiar with the
notion of metric space. Let us suppose, then, that M is a metrie space,
with the distance of points p and ¢ of M denoted by pqg.

If p and ¢ ave distinet points of M, a point » of M is between p and g
provided p # r # ¢ and pr+7¢ = pg. This relation is denoted by the
symbol prg. The metric space M is said to be conver provided it contains,
for each pair of its distinet points, at least one between point. M is ex-
ternally convex provided for every pair of points p and ¢ of M, with p = g,
there exists a point # of M such that the relation pgr holds. A metric
space is complete provided every Cauchy sequence of it points has a limit
in the space, and is finitely compact provided every bounded infinite
subset of its points has an accumulation point.

Two subsets S and S of metric spaces are congruent provided there
exists a orne-to-one, distance-preserving mapping f of 8 onto 8. The
mapping § is referred to as a congruence. Defining a metric line as a subset
of M which is congruent with the Euclidean line B;, we have the follow-
ing theorem.
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TaEoREM 1.1. Bach two distinet poinis of a complete, convex externally
convex metric space are on a metric line of the space.

A triple of points is said to be linear provided it is congruent with
a triple of points of the Buclidean line.

DErINITION 1.1. A metric space has the two-triple property provided
for each of its quadruples of pairwise distinet points, linearity of any
two triples implies linearity of the remaining two triples.

Now let M denote a metric space of at least two points which is (1)
complete, (2) convex, (3) externally convex, and (4) has.the two-triple
property. For such spaces M the following theorem has been estab-
lished:

THEOREM 1.2. Each two distinet points of M are elements of a unigue
metric line.

Hereafter the metric line of distinet points » and ¢ of M is referred
to as the line of p and ¢, denoted L(p, ¢). A (metric) segment joining p
and ¢ is any subset of M containing p and ¢, which is congruent with
a Euclidean line segment of length pq. The unique segment joining distinet
‘points » and ¢ is denoted by S(p, q).

For proofs of Theorems 1.1 and 1.2, and a detailed study of the
concepts introduced above, the reader is referred to Blumenthal [2].

‘We conclude this section by introducing the concept oot of a point
-on o line, and proving two remarks concerning it. Let p be a point of M
and let I denote a line of M.

DEeFINITION 1.2. A point f, of a line L is a foot of the point p on L
provided pf, = g.lb. {px| = in L}.

It can be shown (Blumenthal [2]) that if p is a point of M, and T
is a line of M, there exists at least ome foot f, of p on L.

Remark 1. If p is a point of M not lying on L, and if & is o real
number, k 2> pfyp, then in each half-line of L determined by and containing fp,
there is a point. s, such that ps = k.

Proof. By the triangle inequality, pz > |f,@—f,p| for each point »
of L. But fpp is a constant, and for » in either of the two half-lines of L
determined by and containing f,, it follows from the congruence of I
with E, that f,& assumes every non-negative valne. If ¥ > k, then each
such half-line contains a point ¢ such that

PE2 |fpt—fop| > N ..

But px is a continuous function of # on the segment S(f,, t), and
consequently takes on every value between any two of its values. Thus,

since pfy <k < N < pt, there is a point s in the segment S(fp,t) of L,
with ps = k.
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Remark 2. If f» is any foot of p on L and if s is a point of L with
fps > 2- plp, then s > pfp, i.6., 8 18 not a foot of p on L.

Proof. T fps>2-pfp, then [pp-+ps > fos> 2-pfp, and hence
ps > pfp, completing the proof.

2. Some consequences of the Young postulate. As was
indicated in the Introduction, the Young Postulate plays an important
role in the characterization of complete normed linear spaces with unique
metric lines. Consequently, we begin this study with an investigation
of some of the consequences of the supposition that a metric space M
with properties 1, 2, 3, and 4 satisfies the Young Postulate. The Young
Postulate leads first to many important intersection theorems for lines
and triangles, then to a definition of a plane, which is uniquely determined
by any non-collinear triple of its points, and finally to a proof of the
Pasch axiom and the Euclidean parallel postulate.

One of the first questions arising from consideration of the Young
Postulate is that of its extension to a theorem stating thab if ¢’ and
are points of segments S(p, ¢) and 8(p,7)
respectively, with p¢'/pg= 4= pr'[pr, then
¢'r' = A-gqr. This section is devoted to
a proof of this extension theorem.

Notation. For Theorems 2.1 to 2.4,
let p, ¢, and  denote pairwise distinet,
non-linear points of M, and let ¢’ and
" denote the mid-points of p and ¢, and
of p and r, respectively, denoted by
g = m(p, q) and ' = m(p, ), respectively. The triangle determined by
distinet points p, ¢, and » of M is denoted by T(p, q,r). The sides of
T(p,q,r) ave the lines L(p, g), L(p, ), and L(g, 7).

TreorEM 2.1. If & is @ point of L(g,r) there is a point ¥ of L(g', ')
such that t' is the wid-point of p and t.

Proof. Letting t' = m(p, t), it follows from consideration of T(p, q, t)
that ¢'t' = %qt, and from T(p,r,?) that +'i' = Lrt. Bub ¢'r" = 4gr, so
it follows immediately that any relation of betweenness satisfied by
points ¢, 7, and ¢ is also satistied by points ¢', 7', and t', and hence ?' is
on L(g', 7).

TarorEM 2.2. If 1 48 a point of L(¢', ') there is a point of L(g,r)}
such that t' is the mid-point of p and 1.

Proof. The proof is similar to the above, where ¢ is chosen so that
pt't holds and pt = 2- pt’.

TaEoREM 2.3. If | is a foot of p on L(gq, ) and if [ is the intersection
of Lig',+") and L(p, ), then |’ is a foot of p on L, ).
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Proof. If / were not a foot, there would exist a point ¢’ of Lig, r)
with pg’ < pf’. But then there exists a point g on L{g, ») with pg’y holding
and pg = 2-pg’. Hence °

Py=2py <2 pf =3pf,

contrary to the fact that f is a foot of p on L(g,»).
Similarly the following result may be obtained:

THEOREM 2.4. If {" is a foot of p on L(q', +') and if § is the intersection
of L(g,r) and L(p, ), then f is a foot of p on L(g,r).

Lmnm 2.5. If p, ¢, and v are non-linear points of M and q and v’
are points of 8(p,q) and S(p,r) respectively with pg’ = 3pg and pr’ = Spr
then q'r" = Zqr. ’

Proof. Le.t g% ¥ and wm be the mid-points of S(p, ¢), S(p,7), and
8{g, r) respectively, and let s = m(g*, m), and t = m(r*, m). Now

‘g = 1 — 1l
gs=ggm=1i1q, st=5%¢""=2%¢qr,

To show linearity of the points ¢, s, ¢, and +/, let n = m (g, m). Then
there exists a point »' of S(¢’;s) such that »' = m(g*, n). Applying
Theorem 2.1 to I'(r, ¢, p) it follows that ¢ lies in §(¢*, »). Thus considering
T(q*, n,7) it is seen that 8(g*, m’) intersects L(z,n) ab s, 50 s is on L(t, n')
Tl (s, tnh’ )t= L(¢', ), and hence g, s, and ¢ are linear. A similar argum,ent
shows that # is on L(g’,s) and s ; 1’ i
s that (¢',5) and so s and ¢ are on L(¢,7’), and it

g =qgs+st+0r' = 2qr.

_ THE-OEEM’Z.S. If ¢ and v are points of S(p, q) and 8(p,r), respec-
tively, with pq’ = 1-pg, and pr' = 1-pr (0 <A< 1), then ¢'v" = A- gr.

Proof. The proof proceeds by showing inductively the validity of
the thc%orem for dyadically rational numbers between 0 and 1 and then
extending the result by the continuity of the metric.

) Let n > 0, choose an integer & so that 1< k<< 2"1, and select
points a* a, and o’ of 8(p,q) and b*, b, and b’ of 8(p,r) such that

E+1

*__k_l k
pa” = o rq, pa=?7pq, 1’“=“2,TPQa

E—1

k )
pe pr, pb_—.-z—npr, ;pb’:le

b* =
? peal

. Let S(a*, b*) be d.ivided into k—1 equal segments by points m?, m3,
Mmi—s; let 8 (a,lb) be similarly divided into % equal segments by m,, m;
My-1, and S(a’, b’) be divided into %1 equal segments by mi, ms, ... ,’m};:

YPR

e ©
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Make the inductive assumption that

E—1
9n qr,

E+1
on

Ly, av= a,

ab = —
2

a*h* =
and the betweenness relations m¥im;miy; and mfmemi hold (i=1, ...,
—1), with the convention that m§ = a¥, m, = &, me = &', and mi_, = b*,
g = by, Mgy = D".

The lemma anchors the inductive argument, so to complete the proof
it is necessary to show that if a’’ and b'’ are the mid-points of a and a/,
and of b and b’, respectively, then
2k+1

a/lbl/ — q’,
2n+1 H

and that betweenness relations similar to those of the mj, m;, and m; above

are valid.

To complete the proof define points a; (1 =1, ...,2k) such that

= m(my, mi),  Gao1 = MM, mi) (E=1,2,..., k).
Now
a’'b" < a4 g+ oo Qo Gap aph’’ = 22,:11 qr,
since
o'ty = apd’ = ;84 = 9,}.,.1 g (0=1,2,..,2k-1).

Hence it suffices to show that aq is a point of S(a’’, b)Y fori=1,2, ..., 2k.

