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A continuous real-valued function on E* almost
everywhere 1-1
by

J. L. Denny * (Bloomington, Indiana)

The purpose of this note is to prove the following

TarorEM. There is a uniformly continuous function f: H"--(0,1)
and @ Borel set D C B"™ with the Lebesgue measwre of E"~D equal to zero
such that the restriction of f to D is 1-1. Bach partiol function of f of a real
variable is nondecreasing.

The proof is based on the fact that there is an uncountable disjoint
fam'ly of Borel sets each of which is in (0,1) and vwhich is the image
by a continuous 1-1 function om E' of a Borel set whose complement
has measure zero.

Let n>2 be fixed and let y = (Y4, .o, Yu);, Yee {0, 1/(n—1)),
i=1,..,n—1. Let {X;: j=1,2,..} be a sequence of independent,
identically distributed random variables such that P{X; =i} =y,

n—1

i=1,..,n—1, and P{X; =0} =y, =1— 3 y. With each sequence
=1

{b;: i =1,2,..} of outcomes of {X;} associate the real number

oo
(1) ' Do
j=1
Let ¥ be the random variable defined on {XX;} whose value at par-
ticular {b;} is given by (1) and let Fy(x) = P{Y < x}.
LeMMA 1. Fy(-) is a stricily increasing continuous function on [0, 1]
with F,(0) = 0 and Fy(l) = 1.
Proof. Being a Lebesgue-Stieltjes distribution funetion, Fy(-) is
nondecreasing and is defined to be continuous from the right. The inde-
pendence of the X; implies that P{¥Y = #} = 0 for o ¢ [0, 1] and so Fy(-)
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is continuous from the left. To verify that Fy(-) is strictly increasing
observe that if # < o' and «, ' € [0, 1], then Fy(z) = Fy(2’) is equivalent
to Piz<XY <o’} =0. There exists

J J—
5= me“f and & 2 byn~ 4+ (by+1)n—7
i=1 i=1

where by # n—1 such that 2,2 ¢ (z, 2'). Then
J
Pr<¥Y<a}z2Pir<Y <= Hyb1>07
j=1
which gives striet monotony. Continuity and 0 < ¥ <1 give the last
assertion.
LEMnA 2. For each me(0,1) and yse(0,1/(n—1)), i =1,...,j-1,
f41 e, n—1, Fyw) is a continuous and non-increasing function of ;.

o0

Proof. Let @ = ), a;n—7; if there are two expansions either (fixed)
j=1

is suitable. Let

o
D, = {zz 2= me"f, b <ay,
i=1
o

Zb;w-—?’ is the finite n-ary expansion of z when it exists}
j=1
and

o0
Dy = {z: z= me“", by =aj, j =1, ., m—1, bp <@mn,
i=1

Zbﬂr" is the finite n-ary expansion of z when it exists},

j=1

m = 2,3, ... By definition, D; is empty if a; =0 and otherwme the Dy
are dls]mnt intervals. Since

©

[0,2) = ) Du
m=1L

and since

a3 —1

P{Y D)= P{X,<a}= D ¥,

1=0
P{Y €Dy} = P{X; = aj, y—l,..,m—l, Xp < am}

am

Yi,y

INei)

[
o

= YaYas -+ Yana

i
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it follows that
) am—1
_P{Y < m} = Z{yaxyth oo Yam Z y‘} .
m=1 i=0

Let 7; = 0 and 77* be the number, possibly zero, of a;’s that equal ¢ in

-1
the first m—1 as’s, ¢ =0, ..., n—1. Agreeing that > y; =0, the above
i=0

gives
n—1} am~—1
@) B = ST 5

1

Since Z y1 <1 and the rest of each term of (2) is a polynomial in y;,

it fo]lows by the Weierstrass M-test that Fy(x) is continuous in y;.
To verify monotony, the identity,

k=1
3) Fylmn=@0) = D' yit gy (m—kn¥)n=%),

i=0
for m=0,..,n"" and mn~¥tDe(k/n, (k+1)n], k=0,..,n—1, is
obtained from the independence of the X;. In turn, (3) implies by an
induetion on N =1,2,.., that for ;> Yz, ¥ = Y1y ees Yiy ey Yn1)y
and each mn—¥, m=0,...,n%, Fy(mn—) < Fy(mn—~). By the continuity
of each Fy(-), from Lemma 1 and the denseness of the numbers mn=%,
Fy(x) is a nonincreasing function of y;.

Remark. The continuity of Fy(-) and (3) give

k-1

4) Fya) = D yi+pFy(na—Fk),

i=0
@ € (kfn, (k-+1)/n], k=0, ..., n—1. The representations (2) and (4) are
extensions of functions studied by Salem [3] and de Rham [1], respectively.
‘When # = 2 and 3 the monotony is strict. Howeverif n=4 and 2= 010,y
where each a; is either 2 or 3 then Fy(z) is a constant function of y;.
LeMMA 3. The function
g: (0,1/(n—1)) X ... x(0, T/(n—1)} X (0,1)>(0, 1),

whose value at (Yyy ..y Yn—z, T) s that z€(0, 1) such that Fy(z) = o is well
defined. For ys € (0, 1/(n—1) ), i =1, ..., 01, the function g(Yy, ..., Yn-1, * )
(0,1)->(0,1) s stnctly increasing (md continuous. For each xe(0, 1)
and yi e (0 1/(”“1)) i=1,0, 1,41, 01, g{F1s s Yizay =5 Yit1s -
Yn—1, T): (0, 1/(,”_1))&';3,(0, 1) is a continuous and non-decreasing /uncf
tion of yj.
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Proof. By Lemma 1, Fy(-) is a homeomorphism on (0, 1) onto (0, 1)
and this assures the first two assertions. The last part of Lemma 2 plus
computations give the last part of Lemma 3.

