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M/K ~=(V) and 4 U B, is connected. Since » is open on (M—:m‘l(W))/K
Fhere is a continuum containing each point o' € (3 T) (@) and cove;i
Ing B,. Let B; be the union of all such continug over all ¢ ¢ 4 ~ (M/E-—W)
Tllle set B, is closed, for if b e B, there is a net -4 where (1) « B, )
Bz & continua covering By, where (i) is a point in 4 ~ (M/K ~ﬁg3’
Ir} the space of compact subsets of (M ~7z‘1(W)) /K,, there is a subnetl
%?;.u converging to a continua B’, and then b B’ Choose a subnet
@caof converging to a point @ e 4 ~ (M/E—W), and let o’ e x~*(a) ~ B’
Then B’ is contained in the component of ¢’ in (M —m~1(W)) |E. anc{
1.;hls set maps under ¥ onto B,. Hence, beB,. Since 4, = (vlT)l“l(A)
is connfelcted, 4, By is then connected and meets (M —V)/K,. Let
M, = 7 (4, v B,). Then MCHM, M~V #0, peM,n G(p) :IK (p)
and M/K, is connected. We must show that (¥) is satisfied with res::)ect,
to M AV, i .

Let Z be any neighborhood of 7(p) in m(M,). Choose i -~
hood‘ YC W such that (WIT)—I(Yn (M) C Il'(n% and Y :'atni:;ihsb?:)
relative to W. Let C be the component of #(p)in Y, and e e 0 ~ (M/K —-¥)
By () the component of ¢ in M/E—Y meets M/K —ax(V) and in arti:
cular the component ¢’ of ¢ in W——7 meets U"—W. Hence C upO' is
connected and therefore contained in 4. Thus (»|7)7(0) is connected.
and c(n:t’oabineii1 in the component of Z. Also, (»|T)™Y(0 U C') is connected.
and meets v (A ~ (U‘——W)) and so meets B, whose every component
meets (M, —V), which then proves ().

In order to prove the theorem, we observe that
the conditions of the new lemma 2 and 80 starts the
of the proof remains wnchanged.

(G(P), @) satisfies
induction. The rest

Eegu par la Rédaction le 26. 2. 1964
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Subdirect representations of relational systems
by
H: E. Pickett (Richmond, Calif.)

1. Introduction. The representation of algebras as direct or sub-
direct products has been extensively investigated by Birkhoff [3],
Hashimoto [7], Krull [9], and many others. Birkhoff establishes a neec-
essary and sufficient condition for a universal algebra to be represent-
able as a subdirect product. In this paper we give a generalization of
the concept of subdirect product suitable for relational systems, and
obtain representation conditions containing Birkhoff’s result as a spe-
cial case.

Adam [1] presents a counter example of L. Fuchs and G. Szész
showing the invalidity of Birkhcff’s conditions for an algebra to be
represented as a direct product of finitely many algebras. We append
to the subdirect representation conditions a third condition and prove
the set both necessary and sufficient for the representation of a rela-
tional system as a direct product of finitely or infinitely many factors.
This theorem is similar to a theorem of Hashimoto on the infinite direct
product representations of an algebra.

Birkhoff also establishes the following representability theorem:

Every algebra is representable as a subdirect product of subdirectly
irreducible algebras.

In section 5 we present a representability theorem for relational
systems which yields Birkhoff’s result as one special case, but also other
more precise specializations to the algebraic case. Hindsight shows these
specializations could have been obtained directly for algebras by Birk-
hoff’s arguments alone.

Lyndon [10] and Pickert [12] have also generalized the concept
of subdireet produet to relational systems. The definition used by Pickert
is slightly weaker than the definition presented here, and yields Birk-
hoff’s condition for a relational system to be represented as a subdirect
product. Pickert gives no direct product representation conditions. But
the unity given to the two representation theorems by our definition
makes it seem more natural. Pickert also fails to establish a significant
subdirect product representability theorem, but it is clear that such
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a theorem could be established using his definition, following the ge-
velopment which we present. Lyndon’s generalization seems both un-
natural and unduly restrictive and the results obtained do not signifi-
cantly parallel the material presented here.