If » is a point of 8(a’, mi), then there exists a point 2" of §{ay, a'’)
such that an''n holds. By the inductive assumption, the relation arm,m
holds, so aa,ms holds, by Theorem 2.1. Applying Theorem 2.1 to I'(a, #, Ma),
since a, = m(a, mi), then a, is a point of §(n", ay) s0 a, lies on L(n", ay)
= L(ay, a;). But " lies on L(a”, @) and hence L(a”,a,) = L(ay, ay).
Similarly it can finally be shown that for each i=1,2,.., 2k, a; 18 in
S(a”, ") and it follows that

2k+1
a''b" = —E”—‘_l gr .

The required betweenness, correspanding to the relations M1 My i
and m*mym;, follows from Lemma 2.5. Thus by induction on =, the
theorem is valid for all dyadically rational numbers 4, with 0 <1< 1.
But by continuity of the metrie, the result then follows for each real A
(0 <2< 1) and the proof is complete.

COROLLARY. Theorem 2.5 is walid (mutatis mutondis) for any real
number 2 > 0.
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The result of Theorem 2.5 permits an important extension of Theo-
rems 2.1 through 2.4. The proof depends on the following easily proved
lemma:

LeMMA 2.6. If p is the mid-point of g and ¢, and of v and v, then
gr=q'r'.

Proof. If p’ = m(q, r) then gr = 2- pp’ = ¢+, by application of the
Young Postulate to T(¢, q,7) and T(r, ¢',7’), respectively.

From this and theorem 2.5, the final theorem is easily obtained:

THEEOREM 2.6. If p, q, and » are non-linear poinis of M, q¢' and r' are
points of L(p, q) and L(p,r) respectively, with q and ¢', and r and 7', both
on the same side of p or both on opposite sides of p, and if pglpqg’ = pripr',
then for each point t of L(g, ) there is a point t' common to L(q',7') and
Lip,t) with ptjpt’ = pq/pg’. Furthermore, if f is a foot of p on L(q,r)
then the iniersection f' of L(q',r') and L(p,f) is a fooi of p on L(¢,»").

3. Intersection theorems for triangles. In order to arrive
at a fruitful definition of the plane, it is necessary to understand something
of the behavior of a line which intersects some pair of sides of a triangle.
Certainly it can not be expected that every line intersecting a pair of
sides of a triangle will intersect the third side, for the behavior of the
lines L(q,r) and L(¢',r') of Theorem 2.6 provides an example to the
contrary. However, the Young Postulate does permit a proof that such
lines form the only exception to the desired rule; that is, with the
exception of the lines L(q’, »') of the triangle T'(p, ¢, 7) of Theorem 2.6,
any line intersecting two sides of a non-degenerate triangle in distinet
points will. intersect the third side of the triangle.

This section is devoted to the proof of this important result.

TeEROREM 3.1. If p, ¢, and r are non-linear points of M and the
relations pq'q and pr'r hold for points ¢' and v’ of M, with pg'[pg + pr'[pr,
then there ewists a point s of L(q,r) such that ¢'r’s or sq'r’ holds.

Proof. Let pg'/pg=2 (0<A<1), pr'fpr =pu (0 < u<1), and relabel,
if necessary, so that 1> u. Now since pr'[A < pr'/u= pr, a point ¢ of
8(p,r) can be found with pt = pr'/2. Then pr'[pt = pqg'/pg = 4, 80 it
follows that ¢'+'/¢t = 4. Now

pr’ A—
7t=7’])—pt=?‘p——%=rp—% -Tp =_ZM -rp
50
) n_Aop
rp A

Since 0<(A—pu)/i <1, & point  exists such that rqu holds and

ru = 4 7
._Z_‘u q.
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Thus rgjru = (A—p)/4, so by (1) and Theorem 2.3, it follows that

tq:%&'z’u‘

But since ¢+ = A- qt, it follows that
(2) qg'r' = (A—p)-pu .

Now g =pg—pg = (1—2)-pg, s0 ¢¢/pg=1—24 Since 0 < 1—2
< 1, there is a point s-of §(g, ) such that gs = (1 —21)- qu, 50 gsfqu =1—2
= qq’/qp, and Theorem 2.5 yields

(3) ¢'s=(1—2)-pu.
To complete the proof, it is observed that

rs = rae—(qu—qs) = ru—gqu+(L—2i). qu = ru—2-qu .
But

A—p 2,
qu = ru—qr = (1—» 7 )-m =3 U,
g0 78 = (L—p)- 1% Now 7' = pr—pr’ = (1—p)-pr, and again Theorem 2.5
yields
(4) 3’8 = (L—p) p.
But (2), (3), and (4) imply
s = (1—p) pu = sq +pr’,
50 the relation »¢’s holds, and s is the desived intersection of L(g, 7} and
(¢, 7). ‘

THEOREM 3.2. If p, ¢, and r are non-collinear points of M and if ¢
and 1" are points of S(p,q) and S(p, ) respectively, with pq'|pg = pr'[pr,
then L(q,r) and L{(q',r") have no common point.

Proof. If there were a point ¢ common to L{g,7) and L(q’yr') then
by Theorem 2.6 there would be a point ¢’ common to L{g’, ') and L(p, t)
with pt’/pt = pg’/pg % 1. But thus ¢ = ¢, which is impossible since 1.3he
lines L(q',s') and L(p,?) meet in at most one point. This contradiction
proves the theorem. )

An important theorem of Buclidean plane geometry is the Theorem
of Menelaus, which states that if a transversal cuts the sides of a triangle,
the product of the signed ratios in which the sides are divided by 1:.he
transversal is —1. At this point it is possible to give a prootf of a special
case of this theorem, which illustrates a methed for proving the theorfam
in general. Tt should be kept in mind, of course, that in this discussion
distance is an unsigned quantity, and hence the product of the ratios
is umity. )
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THEOREM 3.3. If p, g, and v are non-linear points of M, and ¢, ¢,
and s are points of S(p, q), S(p, 4?), (md L(g, r) respectively, with ¢', +,

and s linear, then
pr’ rs qq
" sq pg
Proof. By Theorem 3.2, pq’/pq s pr'[pr, so the labelling may be
chosen so that 1 = pg'[pg > pr'[pr = u. As in an earlier theorem, choose

a point ¢ in S(p,r) with pt = pr'/4, and let u be a point such that rqu
holds, and

™ =

= rq.
Now rs = (1—u)-ru, for, assuming the contrary, the point s’ of
S(r, u) with 78’ = (1—p)-ru would be a common point of L(g’,r') and
L(q, r), contrary to the fact that two lines meet in at most one point.
Investigating fhe factors of the product of ratios being considered,
it is seen that pr’ = u.pr, and that

7 = pr—
. P = (1—pu)-pr,
P’“ M
m 1—u”
Also g
sq = (1-2) qu = (1-2)- (ru—qr)
1— _
(1—7) (1—2)-ru = #_(ITM ST,
80
rs _ Al—p)
sqg  wp(l—24)°
Finally ¢¢' = pg—pg’ = (1—2)- pg, and pg’ = i-pq, so
W 12
pq i
Hence

proors g p AMl—p) 12
nsq " pg T 1—p w(@—A) 7
THEOREM 3.4. If p, ¢, and r are non-linear points of MM, let s denote

a point of L(g,r) not lying én 8(q,r), and q a point in S(p, q). Then
S{p,r) and L(¢, s) contain a common point 7

Proof. Suppose the relation sqr holds, and write sq/sr = » < 1 and
P¢'[pq = 2 < 1. Consider now the number o satisfying
al—2)
Al —p)
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Since v <1, pw(l—A)<A(d—p) or pw<i<l. Now A>0 and

p(l—=A)AL—p)=r>0, and (1— MA> 0, so u/(1l—p)>0. But u<1,

so u> 0, for otherwise x> 1, which is impossible. Hence 0 < u <1,
so there is & point #' of S(p,r) with pr'[pr = pu.

Now 7 is the desired point, for since 1> u, by Theorem 3.1 there
exists a point s common to L(g,r) and L(¢', r) such that rgs’ holds and
s'qs'r = u(1—2)[A(1—p) = ». But then ¢’ =s, so v’ is the desired point.

Similarly if " and s are given with »' in S(p, r) and s satisfying the
relation sqr, and if sg/sr =w, pr'/pr = u, then as before, letting

= p(L—A)[A(1—p), it is seen that 0 < u < 4, so A > 0, and since (1—2)/2
> 0, it follows that 0 < 2 < 1. Thus there is a point ¢" of 8(p, g) with
pq'[pg = 4, which is the desired point. This completes the proof.

THEEOREM 3.5. If p, ¢, and r are non-linear points of M and pgq’ and
prr hold for points ¢’ and ' of M, with pq'[pg F# pr'[pr, then there exwists
a point s common to L(q,r) and L(¢',r').

Proof. Considering T'(p, ¢,r) then ¢ is in S(p,¢’) and » is in
S(p, ') with pg/pg’ # pr/pr’, so by Theorem 3.1, there is & point s common
to L(q,r) and L{¢’,r') and the proof is complete.

THEEOREM 3.6. If p, ¢, and r are non-linear points of M and sqr and
pr' hold for points v and s of M, then there exists a point ' common to
L(p, q) and L(v', s).

Proof.In T'(s,r, '), qliesin S(r, s) and prr' holds, so by Theorem 3.4,
there is a point ¢’ common to 8(+', s) and L(p, ¢), completing the proof.

THEOREM 3.7. If p, g, and r are non-linear points of M and gpq’ and
rpr’ hold for points ¢’ and ¥ of M, with pq'|pg 7 pr'[pr, then there exists
a point s common to L(g, ) end L(q',1").

