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Semigroups on continua ruled by arcs
by
R. J. Koch and L. F. McAuley (Charlottesville, Va.)

Introduction. In our paper [4], we show that an acyclic Peano
continuum P which has a compact set of endpoints I admits a semi-
group structure with zero and unit. Later, we were able to prove that
each acyclic Peano continuum P admits such a structure, i.e., there is
a continuous mapping m: P x P—P such that m is associative and there
are points 0 and 1 in P such that m(x, 0) =0 and m(x,1) =1 for each
@ in P. We made the observation that the concept of being acyclic
(l.e., contains no simple closed curve) was not essential to defining
a semigroup structure on a Peano continuum P (i.e., locally connected,
compact, and metric) provided that certain properties were possessed
by P. One of these is a natural kind of ruling of P by simple ares. A disk,
for example, can be ruled with arcs.

It is known [2] that a one dimensional compact connected semi-
group with zero and unit is a generalized tree [3], i.e., arcwise connected
hereditarily unicoherent and satisfies an are convergence property: for
some point 0 (necessarily a point of local connectivity), if w,—=, then
the ares [0, 2x]—>[0,#]. A question which remains unanswered is the
following. Does a one-dimensional generalized tree admit a semigroup
structure with zero and unit? Although a ‘ruled continuum” may be
of large dimension, the one-dimensional ones include certain generalized
trees, and therefore, admit the desired semigroup structure.

A special case of a ruled continuum: trees (acyelic Peano
continuum). We take up this special cage separately to provide moti-
vation for the rather complicated description of a ruled continuum. The
concepts were suggested by this- special case and an example due to
Professor Haskell Cohen. He has shown that a Cantorian swastika
admits the required semigroup structure. It remains unpublished.
However, Cohen’s example is a ruled continuum of a special kind
which furnishes a technique for overcoming an obstacle which we en-
countered.

Suppose that § is an acyclic Peano continuum and that I is the
set of all endpoints of § with the exception of one endpoint which we
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denote by 0. There exists % in § such that sup{d(0, #): © <8} = d(0, u)
where d is a convex metric for 8. Here, we refer to R. H. Bing’s result [1]
that each Peano continuum admits a convex metric. This is an extremely
powerful tool and our techniques depend heavily upon it.

For each point # in S, there is a unigue are [0, ] in 8. Furthermore,
for each # in S, there is an arc [0, e] such that ¢ < I and [0, ¢]D [0, #].
That is, § is a union of a collection U of arcs [0, ¢] for the various points
¢in I. If [0,¢] and [0, f] are two elements of 2, then [0, ] w [0, /] is
a proper subarc of each if and only if e s f. Also, if #,—+>, then the
unique ares [0, #,]->[0, #]. We can assume without loss of generality
that @(0,u) = 1. Since d is a convex metric for S, it can be shown that

for each o in 8, the arc [0, 2] is isometric to a straight line interval.-

These are all properties which we shall use in our deseription of a ‘““ruled
continuum”. We shall say that § is radially convex gince our arcs emanate
from the point 0. ’

A linear ordering of I. Our next step is to linearly order the
points of I. Note that I may be dense in S.

Let B denote the set of branch points of §, i.e., cutpoints of order >2.
It is known that if be B, then §—b has at most countably many com-
ponents. For b e B let Oy(b) denote those components of §—b which do
not contain 0, and let Iy(b) = I ~ Oy(b)* (the set of endpoints of the tree
Ci(b)*, excluding b). Note that the Cy(b) form a null collection, i.e. for
e>0, {0yb): diam Cy(b) > ¢} is countable. We order the collection C(b)
50 that (i) diam Ci(b) > diam Cpy4(b) and (ii) w e Cy(b) if 0 and % do not
lie in the same component of §—b.

Define a relation R(b) on LijIg(b) by: (@, y) e B(b) iff @ e I4(b), y € I;(b)

and i <j. We note that R(b) is transitive and has the property that
(z,y) e B(6)~>(y, ®) ¢ R(b). Now let R= |J R(b)u 4, where A is the
beB

diagonal of I xI. The proof that & is an ordering is similar to that given
in [4]. We next coordinatize S as follows: to each # e § ig assigned ey e I
subject to the conditions @ € [0, e,], and ez = u iff » [0, u]. Now assign
to each @ ¢ 8 two coordinates (4s, €5), where a;= d(0, #) and ey is given
above. Now, (az,6;) uniquely represents # since & is radially convex.
Let y = (ay, ¢;) and define

2y = (3, 62) (ay, 6y) = (min(az, ay), min (e, 6)) .

