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Confluent mappings and unicoherence of continua
by
J. J. Charatonik (Wroclaw)

§ 1. Introduction. A new kind of continuous mappings will be
introduced and studied in this paper, namely the notion of confluent
mapping (*), which eomprises, among other mappings, interior, monotone
and, for locally connected continua, also quasi-monotone mappings.

In particular, some theorems concerning the invariance of umi-
coberence and of hereditary unicoherence, known only for some of the
three kinds of continuous mappings quoted above, will be generalized
to confluent mappings (theorems X and XIV). This tagsk has arisen
from investigations of dendroids (see [1] and [2]) and is intended to be
applied to them (see § 6).

The essentiality of the hypotheses assumed will be shown by
examples (see the final parts of § 3 and § 5).

I am very much indebted to Professor B. Knaster, who contributed
to my investigations his kind advicée and valuable improvements.

§2. Definitions and preliminary properties. A continuous
mapping / of a topological space X onto a topological space ¥ is con-
fluent if for every subcontinuum @ of ¥ each component of the inverse
image 77Y(Q) is mapped by j onto Q.

Confluent mappings have the following properties I-VII:

L If f is a confluent mapping of X onto ¥, B is a subset of ¥, and
A is the union of some components of f *(B), then the pariial mapping
g9 =fl4d is a confluent mapping of A onto f(4).

Proof (). Let @ be a subcontinuum of f(4) and C a component
of g7Q). Since

0] g =4~Q),
C lies in a component ¢’ of f(Q). It follows from ¢ C A that
) 0£0=AACCANC,

(!) denomination by Professor B. Knaster.
(*) simplitied by A. Lelek.
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and from QCjf(4)CB that .
(3) ’ ¢'Cf(B).

According to the hypothesis regarding A4, conditions (2) and (8)
give ¢'C A, whence C'Cyg Q) by (1). Thus ¢'= ¢ and ¢(C)=7(0)
=f(C') =@, f being a confluent mapping.

The following corollary is a particular case of I:

IL. If f is a confluent mapping of X onto Y and

4 =f71(4) (),
then the partial mapping g = J|4 is @ conjluent mapping of A onto f(4)

Obviously,

IIL. If {, and f, are confluent mappings of X onto Y and Y onto Z
respectively, then | = fof; s a confluent mapping of X onio Z.

IV. If f = fafs is confluent, so is also f,.

Remark that f, need not then be confluent, as is shown by simple

examples.

Now, recall that a continuous mapping f is:

interior if § maps every set open in X onto a set open in Y
(see [11], p. 348);

quasi-monotone if X is a continuum and if for any continuum
@ in Y with a non-vacuous interior the set F74Q) has a finite number
of ecmponents and f maps each of them onto @ (see [12], p. 136);

monotone if f(y) is a continuum for each point y e ¥ (see [15],
p. 127); or, which is equivalent, if for any continuum @ in XY the set
774Q@) has only one component (see [9], p. 123).

Hence :

V. Any monotone mapping of a continuum is confluent,
and it follows by Whyburn’s theorem (7.5) in [15], p. 148 that also

VI. Any interior mapping of a compact space is confluent,
while by Wallace’s theorem (2.3) in [12], p.138

Any quasi-monotone mapping of a locally conmected continwum i
confluent,

and inversely (see here theorem IX, p.215).

The class of confluent mappings is essentially larger than the classes
of monotone and interior mappings: it is easy to find confluent map-
pings (even among those of dendroids) which belong to none of the
above-mentioned particular classes of confluent ones (even in a certain
local sense).

(*) According to Whyburn ([15], p. 187) such a subset 4 of X is said to be an
snwerse set under the mapping f.
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A direct consequence of Whyburn’s factorization thecrem (see [14],
(2.3), p. 297) and of IV is the following factor theorem for confluent
mappings:
VIL If X is compact and if f is a confluent mapping of X onto ¥,
then there ewists a unique factorization of f into two confluent mappings:

f(®) = ffi(2),

where f, is monotone and f, is 0-dimensional ().

reX,

§ 3. Invariants in locally connected continua. Henceforth
the topological spaces under consideration will be assumed to be metric
continua.

VIOII. If a continuum X is locally connected and a mapping f of X
onto ¥ is confluent, then for every subconlinuum @ C Y such that Int(Q) 7 0
the number of components of F74Q) is finite.