The proof of this theorem is omitted, as it is almost identical with
that of Theorem 3.1, when use is made of Lemma 2.6.

4. Geometry of the plane. As was mentioned earlier, the inter-
section theorems of the previous section Jead to a fruitful definition of
a plane in the space M. In the beginning this plane is regarded as being
determined by a point and a line not containing it, in a manner similar
to that used in [2], p. 125. The plane is defined in the following way:

DermNITioN 4.1, If p is a point of M and L is a line of A not con-
taining p, the plane =(p, L) is defined as the topological closure of the
set of all points of M linear with p and a point of L.

One of the first questions airsing from this definition is that
of linearity. It is desirable that the line of any two distinct points of
a plane lie in the plane. Conceivably this need not be the case, as is
illustrated by hyperbolic geometry, in which a non-linear point set is
obtained by the above definition. However, Theorem 4.1 shows that
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in the space under consideration here, the plane is linear. In order t0
prove this theorem, the following lemma must be established:

Leava 4.3, If p is o point of M and a sequence {q;} of points of M
converges to a point q of M distinet from p, then each point t of L(p, q) is
the limit of a sequence {t;}, where t; is a point of L(p, g) (i=1,2,..).

Proof. Let ¢t be a point of L(p, ¢). Choose a point #; on L(p, ¢;) such
that p, gi, 1; satisfy the same betweenness relation as p, ¢, t, and such
that pty/pg: = pi/pg. Then it follows immediately that limpq, = g, limpt,
= pt, and consideration of the linearity of p, ¢;, t; yields limgst; = qt.

Since the sequence {g;} converges, it is a Cauchy sequence. It follows
from Theorem 2.5 that

pt
lity = 1% Cqigi,

and so {t:;} is also a Cauchy sequence, and hence has a limit, say t*. By
continuity of the metric, limpt; = pt*, limg;t; = ¢t*, and hence p, ¢,
and t* ave linear. But p¢ = pt*, qt = gt*, and thus t* = t, completing
the proof. :

THEOREM 4.1. The plane =(p, L) is linecar.

Proof. In order to prove the theorem, it must be shown that for
each pair of points # and y of #(p, L), the line L(z,y) lies in z(p, L).
It suffices to consider the case in which x and y are themselves linear
with p and points 2’ and y’ of L, respectively, for in the contrary case,
sequences {z;} and {y:} of such points may be found with limits :Jc and 1)
respectively. Consider the lines IL(a, Y1), 1=1,2,.., for a fixed 4. Bir
Le.mma 4.1 each point t of L(w;, y) is the limit of a sequence {f;} where
z:j is a point of L(ws, ys), 1 =1,2,.. But if each of the lines L(xs, yy),
7=1,2,.. is in =a(p, L), it follows that Lz, y) is in =m(p, L) since the
Plane is a closed point set. Then since each point s of L(z, y) is the limit
of a sequence {s;} where s; is in Lz, y), 1 =1,2, ..., it follows similarly
that L(z,y) is in z(p, L).

) Hence it cam be supposed that points 2 and ¥’ of L exist with both
triples p, », #', and p,y,y’ linear. The following cases then arise.
pase L The relations paa’ and pyy’ hold. If pa/px’ = py/py’, then
?,1)011113 s of L exists with z, y, and s linear (Theorem 3.1). By lrelzlbe]ljng,
if nece:ssary, it may be supposed that the relation yxs holds. Let ¢ be
an arbitrary point of L(z, y). Now if either of the relations ygs OI’Iysq
holds, there exists a point ¢ of I with P, ¢, and ¢’ linear, so ¢ lies in
z(p ,L) (Theorem 3.4 or 3.6). Similarly if syq holds and yplyy' +# yalys
the existence.of the point ¢ of L again follows. Finally if sy.q holds a;n(i
yplyy' = yqlys, a sequence {gs} of points of (g, ¥) can be found, with
{¢:} converging to ¢. Now since Y4 <yg, i=1,2, .., it follows that

icm°®

Banach and Euclidean spaces 35

yailys # yplyy's so for each ¢ =1,2,..., there is a poinb ¢ of L with p,
gi, and g¢; linear. But then since each ¢ is a point of #(p, L) (i =1, 2, ...),
it follows that ¢ lies in = (p, L). This completes the argument of Case I
in case pz/px’ = py/py'.

If pa/px’ = py/py’, then by Theorem 2.6 there corresponds to each
point ¢ of L(x, y) a point ¢' of L with p, ¢, and ¢ linear, and so ¢ lies in
a(p,L). This completes the proof in Case I.

Case II. The relations wpx', ypy' hold.

Case IIX. The relations pa'z, py'y hold.

Case IV. The relations pxx’, py'y hold.

The treatment of each of these cases is similar to that of Case I.
The final case to be considered is the following.

Case V. The relation xpx’ holds, together with one of the relations
pyy’ or py'y. In this case there is a point s common to L(z,y) and L,
by Theorem 3.4 or Theorem 3.6. Let q be an arbitrary point of L(z, y).
Considering T'(y, ¥', s), if neither of the combinations pyy’ and gys, or
py'y and gsy holds, it follows from the preceding section that there is
a point ¢’ of L with p, ¢, and ¢' linear. If one of the above combinations
does hold, and py/yy’ # gylys, then the existence of the desired point
¢’ of L follows from Theorem 3.7, or Theorem 3.5. Finally, if in either
of these cases, py/yy = qylys, an application of the procedure of
Case I yields the result that ¢ lies in =(p,L).

This completes the proof that the plane =(p, L) is linear.

In the preceding material the plane has been defined by means of
a point and a line not passing through the point. It is convenient, however,
to be able to regard the plane as determined by three non-collinear points.
Consider now three non-collinear points p, ¢, and r of M. These points
determine three planes, the planes =(p,ZLl(q, ), =(¢,L(p,)), and
=(r, L(p, q)). The purpose of the following theorem is to show that these
planes coincide and hence that a plane is uniquely determined by three
non-collinear points.

THEOREM 4.2. Three non-collinear points p, q, and r of M uniquely
determine a plane.

Proof. It suffices to show that =(p,L(q,7)) coincides with
n(g, L(p, 7). If & is a point of n(p,L(g, r)) then either there is a point
a’ of L(q,r) with p, #, and #' linear, or there is a sequence {z;} converging
to @, such that for each ¢ = 1,2, ..., a point «; of L(q,r) exists with p,
@i, and x; linear.

Case I. The relation mpa’ holds. Considering triangle T'(«', ¢, %), it
is seen that if «'pr or gz'r holds, then there is a point #' of L(p, r) with
¢ x, and &' linear, so @ lies in P(g, L(p, r). If gra’ holds and w'r/a'g
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s «'plx'x, then also there is a point #” of L(p, r) with «, ¢, and 2" linear.
Finally if gre’ holds with #'#/z'q = @'p[a’x, a sequence {w;} of points of
S(p, ) may be chosen with {z;} converging to z and x'rjz'q = x'plx'z;.
Consequently for each ¢ =1, 2, ..., there is a point 2f of L(p,») with
¢, @i, and @7 linear, and so x lies in :-c(q,L(p, 7-)). This completes the
proof in Case I.

Case IL. The relation pxx’ holds. If #'qr holds and a'z/z'p = x'qle’r,
then there is a point #” of L(p,r) with ¢, z, and '’ linear. If x'zfx'p
= &'g/x'r, then a sequence {z;} of S(p, x) may be found which converges
to z, and as before each ; lies in =(g, L (p, 7)), s0 & is also in z{g, L(p, 7).
Finally, if g&'r or ¢ra’ holds, considering 7'(«', ¢, ») there is always a point
@’ of 8(p,r) with ¢, #, and «” linear, so z is a point of aly, Lip, 7).

Case III. The relation px'z holds. This case is treated exactly as
Cases I and II

Case IV. There is no point &' of L(q, r) with p, x, and x" linear. Then
a sequence {w;} may be found converging to », such that for each
1=1,2, .., a point 2} of L(g, ») may be found with p, 2;, and 4 linear.
But by the above argument each of the points @; lies in n(q, L(p, 'r)),
i=1,2,..,and since the plane is a closed set, « is a point of n(_q, L(p, r)).

Thus it has been shown that =(p, L(g, ) is a subset of a(g, L(p,1)).
But by relabelling, a repetition of the above argument shows that
w(¢, L(p, r)) is contained in 7(p, L{g, 1), so the plames are identical.
Similarly, another relabelling may be used to show that n(q,L(p, 7))
=x(r, L{p, ¢)) and the proof is complete.

Notation. The unique plane determined by non-collinear points
s ¢, and r of M is denoted by =(p, q, ).

In the preceding work it has been mnoted that a distinetion must
be made between those points of the plane (p, L) which are linear with P
and a point of I, and those which must be expressed as limits of sequences
of such points. This distinction becomes so important in the next few
theorems that a notation is devised for each of the two resulting sets.
The definition is as follows:

Notation. n/p, L) denotes the set of points 2 of M which are linear
with p and a point of L. zwg(p, L) denotes the set of points of =(p,L)
which are not elements of 7(p, L)

The object of the following sequence of theorems is to show that
a plane is determined by any three of its non-collinear points. In the
course of the argument, the important result of uniqueness of the parallel
to a given line through a given point is obtained.

THEOREM 4.3. If p* is a point of nrp, L) not lying on L, then the
planes w(p*, L) and =(p,L) are identical.
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Proof. If x is a point of =(p, L), we show that x is a point of =(p*, L).
Now since p* lies in zy(p, L) there is a point p’ of L with p, p*, and p’
linear. The following cases then arise.