Multiplication in § is easily seen to be well defined, associative,
ha:s t}?e zero (0, e;), and wnit (1, u). It remains to be shown that multi-
plication is continuous. )

Next, we state two lemmas which arve not difficult to prove for
trees. We shall prove them later for “ruled continua’.
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LEvma 1. Suppose that oy—@ with &n= (Gz,, €z,) and &= (g, €z).
Let 1 be a sequence of real numbers such that 0 <1, <1 with t,—~>1 and
ty < Qg3 then (tn, €z,) (1, €z).

LEMMA 2. Suppose that @n—>o, Yn—>Y, and ez < ey. If cither @ [0, y]
or y e[0,x], then TnYn—>oY.

We recall the following result ([4], Lemma 5): The function f: § x 88
defined by: p,qe8=[0,p]~[0,q =10, f(p,q)] is continuous. Let
{@z}—>y. By Lemma 2 we need only consider the case z¢[0, y] and
y ¢ [0, 1. For such @, y let (=, ) = b. We have that f(om, #)>f (2, 2) =
and f(¥a, ¥)~>F(y, y) = ¥; hence we may choose subsequences {%.} and
{Ya) With f(@n, 2) € Ci(b), f(¥n, y) € C(b), and either az, < ay, OF Ay, < dg,
for some i, §, all n. Note that # and y are distinet from b since # ¢ [0, y]
and y ¢ [0, ]; hence e; << ¢y. It follows from the definition of the ordering
that ez, <ey, all n.

If ag, <ay, all #, then

TnYn = Oz, €zp) Ay, €y,) = (Gay) €2,) = B > =Y .
If ay, < ag, for each n, then ’

BnYn = (Gz, s O2,) (Gums €yn) = (Qyny 02,) (O ¢z) (by Lemma 1)

and
(ay, €z) = (az, €3) (ay, &y) = @Y .
Thus, we have proved the following theorem.

THEOREM A. Suppose that P is am acyclic Peano continuum. Then
P admits the structure of a topological semilattice with zero and unit.

A description of ruled continua. The fact that trees admit
a semigroup structure with 0 and 1 depends upon a number of prop-
erties which we list below. It is easily seen that these are taken from
trees. However, a large class of continua including disks as well as patho-
logical continua (non-locally connected) satisfy these conditions.

Let § be a compact metrie continuum, and let 0 ¢ §. Suppose I C 8,
and suppose % = {[0, €]: ¢ I} is a collection of arcs in § satisfying the
following conditions (1)-(8).

1 s=yU%a

(2) For each eel there is a unique arc [0, ¢] in 2.

(8) If e, f € I with e # f, then [0, €] ~ [0, f] is a proper subarc of each.

For # ¢ § we denote by [0, #] the subare with endpoints 0, & of any
member of U which eontains #. This is seen to be well defined by (3).
We say that a metric @ for § is radially conves if for each eI and
z,y e[0, 6] with @ 5=y, d(0, ) # d(0, y). Suppose further

(4) I @y >, then [0, 2] [0, 2].

(8) § has a radially convex metric d.

]'
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ExaMPLE 2. Two Cantor fans tangent along o segment (Fig. 2). Here,
I consists of the non weak-cutpoints. The ordering on I is clockwise.
The continuum ¢ is the point 0. We may describe this as the continuously
ordered case. Conditions (1)-(8) are immediate.

Using (8) and (1) it can be seen that there cxists w eI such that
@(0, ) is raximal among {d(0, ¢): ¢ eI}, and without loss of generality
we may assume that d(0,u)=1.

(6) For w8, let exel be chosen with @e[0, 6] and satisfying
2 e[0,u] iff ez =u.

Suppose next that I can be ordered, with maximal element u,
subject to the restrictions.

