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coherent continuum I, contains also by already gquoted Miller’s theorem
(see [10], P 187, theorem 2.6) a subcontinuum N C M which has an
upper semi-continuous decomposition (15) on mutually disjoint continus,
such that the hyperspace of this decomposition is the ci.reumference,
Thus N contains no cut-point. )

3. Knaster even agks (New Scottish Book, problem 526) whether
the s.lmult»aneously hereditarily decomposable and hereditarily unicoherent
continua (which he ecalls “A-dendroids”) have fixed points under arbi-
trary continunous mappings.
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A correction to my paper: ‘‘Continua meeting
an orbit at a point”

(Fundamenta Mathematicae 52 (1963), pp. 319-321)
by
P. S. Mostert (Tiibingen)

As pointed out to me by L. W. Anderson, there is an error in the
proof of lemma 2, and in fact the statement is false as it stands. While
this can be partially rectified, the author is at present unable to retrieve
the theorem in its stated generality. The extra condition we must im-
pose is as follows: (We do not assume that X is connected.)

(%) Let g2 X —>X/G be the natural projection. There is an invariant
naighborhood V of G(p) in X such that if U is any neighborhood of ¢(p)
in X/@, there is a neighborhood W C U such that the component A of ¢(p)
in W~ meets X|@—W and if a e d ~X/G—W, the component of a in
(V7 )—W meets X|G—op(V).

Condition (%) is implied by condition (ii) of Anderson and Hunter,
and its form is more suitable for the induction argument. Our proof
now is in a similar vein to that of Anderson and Hunter, but uses a slice
instead of a local cross section to eliminate condition (i) and a revised
form of lemma 2 to overcome the finite induction in their argument.
The proof of the theorem remains unchanged except in one detail.

Since (%) is satisfied for any compact connected semigroup, the
corollary remains valid.

We now describe how lemma 2 may be altered in order to give the
desired result.

First, in place of (iii) of lemma 2 we must have

(iil) M ~ (X—V) # O for a fized invariant neighborhood V in X,
and in place of (iv), we have

(iv) M/K is connected and satisfies (x) with respect to M ~n'V and K.

Now in the proof we proceed exactly as before, but taking U C =(V)
and such that W satisfies (+) with respect to U, up to the point where
we define M,. Let A be the component of W~ containing =(p). Since
MK is connected, 4 meets U~ —W. Let B, be the component of M/K-W
containing a, where a is any point of 4 ~ (M/K—W). Then B, meets
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M/K ~=(V) and 4 U B, is connected. Since » is open on (M—:m‘l(W))/K
Fhere is a continuum containing each point o' € (3 T) (@) and cove;i
Ing B,. Let B; be the union of all such continug over all ¢ ¢ 4 ~ (M/E-—W)
Tllle set B, is closed, for if b e B, there is a net -4 where (1) « B, )
Bz & continua covering By, where (i) is a point in 4 ~ (M/K ~ﬁg3’
Ir} the space of compact subsets of (M ~7z‘1(W)) /K,, there is a subnetl
%?;.u converging to a continua B’, and then b B’ Choose a subnet
@caof converging to a point @ e 4 ~ (M/E—W), and let o’ e x~*(a) ~ B’
Then B’ is contained in the component of ¢’ in (M —m~1(W)) |E. anc{
1.;hls set maps under ¥ onto B,. Hence, beB,. Since 4, = (vlT)l“l(A)
is connfelcted, 4, By is then connected and meets (M —V)/K,. Let
M, = 7 (4, v B,). Then MCHM, M~V #0, peM,n G(p) :IK (p)
and M/K, is connected. We must show that (¥) is satisfied with res::)ect,
to M AV, i .

Let Z be any neighborhood of 7(p) in m(M,). Choose i -~
hood‘ YC W such that (WIT)—I(Yn (M) C Il'(n% and Y :'atni:;ihsb?:)
relative to W. Let C be the component of #(p)in Y, and e e 0 ~ (M/K —-¥)
By () the component of ¢ in M/E—Y meets M/K —ax(V) and in arti:
cular the component ¢’ of ¢ in W——7 meets U"—W. Hence C upO' is
connected and therefore contained in 4. Thus (»|7)7(0) is connected.
and c(n:t’oabineii1 in the component of Z. Also, (»|T)™Y(0 U C') is connected.
and meets v (A ~ (U‘——W)) and so meets B, whose every component
meets (M, —V), which then proves ().

In order to prove the theorem, we observe that
the conditions of the new lemma 2 and 80 starts the
of the proof remains wnchanged.

(G(P), @) satisfies
induction. The rest

Eegu par la Rédaction le 26. 2. 1964
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Subdirect representations of relational systems
by
H: E. Pickett (Richmond, Calif.)

1. Introduction. The representation of algebras as direct or sub-
direct products has been extensively investigated by Birkhoff [3],
Hashimoto [7], Krull [9], and many others. Birkhoff establishes a neec-
essary and sufficient condition for a universal algebra to be represent-
able as a subdirect product. In this paper we give a generalization of
the concept of subdirect product suitable for relational systems, and
obtain representation conditions containing Birkhoff’s result as a spe-
cial case.

Adam [1] presents a counter example of L. Fuchs and G. Szész
showing the invalidity of Birkhcff’s conditions for an algebra to be
represented as a direct product of finitely many algebras. We append
to the subdirect representation conditions a third condition and prove
the set both necessary and sufficient for the representation of a rela-
tional system as a direct product of finitely or infinitely many factors.
This theorem is similar to a theorem of Hashimoto on the infinite direct
product representations of an algebra.

Birkhoff also establishes the following representability theorem:

Every algebra is representable as a subdirect product of subdirectly
irreducible algebras.

In section 5 we present a representability theorem for relational
systems which yields Birkhoff’s result as one special case, but also other
more precise specializations to the algebraic case. Hindsight shows these
specializations could have been obtained directly for algebras by Birk-
hoff’s arguments alone.

Lyndon [10] and Pickert [12] have also generalized the concept
of subdireet produet to relational systems. The definition used by Pickert
is slightly weaker than the definition presented here, and yields Birk-
hoff’s condition for a relational system to be represented as a subdirect
product. Pickert gives no direct product representation conditions. But
the unity given to the two representation theorems by our definition
makes it seem more natural. Pickert also fails to establish a significant
subdirect product representability theorem, but it is clear that such
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