Case I. There is a point &' on L with p, x, and z' linear. If the relation
pz’ holds, application of previous theorems to T'(p, ', p’) gives a point
z* of L with p*, z, and z* linear, except when p* isin S(p, p’) and pp*/pp’
= pa/px’. In this case, however, a sequence {z;} of points of S(p,x) can
be found which converges to x, and sanch that for each ¢ =1, 2, ..., there
is a point #f of L with p*, x;, and xf linear. Thus in any event, x is in
w(p*, L). .

A similar treatment is used in case the relation xpa’ or px'z holds.

Case IL. There is no point of L linear with p and ». Then there is
a sequence {x:} of points of #;(p, L) which converges to x. But by Case I,
each point & lies in = (p*, L), ¢ =1, 2, ..., so since = (p*, L) is a closed set,
z is a point of =(p*, L).

From Cases I and II it follows that =(p,.L) is contained in = (p*, L).
But the same argument may be used, interchanging p and p*, to show
that =(p*, L) is contained i =(p, L), and hence the identity of the two
planes is established, proving the theorem.

In order to prove the uniqueness of the parallel, it is necessary to
prove the following lemma:

LeMMA 4.4. If p is a point of M and a sequence {gs} of points of M
converges to a point g of M distinet from p, and if a line L of M distinct
from L(p,q) intersects L(p, q) in a point v, and L(p, ¢) in a point rq
(i =1,2,..) then the sequence {r;} converges to r.

Proof. Choose a point #; on each line L(p, ¢;) so that p, g:, & satisfy
the same betweenness relation as p, ¢, * and so that pt/pg: = pr/pg.
Since {g:} converges to ¢ and since, by Theorem 2.5,

1‘t¢=%-qqi (i=1,2,..),

it follows that the sequence {f;} converges to .

Now if ¢ is any positive number, points 1* and " of L can be found
50 that 717 and 0 < 7' = 7* < ¢, and since » is not on L(p,1’) or L(p,r*),
there is a positive number § such that the distance from » to the nearest
point of L(p,+') or L(p,r*) is greater than 6. Now since {#;} converges
to », there is a positive integer N such that if i > N then #; < 6. By
hypothesis there is a point 7; common to L and L(p,t:), ¢ =1,2, ...
The following cases then arise.

Case I. The relation vit;p or tryp holds. If vy lies in 8 (¢, 7*) it follows
that r7; < e. Otherwise, considering triangle T(r, 7, t;), it follows from
Theorem 3.4 that there is a point ¢* or a point ¢ at which L(r, i;) intersects


GUEST


38 E. Z. Andalafte and L. M. Blumenthal

L(p,r*) or L(p,r’), respectively, with #¢f; or »#'#; holding. This con-
tradicts the fact that »f; < 4, and both »t* and r’ are greater than 4.
Thus 7; must lie in S(, #*) and rr; < e.

Case IL The relation tspr; holds. Then supposing r; is not in §(r’, )
it may be assumed, by relabelling if necessary, that s7r* holds, Con-
sidering T'(7, 74, t;), since p is in S(t;, ;) and »#* holds, it follows that
L(p, r*) intersects L(r, &) in a point t* such that r#*¢; holds. This is im-
possible, since ri; << § < ri*.

Thus in all cases, 77; < ¢ for all i > N, and hence {r;} converges to 7,
completing the proof.

THEOREM 4.4. If ¢ is a point of nz(p, L) not lying on L, then there is
a unique line L* of (p, L) which passes through ¢ and does not intersect L.

Proof. Let ¢ be an arbitrary point of I, and select a point » such
that tgr holds. Then if #* is any point of L distinet from ¢, a point ¢* of
8(r,1*) can be found with rg*/rt* =rg/rt, since 0 <rgfrt <1. Let I+
be the line of ¢ and ¢*. By Theorem 3.2, the line I* does not intersect L.

Thus it has been shown that there is at least one line of z(p, L)
passing through ¢ and not intersecting L. It must be shown that this
line is jndependent of the manmner of construction. First it is remarked
that if two intersecting lines were cut in different vatios by their point
of intersection and the lines L and L*, then by Theorem 3.2 the lines L
and I* would intersect, contrary to fact. Hence for any other choice
of t on L and any arbitrary point r with tgr holding, and any ¢* of L
(t* # 1) it follows by the intersection theorems that there is again a point
¢* common to I* and S(r, t*), and by the above remarks, rg*/rt* = rgpt,
so L* is the line which would have been reached by this new construction
as well. Thus I* is independent of the choice of the construction points.

Suppose L is any line of =(p, L) through ¢ not intersecting L.
Since ¢ is in 7;(p, L), there is a point ¢’ of L with P, g, and ¢ linear. If ¢
is the only such point of L then L”—(g) is contained in 7g(p, L) and
there is a sequence {r;} of points of I''—(g) which converges to ¢. Letting
sequences {ry;} approach the point 7;, with {rs} in np, L), 1=1,2, ..,
there exist sequences {rj;} of points of L with p, 7y, and r4 linear,
4,j=1,2,.. Now the sequences {ri;} are unbounded, for otherwise some
point #; would be in n;(p, L). Thus for each i = 1,2, ..., a subsequence
of {ry} ean be found which has as its corresponding {r;} a sequence of
points receding monotonically from ¢’ in one direction. Then taking
a subsequence of the sequence {r;}, sequences {ry} are obtained with
the corresponding sequences {rj;} monotonically receding in the same
direction for all =1, 2, ...

For any K > 0 there is, then, for each integer ¢ = 1, 2, ..., a positive
number Ny such that if # > Ny, then distance ring’ > K. The sequences
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may be renumbered so that ri;¢' > K (i,7=1,2,..). A final selection
of éubsequenees ensures that the sequence {r;} converges to ¢.

Thus a sequence {r;} has been found which converges to g, with
the property that g > K (1=1,2,..). But this is contrary to the
fact that {rj;} converges to ¢’, by Lemma 4.4. Thus the assumption that ¢
is the only point of I'* which lies in z;{p, L) leads to a contradiction.

Hence there is a point » of L distinet from ¢ such that it is linear
with p and a point 7* of L. But then, since L and L" have no common
point, it follows from Theorem 3.4 that the triples p, ¢, ¢, and p, 7,7’
satisfy the same betweenness relation, and then by Theorem 3.1 or 3.7
it follows that pr/pr’ = pg/pq’, and L is the line obtained by the original
construction. Thus L = I* and the proof is complete.

DEFINITION 4.2. The parallel to a line L through a point ¢ of 7;(p, L)
is the unique line of a(p, L) passing through ¢ and not intersecting L.

At this point Theorem 4.3 can be extended to include points of
ap(p, L) v

THEOREM 4.3. If p* is a point of w(p, L) not lying on L, then the planes
a(p, L) and =(p*, L) are identical.

Proof. If p* lies in mwz(p, L), Theorem 4.3 gives the desired result.
Suppose p* is a point of ms(p,L), and let ¢ be an arbitrary point of
a7p, L) not on L. Then by Theorem 4.3, the planes = (p, L) and =(g, L)
coincide. But since L(p*, p) is the unique line of = (g, L) passing through
p* which does not interseet L, it follows that the line L(g, p*) must
intersect L, so ¢ lies in mz(p* L), and again by Theorem 4.3, =(q, L)
= m(p*, L). Hence the planes =n(p,L) and =(p*, L) arve identical and
the proof is complete.

It is now easy to complete the proof that a plane is determined
uniquely by any three of its non-collinear points.

THEOREM 4.6. A plane is uniquely determined by any mnon-collinear
triple of its points, i.e., if p*, ¢*, and r* are non-collinear points of w(p, q, )
then the planes m(p*, ¢*, r*) and =(p, q,r) are identical.

Proof. Certainly one of the points p*, ¢*, * is not on L(q, 7). Suppos-
ing this iy p*, it follows that

alp, L(g, 7)) = = (p* L(g, 7)) = (p* ¢, 7) -

Similarly, one of the points ¢* and ™ is not on L(p*, 1), say ¢*. Then
w(p*, ¢, 1) = = (g, L(p*, 7)) = x(¢*, L(p*, 7))
= = (r, L(p*, ¢*)) = =(p* ¢ 1),

sinee #* is not on L(p* ¢*). Thus the planes are identical and the proof
is complete.
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The section concludes with a proof that the Pasch Axiom holds in
the plane. This result follows easily from theé* preceding ‘ intersection
theorems when use is made of the fact that a plane may be considered
as determined by any three of its non-collinear points.

THEOREM 4.7. If p, ¢, and v are non-collittear points and a line L
of (p, q,7), distinct from L(p, q), contains a point between p and q, then L
contains a point between p and r, or a point between ¢ and r, or the
point .

Proof. Suppose the line I contains no point between ¢ and », and
that 7 is not a point of L. The plane may be considered as determined
by the point +* common to L and S(p, ¢) and the line L(g, r), i.e., w(p, ¢, #)
==, L(g, 7).

If I intersects L(q, r), there is a point p’ of L such that the relation
rgp’ or grp’ holds, and in either case there is a point ¢’ on L between p
and #. On the other hand, if I does not intersect L(g, r), let ¢’ be chosen
as the point of S(p,r) with pg'/pr = pr'[pg. Then L(+',q') is parallel
to L(g,7), and hence must coincide with I, since parallels are unique.
Hence in either case L has a point common to the interior of segment
8{p,r) and the proof is complete.