(7) If (@}~ and {yn}—>y With ez < ey < u and @ ¢ [0, 4], y ¢ [0, 2],
then there are subsequences {#s} and {ys} such that e, < ¢, for
each %. ' *

Denote by O the point 0 and all points y in [0, 4] such that there
exists @ ¢[0,u] and sequences {ya}-—>¥y, {as}->a such that (a) e, < €a,y
(b) y ¢[0,a], and (c) [0, ¥u] ~ [0, ] C [0, p] where y ¢ [0, p]. Bither ¢ is
the set consisting of only 0 or ' = [0, k] C [0, %] for some & 5= 0 in [0, u].

(8) It 0=1[0,%] (k #0), then § can be remetrized with a radially
convex metric d so that d(0,u)=1, d(0,%) =%, and if eel with
[0, el ~ [0, u] =10, p], then d(e, p) < %

It follows from (8), that u¢ C.

The class © of all ruled continua is that collection of arewise con-
nected continua satisfying conditions (1)-(8).

' Examples. In view of the somewhat formidable description of €
it seems appropriate to give some illustrative examples.

;EXA;MI’LE 1. The Cantorian swastike S. This pathological continuum
consists of four eopies of [0,1]w {C %[0, 1]} where C is the Cantor set.

N Cy
\
g .
0 u u

Fig. 2 Tig. 3

ExAMpLE 3. Two cones tangent along a line segment (Fig. 3). Here,
I consists of (¢, u C,)—Fk together with # where C; and (, are the
boundaries of the cones (topologieal disks).
The ordering is as indicated, with « the
maximal element. This illustrates what
we may call a discontinuity in the order-
ing of multiplicity two. An uncountable
multiplicity may be obtained by filling in 0 u
cones along a Cantor set. Fig. 4

ExAMPLE 4. The two cell (Fig. 4). We
may take I to be a side opposite a vertex, and ¢ = 0. This is a contin-
uous ordering, as motivated by Example 1. Some typical members of
A are indicated.

Here (Fig. 5), I = (a, ] v (¢, b]u[d, e} [f, k) and O = [0, k]. Some

These are put together as illustrated
typical members of N are indicated.

- u= ?’Zi) (Fig. 1). Here, I is the collection of
all non weak-cutpoints and § is given
the metric inherited from the plane.

It is clear that § satisfies (1)-(5). The

———] ordering of I iy given clockwise. The

continuum € = [0, %] describes a “dis- u 0

0 ¥ continuity” in the orvdering < on I in

the sense that there are elements on
low-indexed lines which are close to

—————— ; clements on the high indexed line

/[0, u]. This type of order discontinuity

occurs only at the points of ¢ and
occurs with a single multiplicity. Con- d e F 0
tho lsngoet, possil 4, & _ difion (6) can be satistied by choosing Fig. & Fig. 6
P ¢z 10T points # on the coordinate axes. ExAwvrre 5 (Fig. 6). The “closed up” sin(1/z) curve, together with

Condition (7) follows easily, and e inui G —
- ¥, xpresses the continuity of the i ior i 3 i
ordering awa om [0, u]. Conditio (8) is clear. Yy interior. Here I is u together with the graph of y sm(l/@, o<l

b a u

Fig. 1
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This is another example of the continuously ordered case. Some
typical members of U are indicated.

Definition of multiplication in a ruled continuum S. Lt
8 be in @; if ¢ = 0, then assign to each @ ¢ § two coordinates (@z, €z),
where ay= d(0,2) and e;el is given by (6). If C is non-degenerate,
we remetrize according to (8) and then assign coordinates as above.
Note that (az, €z) uniquely represents » since § is radially convex. Let
Yy = (ay, ¢y) and define zy = (as, 6z)(ay, éy) = [(az" ay), min (es, €y)], where
g dy = max(as; +by—1, 0). We note that 3 3=0, and }- (3+p)=19p
for 0<p < 3 Multiplication in § is easily seen to be well defineq,
associative, has the zero (0, e5), and unit (1, ). It remains to be shown
that multiplieation is continuous. We proceed to show this fact.