Proof. Assume that f~(Q), where @ is a subcontinuum of ¥, has
infinitely many components. Thus there exists a sequence of those com-
ponents Cy, C,, ... convergent to the limit €, which is disjoint with them.
In fact, 0; is a continuum as a limit of continua; consequently, there
is at most one # such that Cy ~ Oy 5 0; hence it suffices to omit O, in
this sequence. f'(Q) being a compactum, O, Cf '(Q). Further, C, being
a continuum, there exists a component ¢ of 7 (@) such that C,C C.
Sinee €, is a limit of continua O, which are disjoint with C,, thus,
C» being components of 7 (@), also with C, we have C,C X—C. Con-
sequently, C,C 0 ~ X—0, ie. C,CFr(C). But Fr(0)CFr({/ Q) by
Kuratowski’s theorem on locally connected spaces (see [9], § 44, III, 3,
p- 169). Therefore 0y C Fr(f (@) = /(@) » X—f"'(Q), wWhence G,

C X—f'(Q), which implies that 7 (Cy) C f (X —f(Q)). Since f(Cy) = @ by the
confluence of the mapping f as well as by the continuity of f, and since
HX—FQ) CF(X—F(Q)) by the continuity of f, we conclude that

QCHX—74Q)), ie. that @ CY¥—@, whence Int(Q) = 0.
It follows from VIIL by the definitions of confluence and of quasi-
monotoneity that

IX. If f is a confluent mapping of a locally comnected continuum,
then f is quasi-monotone.

Consequently, all the invariants of locally conmected continua under
quasi-monotone mappings are also invarianis under confluent mappings.

{*) i.e. such that dimf;*(y) ==‘0 for each y ¢ ¥ (see [15], p. 130, “light trans-
formations”).


GUEST


216 J. J. Charatonik
In particular, unicoherence being an invariant under quasi-monotone
mappings (see [12], p. 144), we conclude that

X. The unicoherence of locally connected continua is an invariant
under confluent mappings.

It should be observed that the hypothesis of local connectedness
is essential in corollaries IX and X. The following example proves
this essentiality.

Let S be the curve composed of circumferences g =1 and p =2,
and of the spiral line g = (2 +e?)/(1+¢?), where —oo < ¢ < + oo, which
approximates both these ecircumferences. It is easy to state that the
curve S is unicoherent and not locally connected, while its projection
from the origin onto the circumference, e.g. ¢ =1 (thus onfo a non-
upieoherent continuum), is an interior mapping, hence by VI a con-
fluent one, but it is not a quasi-monotone mapping, because each are
of the circumference ¢ = 1 is under this projection an image of infinitely
many disjoint arcs of the spiral part of the curve 8.

§ 4. Mapping into the circumference. First,recall some known
notions. Let § be the circumference |2 =1 and & the straight line
Im(z) =0.

A continuous mapping f of a separable metric space X into § is
said to be:

inessential or essenmtial according as it does or does mnot belong
to the same compenent of the functicnal space §* as the mapping
fol®) =1, where 2 ¢ X (see [5], p. 161);

equivalent to 1 on a set A C X, written f~1 on A, provided that
there exists a continuous mapping ¢(z) of 4 into & such that f(z) = ¥
for z e A (see e.g. [9], § 51, IL, p. 310);

irreducibly non-equivalent to 1 on ACX, written f irr non ~1
on A4, provided that f non ~1 on 4 and that f~1 on every closed
and proper subset F C A (see [9], § 51, VII, p. 322).

A space X is said to be discoherent provided that it is connected
and that for every decomposition X = A u B on closed connected sets
A and B such that A # X # B the intersection 4 ~ B is not connected
(see [9], § 41, X, p. 104).

It follows from known theorems that if f is a continuous and essen-
tial mapping of a continuum X into §, then there exists in X a sub-
continnum € with property f|C irr non ~1 (see [5], p. 162 and [9], § 51,
VIIL, 3, p. 325), and every such C is discoherent (see [9], § 51, VII, 1,
p. 322), i.e. either indecomposable or decomposable into only two sub-
continua such that neither of them is contained in the other and that
their intersection is non-connected. Hence in particular

icm

ieok

Conjfluent mappings and ence of eont 217

XI. Every continuous mapping of a hereditarily decomposable and
hereditarily unicoherent comtinuum into a circumference is inessential.

The following theorem will now be proved.

XTI. There is no confluent mapping of a hereditarily decomposable
and hereditarily unicoherent continuwm onfo a circumference.

Proof (). Let X be such a continuum and suppose that f is a con-
fluent mapping of X onto the circumference. Since f is inessential by XI,
there exists by Eilenberg’s theorem 1 in [5], p. 162, a continuous mapping
¢: X8 such that f(z) = ¢ for every # ¢ X. Thus f can be factored
as follows:

{4) (@) = yp(2)

where @(x) is the continuous real-valued mapping defined above, and
w(t) is the expotential function y(f) = e* for ¢ =g@(z) € &.