5. Theory of parallels. The previous section has provided a proof
of the existence and uniqueness of a parallel to a given line passing
through a given point. It is fitting at this point to investigate some
properties of parallels. The first important property to be shown is the
tradsitivity of parallelism. It will be noticed that the proof of transitivity
is valid for spaces of arbitrary dimension.

THEOREM 5.1. If Ly, L,, and L, are pairwise distinet lines of M with
L, parallel to L, and L, parallel to L, then L, is parallel to L,.

Proof. Let ¢ and r be any two points of I, and choose g on L,.
Then if p is an arbitrary point of L(g, ¢’) with the relation ¢'qp holding,
there is a point »* of L, with prr/ holding, and

24 _pr
pg P’

Choose some point ¢’ of I, and let P’ be a point of L(¢, ¢’) with
¢'q"p’ holding and p'q”[p’'q’ < pg/pq’. Then there exists a point #'* of Ly
such that pr"'r’ holds and pr[p'r’ = p'q"[p'q'.

Since pqpg’ > p'q”/p', it follows that gq'/pg’ < ¢'¢"[¢'p’, s0 L(q, ¢")
meets L(p,p’) in a point s such that pp’s holds and

p_ 1
s’ P ad
¢ ap
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by Theorems 3.1 and 3.3. Similarly L(r, »"') and L(p, p’) meet in a point
¢ with pp’s’ holding and

ps 1

S,p, - pl‘rll ir_l- -

r'r’ ap

But

ot plg” a9’
T T
so ps’/s'p’ = ps/sp’, and thus s = s’, and the lines L(q, ¢"’) and L(r, ")
intersect.
It remains to be shown that sq'’/sg = sr''[sr. Application of Theorem 3.3
to triangles T'(s, ¢,p) and T'(s,r, p) yields
i o'’

s -
q”q q—ql . PP’ ﬂ:’_ . pp/ !
rg sp prt o sp

from which it follows that sg’/sq = s#'/[sr. Hence I, is parallel to L,
completing the proof.

THEOREM 5.2. If Iy, Ly, and Ls are three pairwise distinet mutually
parallel lines of M, and if two intersecting lines L and L' cut Ly, L,, and
Ly at gy, @sy 43, ond vy, 1y, T35, respectively, then

G G

T1%s ToTy

Proof. If p is the intersection of L and L', then
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Now
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But
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50 paupry = Pgs[prs, and it follows that 1ol 72 = Qo Gs/Ta7s, completing
the proof.

THEOREM 5.3. If Ly, L,, and Ly ave three pairwise distinet mutually
parallel lines of M, and if two parallel lines L and L' intersect Ly, L,, and
Ly at ¢y, Gs, Gz, and 1y, 1y, 15, respectively, then

P17y Polg
Proof. Choose a point p of L and a point s; of L;, and denote by
L* the line L(p, s;). Now from the Pasch Axiom (Theorem 4.7) it follows
that L* intersects L,, L;, and L' at points s,,s,, and p’, respectively. But
then by the preceding theorem

Dl _ 515 _ "'y

924s S98y  Tafy
and the result follows immediately.
Defining a parallelogram as a quadrilateral whose opposite sides
are segments of parallel lines, two important theorems can be proved.

THEOREM 5.4. The diagonals of a parallelogram bisect each other.

Proof. Let the pairs of opposite sides of the parallelogram be segments
of the lines I, and I,, and of lines L and L', with I, and I, intersecting I
and L' at py, p,, and at g, ¢,, respectively. Suppose p’ = m(p,, ),
¢ = m{g, &), and = m(p,, ¢,). Then the line L(g’,t) is parallel to L,
and L,, and by the Pasch Axiom (Theorem 4.7) it interseets L. In fact
the point of intersection is the point p’, for

np 04
PP 7't
By a previous theorem, there is a point s common to § (1, g2) and
L{g', t) with

VL D1’ -1
8¢> P'Ps
~ Supposing § # ¢, then, if r = m(p,q,) and Ty = M(Ps, ga), L(ry, s) is
parallel to I’ and so r, is on L(r, s). But since

Dot _hn

tqy ng’
it follows that ¢ lies in L(ry, s). But this is impossible, for s and ¢ are on
L(g', t) which is parallel to L,. The contradiction reached here completes

the proof that s =1, so the mid-points of the diagonals S(p,, ¢;) and
8(p,, q;) coincide, and the theorem is proved.
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THEOREM 5.5. The opposite sides of a parallelogram are equal in length-

Proof. If the parallelogram is labelled as in the preceding theorem,
then since = m(p;, ¢;) = M (P, ¢), it follows from Lemma 2.6 that
Py = 2-p't = p,q;. Similarly p,p, = ¢,¢,, and the proof is complete.

6. Introduction of segment addition. The first major objective
of this study is to show that a metric space I with at least two points,
which is complete, convex, externally convex, and satisfies the two-triple
property and the Young Postulate, is a normed linear space. In order
to achieve this goal it is necessary to define addition, scalar multiplication,
and norm of an element in the metric space M. First, we review the
definition of a normed linear space.

A set § of elements p, ¢,7, ..., is sa‘d to form a linear space over
the field of real numbers provided & binary operation, ¢ 4 is defined in §
(with respect to which § is closed), and for each real number 1 and each
element p of § there is defined a unique element A-p of S, satisfying
the following conditions, where p, ¢, and r are elements of S and 1 and
are real numbers:

(a) p+a4=4q+p,

(b) (p+q)+7r=p+(¢+7),

(¢) p+x = g has a solution x in S,
(@) A (u-p) = (Au)- P,

(e) A-(p+q)=24-p+1-g,

& G+p)-p=4p+pp,
()1p=p

It is easily shown that in the linear space 8§ there is a unique element 0,
called the zero element of 8, satisfying p +0 = p for every element p of §.

A linear space S over the field of real numbers is said to be normed
provided with each element p of S is associated a non-negative real number
ipil such that

(i) |lpll >0 if and only if p # 0,

(i) f1A- pll = |4]-lipll,

(iii) llp + gl < llpll -+ llgll

A complete normed linear space is known as a Banach space.

In order to define addition and scalar multiplication in the space A,
it is convenient to define the reflection of a point p in a point g.

DEFINITION 6.1. If p and ¢ are distinet points of M, a point p* of I
is a reflection of the point p in the point ¢ provided pgp’ holds and pg = gp’.
If p = g, the reflection of p in ¢ is the point p.

It follows from the uniqueness of the line determined by two points,
and the congruence of that line with the Euclidean line F,, that the
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reflection 2’ of p in ¢ is uniquely determined. The operations of addition
and sealar multiplication are then defined in the following way. Let o
be an arbitrary but fixed point of M.

DErFINITION 6.2. If p and ¢ are points of M, the point p + ¢ is defined
ag the reflection of o in the mid-point of p and g.

Remark 1. If p and g are points of M, p+q is a unigue point of M.

Proof. If p # ¢, it follows from the uniqueness of segments that
the mid-point m of p and ¢ is uniquely determined. But then since the
refleetion of o in  is unigue, it follows that p -+ ¢ is uniquely determined.
If p = ¢, their mid-point coincides with both of them, and again it follows
from the uniqueness of the reflection that p + ¢ is uniquely determined.

DepNITIoN 6.3. If 21> 0, and p is a point of M (p # o), the point
A-p is defined as that point p’ of L(o, p) with opp’, 0p’p, or p’ = p holding,
and 0p’ = 1-0p. If 1 =0, 1-p is defined as the point o, ie., 0-p = o.
For any real 2, (—2)- p is defined as the reflection of 1-p in the point o.
For every real 1, -0 = o.

Remark 2. If D is a point of M and 1 is any real number, i-p is
a unique point of M.

Proof. If 1> 0, and p # o, it follows from the uniqueness of the
line L(o, p) and the congruence of this line with B, that 1. p is uniquely
determined. If 2 = 0 or p = o, the uniqueness follows immediately from
Definition 6.3, and if 1< 0, the result follows from the uniqueness of
(—2)-p and the uniqueness of its reflection in o.

Remark 3. Addition and scalar multiplication satisfy conditions (a),
(e); (d), (e}, (£), and (g).

Proof. The proofs of most of the properties follow immediately
from the definitions. It is remarked that in property (e), the point =
satisfying p +# = ¢ is the reflection of P in the mid-point of o and q.
Property (e) follows easily by use of Theorems 2.6 and 3.1 or 3.7.

It remains to be shown that addition is associative. This is accom-
plished in the following theorem, whose proof makes strong use of the
properties of parallelograms established in the last section.

THEOREM 6.1. Addition is associative.

Prootf. Let p, ¢, and r be points of M not collinear with o. By the
definition of addition, in order to show that P+g)+r=p+(q+7), it
suffices to show that the mid-points m (p, g+r) and m(p+¢,r) coincide.

Let m=m(p,q) and m' =m(q, 7). Then pr=2-mm’, and the
distance (p-+q)(g-+r) =2- mm’y, 50 (p+¢)(g-+7r) = pr. Also Lip,p+q)
and L(r, ¢+r) are both parallel to L{o, ¢) and hence are parallel to each
other. Similarly L(p, ) and L(p-+g, q-+r) are parallel, since both are
parallel to L(m,m’). Hence, p, p +g¢, g7, and r are the vertices of a par-
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allelogram, and by Theorem 5.4, the diagonals S(p, ¢-+7) and S(r, p - ¢)
bisect each other. Thus m(p, ¢+7) = m(r, p +¢) and the proof is complete.