Proof of Lemma 1. Note that (tny €,) € [0, 2a] [0, &] Dby (4).
Hence there is a subsequence (fy,, e,,"k) converging to an element of
[0, £]C [0, ez], ie., (tagy €s,,) >(, €5). But each subsequence of (tay €z,
has the cluster point (¢, e5), and the result follows. !

Proof of Lemma 2. Suppose » 7 4 and ¢ [0, ¥]. We may assume,
by choosing subsequences, that either e, < ¢y, for each =, or that
éy, < €z, for each n, and that ag, < ay,.

If ez, < ¢y, then

TnYn = (a’"?n’ 6-"’1:) (“1/7.! el/n) = (a'fc,,y em,,) = Tp—+
= (tz; €5) = (z, 6z)(ay, €,) xy.

If ey, < es, then @y, = (@2, €2,)(ay,, €y,) = (a2, €4,). Bince a, < ay,,
we conclude from Lemma 1 that (as,, y,) > (a2, €y). Butb (az, ey) = (az, ez)
since [0, y]C [0, e]; hence, anyn—(as, 6y) = (s, €2) = (ag, 02)(ay, €y)
=ay. A similar argument applies in cage ye[0, 2]

Now, suppose # = y, Then, by choosing subsequences we have either
() 0z, < ay, and es, < ey, for each n or (2) @, < ay, and ey, < e, for
eaih f;&. g ((1) holds, then #uy.—x = my since each element of 8 iy idem-
potent. 2) holds, then #pys = (as ,e ) (g, 6y) = (ay, €) =y = m
The proof is complete. oo o) >l ) = (0 0r) = 3 = 9.

Thus, we may assume that Po—>Zy Yn—>Y, € ¢[0,y], and y ¢ [0, 2].
It follows that e < ey, for otherwise #,Y€[0,¢]; and hence, either
ze[0,y] or ye[0,x]. ' '

Case 1. 6; <ey <u. By (T) we may assu i

. ime, by choosging sub-

sequences, that eg, < ey, for each n. v ) Y choosing sb

Then @y = (as,, €2,) (g €4,) = (0, " @y, ez,). Let &y = a4, ay, and

note that #, < as,. By Le
> (az- ay, 02);\-’01/. y Lemma 1, we conclude that (as,: dy, ¢z,)—>

im@) Semigroups on continua ruled by arcs

Case 2. ez <ey=u.

I) We suppose first that yeC. Now, if ¥ 520, then by remetri-
zation (8) we have ¢ = [0, k] with d(0, k) = 4. By taking subsequences,
we may assume that either (1) er, < ey, all n or (2) ey, < e, all n.

If (1), then @u¥n = (Gz,* Oy,, bz,) >(0z* Gy, z) = 2y (using Lemma 1).
Now, suppose &y, < ez, for all n, and let p denote the endpoint of [0, p]
= [0, ez] ~ [0, ] (using (3)). Then az=d(0, ) <d(0,e;) <d(0,p)+
+d(p,e) <ap+3i Since ye, ay < $; hence az-ay <(ap+3)-3=7p.
Therefore, Zpyn = (8z," dy,, €y,) > (0z" Gy, %) = (@z" @y, €5) = Y. The next
to the last equality holds because az- ay << p; hence, az- ay may be marked
off along either [0, #] or [0, e;] with the same final position.

Next, assume y=0; then &nYn= (az," ay,, Min(es, e,)) >0 by
Lemma 1; hence, @nys —xy. This completes the Case 2 (I).

II) Suppose next that y [0, u]—C. We may assume, by choosing
subsequences, that either es, < éy,, all %, oT ¢y, <eéz, all n. If s, < ey,
all n, then @nYn= (Gz,* Ay,, z,) >(0s" ay, €z) = xy (using Lemma 1).
If ey, <eés,, all », we may further assume that ez,->a, and note that
a ¢ [0, u], and y ¢ [0, a]. For if ae[0, ], then by (4), v [0, a] C[0, u],
a contradiction to (6) and the fact that ez < 4. If [0, yu] ~ [0, ][0, y],
then @,y —>zy. On the other hand, if [0, yu] ~ [0, «]C [0, p] for each n
and for some p in [0, w] where y ¢ [0, p], then y ¢« C contrary to the
assumption that y € [0, u]— C. Thus, II is completed.