As a subcontinuum of §, the image ¢(X) is a straight segment.
Denote it by I:

for zeX,

p(X)=1I.

It follows from (4) that the partial mapping u|I is onto, because
¥ is onto by hypothesis, and that |I is confluent by IV, because f is
confluent by hypothesis. Thus the circumference (I) were unicoherent
by X, because the segment I is a unicoherent and locally connected
continuum. But this contradicts the discoherence of circumference.

$ 5. Invariance of hereditary decomposability and heredit-
ary unicoherence. First we have the following theorem:

XITI. The hereditary decomposability of contimua 4s an invariant
under confluent mappings.

In fact, let @ be an indecomposable subcontinuum of the continuous
image f(X) of a continuum X, and ¢ an arbitrary component of f(@).
If the mapping f were confluent, we should have f(C) = @, and there-
fore € would contain an indecomposable subcontinuum (see [9], § 43,
V, 4, p. 146).

Now we prove the following main theorem:

XTIV. The conjunciton of the hereditary decomposability and the heredit-
ary wunicoherence of continua is an invariant under confluent mappings.

Proof. If X is such a continuum, then by XIIT its confluent image
f(X) is also hereditarily decomposable. It remains to show that f(X)
is hereditarily unicoherent.

Suppose that it is not so. Thus there exists a subcontinuum M
of f(X) which is hereditarily decomposable but not unicoherent, and

{*) I am indebted to A. Lelek for the first proof of this theorem.
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therefore containg (see [10], theorem 2.6, p. 187, and apply a homeo-
morphism of a simply closed curve onto the circumference) a subcon-
tinnum N which has an upper semi-continuous decomposition
(5) N=UN

teS
on mutually disjoint continua N, such that the hyperspace of this
decomposition is the circumference 8. That means (see [15], (3.1), p. 125)
the existence of a continuous mapping # of ¥ onto § such that ¥; = #7'()
for each te8; thus ¢ is monotone, which implies by V that

(6) the mapping ¥ is confluent.

Let C be a component of 7 (). Thus ¢ C X, whence by hypothesis
(7

C is hereditarily decomposable and hereditarily unicoherent.

Hence according to theorem I the mapping f|C is confluent by the
confluence of f. Thus the superposition #(f|0) is confluent by (6) and
I, and it maps C onto 8, which contradicts XII by (7).

In theorems XI, XIT and XTIV the hypothesis of hereditary de-
composability is essential. It can be proved by the following example,
described here in van Dantzig’s notation (see [3], p. 106). Let X, be
van Dantzig’s solenoid (see also [4], pp.73-76) lying in a torus T, with
centre of symmetry p. Let # be an arbitrary meridial half-plane of T,
K the circumference T, ~ B, g M its centre, and O the equatorial circum-
ference composed of all centres zM for mobile B. As is well known,
2y is indecomposable and thus unicoherent; it is even hereditarily uni-
coherent, because every proper subcontinuum of £, is an arc or a point.
The projection of T, onto the circumference 0, i.e. the mapping of each
zK onto its centre M €O, is evidently an essential mapping trans-
forming open subsets of the solenoid X, C T, onto open subsets of 0.
Hence it is an essential and confluent mapping of the hereditarily uni-
coherent continuum X, onto the non-unicoherent continuum O.

Also the hypothesis of hereditary unicoherence is essential in
theorems XT, XIT and XIV. In fact, consider the same example as
that described in the final part of § 3. As regards theorem XTI, it iz easy
to show that the projection, considered in it of § onto the circumference
¢ = 1is an essential mapping. Further, as regards theorems XTI and XIV,
the same projection is an interior, hence by VI a confluent mapping,
of a unicoherent but not hereditarily unicoherent continuum S onto
the circumference, and thus onto a non-uniecherent continuum.

§ 6. Applications to dendroids. Problems and remarks.
Recall thatv.a. dendroid is an arcwise connected and hereditarily unico-
herent continuum (see, e.g. [1], p. 239). Since every dendroid is heredit-
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arily decomposable (see [1], (47), p. 239), the following corollaries are
special cases of theorem XIV:

CoROLLARY 1. Bvery confluent image of a dendroid is a dendroid,
whence in particular by V and VI

COROLLARY 2. Ewery dnterior, or monotone image of a dendroid is
a dendroid.