DErinttioN 6.4. If p is a point of I, the norm [p| is defined as
the distance op.

Remark 4. The norm ||p| satisfies conditions (i), (ii), and (iii).

The proof of Remark 4 also follows readily from the above definitions
and the elementary properties of metric spaces. The results of this section
combine to give the following characterization theorem:

THEOREM 6.2. 4 metric space with at least two poinis which is complete,
convex, externally convex, and satisfies the two-triple property, is a normed
linear space (Banach space) if and only if it satisfies the Young Postulate.

IL Characterization of Euclidean space

7. Some consequences of the Ficken postulate. The second
part of this work is devoted to showing that a metric space M with at
least two points, which is (1) finitely compact, (2) convex, (3) externally
convex, and (4) satisfies the two-triple property, is Euclidean if and only
if it satisfies the Ficken and Young Postulates. In later sections strong
use is made of the previous results of the Young Postulate, but for the
moment the Ficken Postulate assumes a place of prominence. For this
reason, it is desirable to repeat the statement of this postulate.

THE FICKEN POSTULATE. If f, is a foot of @ point p on a line L (p not
on L), and if ¢ and r are points of L with gf, = f,7, then for each point s
of L(p, fn), sq = sr.

The following theorems investigate some important consequences
of the Ficken Postulate in the space M satisfying 1, 2, 3, and 4 above.

THEOREM 7.1. The foot of a point on a line is uwigue.

Proof. By the remarks of Section 1 there exists at least one foot,
fpy of p on L. Clearly f,=p if and only if p lies in L. If p is not on I,
suppose f; is a foot of p on I distinct from f,. Then f,f,> 0, and positive
real numbers a¢ and b exist such that pfy,=a, and fpf;, = b. Now there
exists an integer n such that n-b > 2a. Let f be the point of Z with
fof"=0b and f,fpf* holding. Then by the Ficken Postulate f''p = f,p,
and f is thus a foot of p on L. Denote it by f,.

Make the inductive assumption that fp,/n,fn, -, fg" are defined
as above. Denote by f** the point of L with f@f%) = p, and jE-VfPyk+D
holding. Then f** is a foot of p on L as above, and may be denoted by
f#+0. Thus there is a foot /& of p on I, where - b > 2a. Then since L
is congruent with the Buclidean line, f,f>" = n-b. But since n-b> 2a,
FofS? > 2a = fpp +1™p, contrary to the. triangle inequality. Thus the
foot of a point on a line is unique, and the proof is complete.
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THEOREM 7.2. If fp is the foot of a point p on a line L (p not on L),
then f, is the foot on L of each point of L(p, fp).

Proof. Denote L* = L(p, f,), and suppose that f; = f, for some
point s of I*. Choose a point ¢ of L such that fsf,t holds, and f.f, = f,t.
Then by the Ficken Postulate st = sf,, so ¢is also a foot of s on I, contrary
to Theorem 7.1.

THEOREM 7.3. If fy is the foot of a point p on a line L (p not on L),
then f, is the foot on L(p, fp) of each point of L.

Proof. If ¢ is a point of L with foot f, on L(p, f,), suppose f, + f,.
Choose a point ¢’ of L such that ¢f,¢’ holds, and qf,= f,¢'. Then gf, = f,¢’
by the Ficken Postulate. Now fyr = f, for if the contrary were supposed,
fo> ¢le- But ¢fy= gy, 50 @fy= 'ty <q'fs= dfs, contrary to the fact
that f; is the foot of ¢ on L(p, fp).

Since fy = fy, it follows that ¢fn> ¢'f, and qfp > ¢f,, so that g¢¢
= fp+1pq > gfs+fod, contrary to the triangle inequality. Thus f,=f,
for all points ¢ of L.

Theorems 7.1, 7.2, and 7.3 indicate that the lines L and L(p, f,)
are related in a symmetric manner by the property that their intersection
is the foot on any one of the lines, of any point of the other. The fact
that this relation enjoys properties similar to those of ordinary per-
pendicularity in B, leads to the following definition:

DEeFINITION 7.1. A line L* is perpendicular to a line I provided there
exists a point p of I* (p not in L) whose foot f, on L is the point common
to L and IL*.

Remark. The relation of perpendicularity is symmetric, and hence
if line L is perpendicular to line L* we say that the lines are mutually per-
pendicular.

THEOREM T7.4. If f, and f, are the feet of distinct points p and q on
a line L (p and ¢ not on L), and if L{p, q) intersects L in a point, then
fop =fo =1 on L implies that f is the foot on L-of each point of L(p, q).

Proof. Let L(p, g) be denoted by L* and suppose r is the common
point of L and L*. Let ¢’ be the reflection of 7 in f. Then by the Ficken
Postulate rp = pr’, and rg = ¢r'.

Case I. The relation rpg holds. Then 7'p +pq = rp +pq = rq¢ = +'q,
30 7" is on L* and r = »' = {, since two lines intersect in at most one point.

Case II. The relation vgp holds. The argument is similar to that
of Case I.

Case IIL. The relation prq holds. Then pr' +1'q = pr+7¢ = pq, SO
7’ is again on I* and 7 =t =f.

Thus in each case r = f and so by Theorem 7.2, { is the foot on L
of each point of IL*.
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THEOREM 7.5. If limw; = ,, then limjf; = f,, where fi is the joot of
zoon L (1=0,1,2,..).

Proof. Sinee fifo < foty + @i+ wifs, and ima,w; = 0, imaf; = Zofos
then fify is bounded (¢ =1, 2, ...), and consequently {f;} is a bounded
subset of L.

Suppose f, is not the limit of {f;}. Then there exists a real number
KE>0 and a subsequence {fm} such that fuf, > K (n = 1,2,..). Since
{fin} is bounded, some subsequence, say {f}, has a limit g. Now if {or}
is the subsequence of {ws} corvesponding to {fy}, lima} = x,. Now rfo
> aifr (k=1,2,..), so limwgfo > Umagfy, and since limayf, = @ofo, and
limaifi = #og, it follows that azyf, > #,9. But since f, is the foot of z,
on Ly yfy << 20, 80 %yfy = .9, which is impossible since the foot of a point
on a line is unique, and f,g > K > 0. Hence limf; = f,, and the theorem
is proved.

Since the foot of a point p on a line L is unique, the foot fpofponl
is a funetion of p, and the preceding theorem may be restated as
follows:

COROLLARY. If @ is a point of M and L is a line of M, the foot {, of @
on L is a continwous function of w.

LeMMA 7.6. If g and v are points of L, and p is a point of M with
pq = pr, then the foot fs on L of each point s of S(p, ) +8(p,r) lies in
8(g, 7).

Proof. Suppose ¢ is a point of S(p, q) whose foot f; does not lie in
8(g, 7). Suppose further that f,gr holds. Now f, = r, and since f, is a con-
tinuous function of & for z in 8(p, t) + 8(p, r) thereis a point s of S(p, 1)+
+8(p,7) with f; = ¢g. Now if s lies in 8(p, g) then f; = ¢, by Theorem 7.2,
contrary to assumption, so that the relation psr must hold. Now
8q < 8%, 80

Sq+ps < sr+ps = pr=pq,

by hypothesis, contradicting the triangle inequality.

If grf: holds, there is a point s of S(g, t) such that f, = r and a similar
argument holds. Similaxly if ¢ lies in S(p,r) a contradiction is reached,
and the proof of the lemma is complete.

THEOREM 7.6. For each point p and line L of M, the function pw is
monotone increasing as x recedes along either half-line of L determined
by fp, the foot of p on L.

Proof. Suppose pz were not monotone inereasing. Then there would
exist points ¢ and r of I with fpgr holding and pg = pr. But then by
Lemma 7.6, f, lies in § (¢, 7), contradicting the relation f,gr.

) One of the more important consequences of the Ficken Postulate
Is the following, which is, indeed, equivalent to ib:
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PROPERTY (). If p is a point of M not lying on a line L of M, and
if ¢ end v ave points of L with pg = pr, then m, the mid-point of q and r,
is a foot on L of each point of L(p, m).

THEOREM 7.7. In a metric space M of at least two points with prop-
erties (1), (2), (3), and (4), satisfying the Ficken Postulaie, Property (x)
is satisfied.

Proof. By Theorem 7.6, 3 has the monotone property. Suppose
that I does not have Property (x); i.e., a point p of M and points ¢ and
of a line L exist with pg = pr and the mid-point m of ¢ and r is not a foot
of p on L.

Case I. The relation ¢fyr holds. Let ¢’ be the reflection of ¢ in fp.
Now since m = fp, ¢ = r, and either f»g'r or f,7¢’ holds, by the congruence
of I with E,. But pr = pg = p¢’ by hypothesis and the Ficken Postulate,
contrary to the monotone property.

Case II. The relation fpqr or fprq holds. Then pr = pg by hypothesis,
contrary to the monotone property.

Thus in both cases a contradiction is reached, so Property (x) is
satisfied, completing the. proof.

8. An equivalent form for the Ficken postulate. It was
suggested in the preceding section that Property (%) is equivalent to
the Ficken Postulate, and in that section it was shown that Property (x)
is a consequence of properties (1), (2), (3), (4), and the Ficken Postulate.
In this section the proof of the equivalence of the two properties is
completed by showing that a metric space with properties (1), (2), (3),
and (4) satisfying Property (=) also satisfies the Ficken Postulate.

Let M denote a metric space with properties (1), (2), (3), and (4)
and having Property (=).

LemyvaA 8.1. If points ¢ and v of L are feet of p on L, then each point
of the segment S(q,r) is a foot of p on L.