We have proved the following theorem:

THEOREM B. Suppose that S is a ruled continuum. Then 8 admits
the structure of a topological semigroup with zero and unit.

Remarks. Thus, each member of € supports the structure of a topo-
logical semigroup with zero and unit. Note that the multiplication intro-
duced is commutative. It was necessary to use the multiplication in [0, 1]
given by a-b=max(a+b—1,0) in order to handle the first part of
Case 2. In the case that O is degenerate, any continuous associative
multiplieation on [0,1] (fer which 0 acts as a zero and 1 acts as a unit)
can be used. In particular, we may use a-b= min(a, b), and we con-
clude that if Se € with card ¢ =1, then S can be given the structure
of a topolcgical semilattice (i.e., idempotent commutative semigroup)
with zero and unit.

‘We note also that if §e € then § is contractible, since an arcwise
connected compact tepological semigroup with zero and unit is contract-
ible. (For te[0,u] let h(t, )= tw; then h contracts S to 0.) It is false,
however, that the members of € have the fixed point property.

It should be clear that a tree is a special case of a ruled continuum
[satisfying conditions (1)-(8)]. Note that € = 0 in this case and that
the ordering ¢f I may have ‘“discontinuities” along arcs other than [0, «]


GUEST


8 R. J. Koch and L. F. McAuley

but these discontinuities are nice in the sense that ¢ = 0 for these arcs,
It appears that our technigues would handle the cases of a finite num.
bers of ares A, like [0, «] with bad discontinuities, that is, the sets ¢,
(like C) are nonempty and also A,—Cy is nonempty.

Finally, it is conjectured that C contains n-cells, and that ¢ iy
closed under the operation of taking cones.

Question. Suppose that a compact metric continuum § containg
a subset I such that (a) § satisfies Conditions (1)-(6) for a ruled con-
tinwum and (b) I admits a topological semigroup structure with zero 2
and unit % where I and % have the same meaning as in (1)-(8). Does §
admit the structure of a topological semigroup with zero and unit #?

The continuum S above is a more general type of ruled continuum
than that considered in Conditions (1)-(8).
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On the lexicographic dimension of linearly ordered sets
by
V. Novdk (Brno)

L Introduction. In earlier papers from the theory of representa-
tion of linearly ordered sets chief interest was concentrated on finding
so-called universal sets. Under an m-universal linearly ordered seb (where
m is cardinality) we understand a linearly ordered set which contains

‘a subset isomorphic with every linearly ordered set of cardinality <mn.

It was been shown that such universal sets are ordinal powers (in Bir-
khoff’s sense) in which the base in any chain containing at least two ele-
ments and the exponent is a well-ordered set. Thus Hausdorff proved
{1], p. 181) that every linearly ordered set of cardinality <8 where
8¢ is a regular cardinal number is isomorphic with a certain sebt of se-
quences of type w; formed from three cyphers 0,1, 2, and ordered lexi-
cographically. In other words, he proved that an ordinal power of
type 3 is an s;-universal lineaxly ordered set if s, is regular. Sierpinski
([2]) improved his result in the following way: An ordinal power of type 2
is an mg-universal linearly ordered set for every cardinal number ;.

Now it is clear that the type of base cannot be reduced. Hence
interest has been concentrated on the problem if it is possible to reduce
the type of the exponent. It has been shown, however, that in general
this type cannot be reduced. In some cases it is possible, however, to
map a given linearly ordered set of cardinality s, isomorphically onto
a subset of a power with the exponent of a lower type than ;. Thus
Novotny ([8]) proves that: Every Ng-separable (1) linearly ordered set
can De isomorphically mapped onto a subset of ordinal power of type 2.
This survey makes clear the effort to find the most economical repre-
sentation, i.e. a representation in-which both the base and the exponent
are of the smallest possible types.

Now it is possible to pose this problem: Let the type of the base
be constant. What is the smallest possible type of exponent such that
the given linearly ordered set can be mapped isomorphically onto a sub-
set of the corresponding ordinal power? This problem was partially

(*) A linearly ordered set @ is called m-separable if it contains a dense subset H
of minimal possible cardinality m.
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