Eilenberg proved (see [5], theorems 5, p. 165 and 14, p.176) that
if the space X is compaet, then in two cases, namely if f is a monotone
and if f is an interior mapping of X, the connectedness of the space s
implies the connectedness of the space §'®, The problem arises whether,
more generally, the theorem remains true for confluent mappings f.
In equivalent words: does the inessentiality of all continuous mappings
of a continuum X into 8 imply that of all confinuous mappings of con-
fluent images j(X) into 8%

Ward (see [18], p. 13) calls a continnous mapping f: X -Y pseudo-
monotone if for each pair of closed connected sets A C X and B Cf(4),
scme component of 4 ~ F7Y(B) is mapped by f onto B. Simple examples
show that the pseudo-monotoneity of f neither implies nor is implied
by its confluence, by its interiority, by its monotoneity, and so by its
quasi-monotoneity, even if X is a hereditarily decomposable or a hered-
itarily unicoherent continuum. The problem arises whether the con-
fluence of j implies its pseudo-monotoneity if the continuum X is simul-
taneously hereditarily decomposable and hereditarily wnicoherent?

Remark that the positive answer to this problem would imply ab
once by wWard’s fixed point theorem (see [13], Corollary 1.1, p. 14) that
each continuum X, all non-trivial subcontinua of which have cut-points
(the hereditary divisibility by points), has a fixed point under confluent
mapping of X onto X.

Remark, however, that the problem of such fixed point theorem
for continua X which are simultaneously hereditarily decomposable and
hereditarily unicoherent would remain nevertheless unsolved, because
the class of such continua is really larger than that of continua which
are hereditarily divisible by points. Indeed, on the one hand, there exist
continua hereditarily decomposable and hereditarily unicoherent without
cut-pcints (6). On the other hand, every X which contains an indecom-
posable subcontinmum L is not hereditarily divisible by points, because
L has no cut-point (see [9], § 43, V, 1, p. 145). Similarly, every conti-
puum X which is hereditarily decomposable bubt contains a non-uni-

(%) Such is, for instance, Knaster’s continunum N jrreducible between two points
(see [7], p. 296) which arises from his continuum R, (see [6], D. 570 and 571) by
replacing its strata in form ¥V by strata in form ¥, vertical segments of which have
lengths tending to zero.


GUEST


220 J. J. Charatonik

coherent continuum I, contains also by already gquoted Miller’s theorem
(see [10], P 187, theorem 2.6) a subcontinuum N C M which has an
upper semi-continuous decomposition (15) on mutually disjoint continus,
such that the hyperspace of this decomposition is the ci.reumference,
Thus N contains no cut-point. )

3. Knaster even agks (New Scottish Book, problem 526) whether
the s.lmult»aneously hereditarily decomposable and hereditarily unicoherent
continua (which he ecalls “A-dendroids”) have fixed points under arbi-
trary continunous mappings.
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A correction to my paper: ‘‘Continua meeting
an orbit at a point”

(Fundamenta Mathematicae 52 (1963), pp. 319-321)
by
P. S. Mostert (Tiibingen)

As pointed out to me by L. W. Anderson, there is an error in the
proof of lemma 2, and in fact the statement is false as it stands. While
this can be partially rectified, the author is at present unable to retrieve
the theorem in its stated generality. The extra condition we must im-
pose is as follows: (We do not assume that X is connected.)

(%) Let g2 X —>X/G be the natural projection. There is an invariant
naighborhood V of G(p) in X such that if U is any neighborhood of ¢(p)
in X/@, there is a neighborhood W C U such that the component A of ¢(p)
in W~ meets X|@—W and if a e d ~X/G—W, the component of a in
(V7 )—W meets X|G—op(V).

Condition (%) is implied by condition (ii) of Anderson and Hunter,
and its form is more suitable for the induction argument. Our proof
now is in a similar vein to that of Anderson and Hunter, but uses a slice
instead of a local cross section to eliminate condition (i) and a revised
form of lemma 2 to overcome the finite induction in their argument.
The proof of the theorem remains unchanged except in one detail.

Since (%) is satisfied for any compact connected semigroup, the
corollary remains valid.

We now describe how lemma 2 may be altered in order to give the
desired result.

First, in place of (iii) of lemma 2 we must have

(iil) M ~ (X—V) # O for a fized invariant neighborhood V in X,
and in place of (iv), we have

(iv) M/K is connected and satisfies (x) with respect to M ~n'V and K.

Now in the proof we proceed exactly as before, but taking U C =(V)
and such that W satisfies (+) with respect to U, up to the point where
we define M,. Let A be the component of W~ containing =(p). Since
MK is connected, 4 meets U~ —W. Let B, be the component of M/K-W
containing a, where a is any point of 4 ~ (M/K—W). Then B, meets
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