Proof. If g and r are feet of p on L, then pg = pr, so by Property (x),
their mid-point m is also a foot of p on L. Hence pg = pm = pr. Similarly
the mid-points of ¢ and m and of m and r are both feet of p on L. Con-
tinuing inductively a set of feet of p is obtained which is dense in S{(g, 7)
and the result follows by the continuity of the metric.

THEOREM 8.1. A point p of M either has a unique foot on o line L
of M, or the locus of all feet of p on L is a single segment of L.

Proof. Suppose p has two distinet feet on I, say f and f'. Then by
Lemma 8.1 each point of S(f, ') is a foot of p on L. Let F' be the set of
all feet of p on L. Now F is a bounded set, for by Remark 2 of Section 1,
if f is a foot of p and fo > 2- fp, then px > pf, s0 x is not in F. Since L
is congruent to E;, and F is a bounded subset of I, F has “rightmost”

icm

Banach and Buclidean spuces 49

and “leftmost” accumulation points,” ¢ and » respectively. Now since f
and f' ave distinct points of ¥, it follows that ¢ # . By continuity of the
metric, ¢ and » are both feet of p, so by Lemma 8.1, each point of S(g, 7)
ig a foot of p on I and by the definition of ¢ and 7, no other point of T
is a foot of p.

TaEOREM 8.2. If each point of a segment S(q, ) of L is a foot of p on L,
then for each point | satisfying gfr and each point t of L(p, f) distinct from p,
f is the unique foot of ¢ on L.

Proof. Since ¢fr holds, there exist points of §(g, r) with f as mid-
point, and having equal distances from p. Then if ¢ is on L(p, f) distinct
from p it follows from Property (#) that f is a foot of ¢ on L. Suppose ¢
has another foot on L. If this foot is in S(g, ») label it f''. If f* (3£ ) is
a foot of ¢ on I, not lying in S(¢, ), each point of S8(f, ') is also a foot
of 1, so there exists a point f” common to 8(g,r) and S(/, /"), distinct
from f, which is a foot of ¢ on L. Thus in any case there is a foot f of
¢t in S(g, ), distinet from f. Now since /" is both a foot of ¢ and a foot
of p, tf =1f"" and pf = pf".

Suppose the relation ptf holds. Then

pf" = pf = pi+1f = pt+if",

so ptf” also holds, contrary to the unigueness of lines. Similar arguments
are used in case ¢pf or pft hold, and the contradictions reached complete
the proof of the theorem.

TrEOREM 8.3. If S(g,r) is the set of all feet of p on L, and if t is
a point of 8(p, q) distinet from p, then ¢ is the unique foot of ¢ on L.

Proof. First, ¢ is-a foot of ¢ on I, for if the contrary were supposed,
there would be a point f of L such that if <?g. But then

pq = pi+1g > pt+if > pf
$0 pg > pf, contrary to the fact that ¢ is a foot of p on L.

To show the unigqueness of the foot, suppose that ¢ has a foot /' 5 ¢.
If f is in 8(g,r) then ' is also a foot of p, and by the argument of the
preceding theorem a contradiction is reached. If 7' is not in S(g,r) then

pf’ > pg = pt+ig = pt+if’,
since tg = #f’. But this contradicts the triangle inequality, so ¢ is the only
foot of ¢t on I, completing the proof.

THEOREM 8.4. The fool of a point on a line is unigue.

Proof. Suppose p has more than one foot on a line L. Then the set
of all feet of p on L is a segment, say S(¢, 7). Let m be the mid-point
of ¢ and . If ¢ is a point satistying tpm, then by Theorem 8.2, m is the
unique foot of ¢, and

tm =tp+pm =1tp-+pq>1q,

Fundamenta Mathematicae, T. LV B / 4
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since lines are unique. But this contradicts the fact that m is the foot
of ¢, and completes the proof.

It is noted that in the proof of Theorem 7.5, the only result of the
Ficken Postulate which is needed is that of unique feet. Since this result
is given in this new context by Theorem 8.4, it follows that the theorem
is valid in this context as well. It is restated in the following form:

Levma 8.5. If w is a point of M and L is a line of M, the foot fo of
on L is a continuous function of x.

THEOREM 8.5. If fp is the foot of p on L, then the function px is monotone
wnereasing as » recedes along either half-line of L determined oY fn-

Proof. Suppose px is not monotone increasing. Then there exist
points ¢ and z, of L such that fpiw, holds and pt> p%. By continuity
of the function pa in the segment S(fy, ), there is a point 2, of this segment
with p@; = px,. But by Property (=) the mid-point m of », and #, i8
a foot of p on L, contrary to the uniqueness of feet. This contradiction
implies that M has the monotone property.

The proof that M satisfies the Ficken Postulate is completed by
showing first that M satisfies a weak form of the Ficken Postulate.

Levma 8.6 (Weak Ficken Postulate). If fv s the foot of p on L, and
if q and 7 are points of L with qfy = fpr, then pg = pr.

Proof. Suppose pg # pr. Then one is greater, say pg > pr. Now by
the monotone property, there exists a point v of I with qf»r’ holding and
Ppg = pr'. If m is the mid-point of ¢ and #/, then m is the foot of p on L,
and f, =m. But then

r'm =g = fpq = rm,

and since gfyr and ¢f,+' both hold, it follows that r = ¢/, and pg = pr.
THROREM 8.6. If fp is the foot of a point P on a line L (p not on L),
then fp is the foot on L of each point s of L(p, fp).
. Proof. There exist points ¢ and » of I with ¢fs = fpr, and ¢fpr hold-
ing. By Lemma 8.6, pg = pr, so by Property (#), fp is the foot on L of
each point of L(p, fp).
THEOREM 8.7. In a melric space M of at least two points with properties
), (2), (3), and (4) satisfying Property (x), the Ficken Postulate is satisfied.
Proof. Let p be a point of I not lying on a line L, and let f, be
the.foot of p on L. If s is a point of L(p, f,) then, by Theorem 8.6, f; = f5,
80 if ¢fy = fpr, Lemma 8.6 yields sq = sr, and the proof is complete.

9. Equidistant loci in the plane. At this point it is convenient
to collect some further properties of parallels, one of which makes possible
the proof of the linearity of the equidistant locus in the plane. Using
this result it follows from a Daper of Busemann [3] that the plaries of the
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space if are Euclidean. This is only briefly mentioned, for another more
direct method is employed later to show that the space M is Eueclidean.
It is to be noted that the theorems of this section make use of the Young
Postulate as well as the Ficken Postulate.

THEOREM 9.1. If distinct lines I, and L, of a plane = are both per-
pendicular to a line L, then L, and L, are parallel.

Proof. If L, and L, are perpendicular to L at p and ¢ respectively,
then supposing I, and L, intersect at a point ¢, it follows that both p and ¢
are feet of ¢ on L, contrary to the uniqueness of feet. Hence L, is parallel
to L,.

THEOREM 9.2. If L, and L, are parallel lines of a plane =, and if a line
L of = is perpendicular to L,, then L is perpendicular to L,.

Proof. Certainly L and L, have a common point, for otherwise there
would be two parallels to L, through a single point. Let p be the common
point of L and IL,. Then by Theorem 9.1, the line of = perpendicular to L
at p must also be a parallel to I, and so must coincide with L,. Hence
L is perpendicular to L,.

In order to make use of the results of Busemann mentioned above,
it is necessary to consider the equidistant locus in a plane = of two points ¢
and r of =.

DEeFINITION 9.1. The equidistant locus in the plane = of two distinct
points ¢ and r of =, denoted by H(g, r), is the set of points p of = such
that pg = pr.

THREOREM 9.3. If ¢ and.r are distinct poinis of a plane = of M, then
H{g,r) is the set of points of = whose foot on L(q, r) is the mid-point m o_f
q and r.

Proof. If p is a point of H(g,r), then pg = pr, by definition, and
application of Property (*) gives the desired result. If p is in @ and fp
on L(g, 7) is the mid-point of ¢ and r», then by the Ficken Postulate pg
== pr, and p is in H(g, ).

Ledna 9.4. If p and g are distinet points of H(r, r') for distinct points
r and v’ of =, and if L(p, q) intersects L(r, '), then L(p, q) is contwined
wn H(r, ).

Proof. Denote by L the line L(r,+) and by L* the line L(p, q)-
If 7 is the common point of L and I*, let t' be the reflection of ¢ in the
mid-point m of r and . Now by Theorem 9.3, m is the foot on L of p
and ¢, so application of the Ficken Postulate gives pt = pt’, and ¢t = gt'.

Suppose the relation pgt holds. Then

Pq+gt = pg+ gt = pt = pt’,
so ¢’ is on L*, and hence must coincide with ¢ at the point m. A similar
argument is used if ¢gpt or pig holds. Thus in each case t' =1{ = m, 50
4%
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by the Ficken Postulate, m is the foot on L of every point of I#*, and
consequently I* lies in H(r, #').

THEOREM 9.4. If p and g (p #q), are points of H(r,+'), for distinct
points v and v' of m, then L(p,q) is contained in H(r,r').

Proof. By the Lemma, it suffices to show that L(p, ¢) intersects
L(r, ). Denote L(r, ') by L and suppose L(p, ) is parallel to L. Then
by Property (x), since pr = pr’ and ¢r = ¢, the mid-point m of r and +'
is the foot of both p and ¢ on L, so then L(p,m) and L(q, m) are both
perpendicular to L. But by Theorem 9.2, L(p, m) and L(q, m) are both
perpendicular to L(p, ¢) and hence both p and g are feet of m on L(p, ),
contrary to the uniqueness of feet. This contradietion implies that Lip, q)
and L must have a common point.