Levuma 4. The function g is continuous.

Proof. By Lemma 3, each partial function of g of a real variable
is nondecreasing. This ensures that for each (vy,...,%n—1, #) in the do-
main of g, an open rectangle R containing (¥, ..., ¥n—1,%) may be con-
structed so that sup{g(z): # e B}—inf{g(2): # ¢ R} is less than a given
&> 0. This fact gives the lemma.

Lemma 5. Let
Ay = {m: ve(0,1), 2= iz.j‘am—f y 13&1; (ZT' I;(aj))/m = Yi,
= i=
t=1,,n=1, Y= (Y1,.;Yn); Li(2) =1 or 0 ag 2=14 or ¢ géi}.
For each (§1, - Yn-1) € (0, Lf(n—1))- x - - x (0, 1/(n—1)), Fy[4,] is a Borel

set of Lebesgue measure one.

Proof. Surely 4, is a Borel set and by Lemma 1 and Lusin’s theo-
rem ([4], p. 244), F,[4,] i3 a Borel set. By Kolmogorov’s strong law of
large numbers, P{Y ¢ 4,} = 1. Since F,(Y) is a uniformly distributed
random variable on (0,1), the assertion follows.

Remark. When y:=1/n, i =1,..,n—1, then F,(») = x. Other-
wise, by continuity of F(-), Kolmogorov’s theorem, and de la Vallee
Poussin’s decomposition theorem ([2], p.127), the derivative of Fy-)
equals zero almost everywhere.

Lemma 6. Let
B ={(#1) ) Yn—1, @): 41 €(0,1/(n—1)), $=1, ..., n—1,
@ eFyAL ¥ =¥, ooy Yna)} -

The set BC (0,1/(n—1)) x - - - x(0,1/(n—1)) x (0, 1) és a Borel set of Lebesgue
measure (n—1)""D,

Proof. Let z =]§: a;n~ be the n-ary expansion of z e (0, 1), taking
the finite expansion whenever possible. For i — 1,..,n—1, define the
sequence of functions {gj,: m=1,2,..} by gz :izm,l Ii(as)}m when

z ‘is dfaﬁned ?s above. The gf,,. are surely Borel functions and thus
&= "]ﬂi SUP ¢m and gi = liminfg,, are Borel functions. Let, for i=1,...

ey m—1, Iy b.e the function defined by Ay, ey Y1, T) = Y¢, surely
a Borel function. By Lemma 4, g is continuous and so 0*og and giog
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Contt real-valued f 25

on En 99

are real-valued Borel funetions on (0,1/(n—1)) x - -+ x (0, 1/(n—1)) x (0, 1).
Let
Cs = {(H1y oy Yn—1y @): 759 Wy vy Ynr, @)

= gi(g(1s s Yna, @) = hi¥1y ey Yn—1, )}

n—1
and let ¢ =) C:. Since all function are Borel functions, it follows
=1

that the O and hence C are Borel sets. But B = C, for (y;, ..., Yn-1,2) € B
if and only if @ e Fy[4,] if and only if ¢(y1, ..., Yn-1, #) € 4, if and only if
g*i(g(?/ly ey Yn—1y -'”)) = gi(g(?/li ooy Yn—1, m)) = hi(Y1; -y Yn-1, @) for i=1,
..., n—1, if and only if (%1, ..., Yn—1,®) € C. To verify the asserted Lebesgue
measure of B simply use Lemma 5 and the Fubini theorem.

LeMMA 7. The restriction of g to B is 1-1.

Proof. Let (41, ..oy Yn—1; )y (Y15 vy Yn—1, #') € B be distinet. If there
is § such that y; 5= y; then since g (1, ..., Yn—1, %) € 4y and g(y1, ..., Yn-1,2")
e Ay and since A, ~ Ay is empty, ¢(¥iy ) Yn—1, ) # Gy ey Yno1, &')-
I y41=9yv, 1=1,..,n—1 then x4 and the strict monotony of
G(Y1y ey Yn—1y -) Droved in Lemma 3 implies the assertion.

Proof of the theorem. It remains only to choose an increasing
homeomorphism % from E* onto (0,1) such that A" satisties Lusin’s

z
condition ¥, for istance, k() = 1/y/2x [ =¥ dy. For then f(x,, ..., @)

= g(h(@)/(n—1), .., B(@n-1)/(n—1), h(an)) meets the requirements.

Remark. The function f is a sufficient statistic for the family of
all probability distributions dominated by Lebesgue measure since,
except for a set of measure zero, f establishes a 1-1 correspondence
with the sample.
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