These results may now be combined with those of Busemann [3]
to complete the proof that = is a Euclidean space, for in this work Busemann
shows that a finitely compact metric space with unique straight lines
is Buclidean or hyperbolic if and only if the equidistant locus is linear.
This is now the case, for the planes x of the space M, and so each plane =
of M is a Euclidean space. We shall, however, establish the Euclidean
nature of M without reference to Busemann’s result.

10. Reflections and the Pythagorean property. In order
to complete the proof that the space M as defined is Euclidean, it is
necessary to define in the space a class of transformations known as
reflections. The reflection mapping is shown to be a congruent mapping,
i.e., it is one-to-one and distance-preserving. The important use of these
mappings is in showing that the Pythagorean Theorem is valid in the
space M. This result, in turn, leads to the fact that M is Euclidean.

The reflection mapping is defined in the following way:

DeFmvrTioN 10.1. A point p’ of M is the reflection of a point p in
a line L of M provided the foot fp of p on L is the mid-point of p
and p’.

DEFINITION 10.2. The reflection mapping Ry, of the plane x in a line
L of x is the mapping which maps each point of = onto its reflection in L,
i.e., for every point p of m, Ry(p) = p’, the reflection of p in L.

The mapping Rz, can easily be seen to be a one-to-one mapping of =
onto itself, for certainly if g is any point of z, its reflection p in L will
be mapped onto ¢ by Rz. Also if 2" = ¢, there are points p and ¢ of =
such that f, =m(p,p’) and f, =m(q, ). But fp =1y =y = 50
fo =1y, and thus p = ¢. Thus in order to show that the mapping Ry, is
a congruence, it remains only to show that it preserves distance. This
is accomplished in the following theorem:

THEOREM 10.1. The mapping Ry, of 7 onto itself is a congruence.
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Proof. It remains to be shown that if p and ¢ are points of =, the
distance Rz(p)Rz(¢) = pg- Two cases arise.

Case I. L(p,q) intersects L. Then there is a point # common to
L(p, ¢) and L. Since pfzp’ holds, and pfp = f»p’, W]?er.e P’ dejnotes Ri(p),
it follows from the Ficken Postulate that rp = rp’. Similarly, if ¢’ = Rr(q),
it is seen that rq = rq'.

- Let ¢" be any point of = such that r, p’, ¢ are coug'ruen’t t.o T, D,y ¢,
ie., rp’ =7p, ¢’ = rg, and p'q¢"’ = pq. Then since fo= m(p,p }, it follows
from Theorem 2.6 that S(¢, ¢'') and L have a common point, say m, and
that m is the mid-point of ¢ and ¢"'. But since ¢r = ¢, m is the foot
of v on L(g, ¢") and hence is the foot of ¢ on L, by Theorem 7.3. T]}us
m = f,, and ¢’ = ¢'. Hence 7, p, g are congruent to r, p’, ¢’ and pq = p'¢’,
completing the argument in Case I.

Case II. L(p, q) and L have no common point. Now from the de-
finition of reflection it follows that L(p, p’) and L(q, ¢') are perpendicular
to L, and so, by Theorem 9.1, L(p, p’) is parallel to .Z::(q, %’) Suppos,e
L{p’, ¢') were not parallel to L. Then there would be a point ql of L(,q, q)
with L(p’, ¢'') parallel to L, so by Theorem 5.5, f,¢" = f,,;_? = foq' and
¢’ =¢. Thus L(p’, ¢') is parallel to L, and sinc(_a L(p,p’) is parallel to
IL(g, ), it follows that the figure (p, ¢, ¢, p") is a parallelogram and
by Theorem 5.5, it follows that pg = p’g’, completing the proof.

From Theorem 10.1, several important corollaries follow immediately.
Thus, for example, if By is a reflection of a plane = in' one ojf its lines I,
and p’ = Rz(p), ¢ = Rr(g), then the line of p” and ¢’ is the‘ image under
Ry, of the line L(p, q). Furthermore, if » is a point of = not lying on Lp, q)
and if f is its foot on L(p, ¢), then f', the image of f under EL, is the foot
of ' = Ry(r) on the line L(p’, ¢'). These results find an important ap-
plication in the proof of Theorem 10.2.

It now becomes possible to complete the proof of the final reslflt.
This depends on a property known as the Pythagorean Property; which
is defined in the following way ([2], p. 129):

DEFINITION 10.3. A space M is said to have the Pythagorean Property
provided for each triple p, g, r of points of M such that p is a foot of ¢
on L(p, 1), (pg)"+ (pr)* = (¢)- _

The importance of the Pythagorean Property lies in its usefulnfass
as a means of characterizing Euclidean spaces. Blumenthal (loc. c1t..)
has shown that a finitely compact, convex, externally convex Ix}etrlc
space with the Pythagorean Property is congruent with a Euclidean
space of finite dimension. The following theorems .thus complete th.e
present characterization of Euclidean space, by showg that the metric

space M with properties (1), (2), (3), (4), and satisfying the Young Pos-
tulate and the Ficken Postulate, satisfies the Pythagorean Property.
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LEMMA 19.2. Let p, q, and v be points of M, and P the foot of » on
L(p,q). If | is the foot of p on L(q, ), the relation ¢fr holds. '

Proof. Cleaxly f is distinet from ¢ s i
s ¢ and 7, for otherwise L(p,r) or
L(p, g) would be parallel to L (g, 7). If pq = pr, i rona
) It pg = pr, it follows fr by
that gfr holds (indeed f = m(_q: 7)). " R e Eroperty (+)
Suppese the labelling is so chosen. that ]
= t pg > pr. Then by the monot
%OPGIW’ rgf cannot hold. Thus one of the relations grf or gfr must 31311(116
Ofut f ththe f‘oot of g on L(p,f) so qf < gp. However, since p is the foot'
gonL(p,r), g¢p < gr, 50 ¢f < qr, which eliminates ¢rf. Hence gfr holds

T CZHE;)I{EM iO:Q. ZThe space M hos the Pythagorean Property, i.e., if

4, 7) 48 @ triangle of M with p the foot of r om " (g4

Lo P the foot of v on L(p, q), then (pqg)*+

]emnProEof. .Let f dencte the foot of p on L(g, 7) which, by the preceding
na, lies in §(g, 7). The procf proceeds by showing that ¢r/rp = rpfrf

and gr/gp = gplgf. o
Sinee f is the foot of » on I( it;

] L A »,1), it follows that rp > rf, and con-
fsqfuﬁntly t;here Is a point [ in S(r,p) with »f =#f. If m ; 'm:(f )
ik o‘.ows from Prope}'ty (%) that m is the foot of r on L(f, ). Then éonj
th;;l]fni ;c‘vzfelel(if:gc}ni)n fof triangle 7'(f, p, 7) in the line L(m, r), it follows
t s ted into /', » remains fixed, and since the reflection ing

) " . . ' ’ nl‘ ;
;; 2 conglu‘ence, P 1s mapped into the point p’ of §(r, ¢) such that 'rp(’{l)jljlg
; simgt}aga;n the fal;ct- that the reflection is a congruence, it follows th?:‘é
ﬁnei Ll(; Z;)t og ;( on L(r, '), which coincides with L(p, r). Hence the
§ and ', p") are par rom t i ‘of parallels,
B S, 0 1, p") ave parallel and from the uniqueness of parallels,

qr

D

p
rf’

rf’ rp’
e,
i rp rq
Thus (rp)” = gr-rf.
it Izl a>2si1_71(11a;; manner it may be shown that (gp)* = gr- qf, so it follows
) +(rp) = qr- (gf +7f) = (g)", since the relati i :
; , sinece rzlat r 8 i
completes the proof of the theorem reion afr holds. s
B un(irlllttﬁlai rfli:]ft; :})’cimed ab_ove? and the above mentioned theorem
corallory ; the Iinal characterization theorem follows as an immediate
TEEOREM 10.3, An abstract set 1 ]
) > 10.3. set M forms o Buclidean spac i
dimension provided ithe following postulates are sa;fisjied:( " space of fiuie

I. Metricity. With ever i
. - very pair of elements p and q of M there is
g{ssoaﬁated ;z non-negative real number pq, such that %91) pqi OI if a»;LZlH:n;;
TP = ¢, (2) pg = qp, and (3) if P, g, and r are elements of M, pPg+qr > ])i“.

II. Finite Com ki f
pactness. Every bows infinite subs 3
n amailation clemam Y nded infinite subset of M has
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IIT. Convexity. If p and 7 are distinct elements of M, there s an
element q of M between p and r; that is, pqtqr =pr, p #F¢Fr

IV. External Convexity. If p and q are distinct elements of M
there is an element v of M such that g is between p and .

V. Two-triple Property. For any guadruple of pairwise distinect
clements of MM, linearity of any two triples implies linearity of the remaining
two triples.

VI. Young Postulate. If p, ¢, and r are elements of M, and ¢
and 1" are mid-elements of p and g, and of p and v, respectively, then g'r" = 1qr.

VII. Ficken Postulate. If f is a foot of an element p on a line L
(p not on L) and if ¢ and r are elements of I with fq = fr, then sq = sr, for
cach dlement s of a line L{p,[) joining p and f.

In conclusion the first characterization theorem, Theorem 6.2, is
restated in the following way: Postulaies I, II, IT1, IV, V, VI, define
a complete normed linear space (Banach space).
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