2. Preliminary notions and notations. Let X be a set of any
cardinality. The set of all ordered n-tuples, {(@,, ..., 2)| each =z e X3,
is denoted by X" for finite n. An element (@15 ooy @a) of X™ I8 2 vector,
and will usually be denoted by Z. Its rank is a. The jth component of
the subseribed vector %; is denoted by @y, the lack of a bar signifying
it is a component. A relation R, of rank %, is a subset of X" The null
set @ is a relation, but is not assigned a rank. If X, C X, a relation B
is on X, iff B C X7. The restriction of a relation R, of rank n, to X, is
RIX, =R~ X7,

For T' o relation of rank 2, and @, & vectors of rank n, the notation
(@, 8) « T indicates that (ay, by) e T for each ¢ — 1,..,n. (@, b) ¢ T means
some (ac, by) ¢ T. The transform of a relation R by T is the relation
BT ={b| for some @, @ <R and (@, b) e T}. A relation T of rank 2
is one-one between X, C X and X, C X iff for each #,eX, there is
a unique @, ¢ X, such that (s,, #) € T, and conversely. Relations B, on
X, CX and B, on X, C X are isomorphic iff there is a one-one rela-
tion 7 between X, and X, such that R, 7T = By, and R+ T' = R,
where 1" = {(z, )| (y, ) e« T}. We will use the notations X; ~X,, R, ~R,,
and infer the existence of T. For T and § both relations of rank 2,
To8 = {(z,%)] for some Y, (@,9) e T and (y,2) ¢S} is the usual com-
position.

A relational system R = (X y By, By, ..) i a sequence in which the
first element is a set, called the space of R, and the succeeding elements
are relations on X. The sequence (7, 7,, ...) of ranks of the relations
By, R,, ... is the order type of R. If each n; is finite, R is finitary. With
one exception, we shall discuss only finitary systems. A wniversal algebra,
OT operaiional system, is a relational system of order type (n, +1, ny+1, ...}
sach that each relation R; has the Property that for each sequence
Tyy ey &ng from X there is a unique y in X such that (@15 ooy @ngy y) € Ry
A subsystem, $ of R, is a system (Y, 8y, 8, ...) where Y C X, and each
8: = Ri|Y¥. A subsystem of an algebra, itself an algebra, is a subalgebra.
We shall have occasion to refer to various spaces X, X,, ete., and adopt
the convention that these Spaces, together with all factor spaces, prod-
uct spaces, ete., which we may generate, lie embedded in an unnamed
overspace, preserving X as a name for g subspace.

3. On equivalence and factor relations. An equivalence
relation ¥ on X is a relation of rank 2 satisfying, for every s, y, 7 in X,
1) (=,2) B (2) (x,y)eF implies (y, x) ¢ B, and (8) (z,9)eE and
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(y,%) e B imply (x,2) ¢ B. The relations U = X2 avnc.i I= {(m‘, z) we X}
are equivalence relations on X. A partition of X is a family o.f non-
empty, disjoint subsets of X, called blocks, whose union iz X. It is well
Iknown that for any set X there is a one-one correspondence between
the family of equivalence relations on X and the family of partitions
of X. For a given relation K, and corresponding partition P, (z,y) ¢ B
iff # and 4 belong to the same block of P. We use the notation X/E to
stand for the partition of X determined by E, and call it the Factor set
of X with respect to B. Moreover, /F will denote the block of X/ to
which # belongs, and for any vector # = (2y, ..., %), Z/F denotes the
vector (zy/E, ..., #,/E). For any relation R on X, the relation R/E
= {Z/E| % ¢ B} is called the factor relation of R with respect to .

If & is a class of equivalence relations on X and M 8§, the facior
class of & with respect to M is §/M = {E/M| E €& and E D M}. The use
of this terminology is justified by the observation that &/ is nonempty,
and the following lemma. The simple proof is omitted.

Lenwma. 1. Each E/M in 8/M is an equivalence relation om X/M.

2. For each B in &M there is a unique B in & such that BED M,
and B' = BjM.

We will use later the following theorem, whose prototype is the
Second Law of Isomorphism of group theory.

TEEOREM 1. Let M, N be equivalence relations on X, with M D N.
Then if R is any relation on X, R/M ~ (R/N)/(M/N). In particular,
X/ M~ (X/N)/(M/N).

Proof. Bach equivalence relation F on a space X defines a unique
function, the partition map of X with respect to F, which takes X ?'.nto
X/B, and is {(x, x/B)| # ¢« X}. Let F, G, H be the partition maps defined

x—7T 3N
zzv EG
X/ M —%— (X/N)/(M]N)

in the accompanying diagram and let K = H' o« F'o &. We denote ele-
ments in X by z, ¥, ete., those of X/M by a?, %, etc., those of X/N by
@y, Yy, ebe., and finally those of (X/N)/(M/N) by Z, Y, et_c. Supposei
T'e B/ M. Then 7 e{#}x« H' implies for some Ze R that we{#}* H
and (%, %) e M. We infer that %, = /N « R/N and (Z, @,) ¢ M/N, where
T; = Z/N, and consequently for %, = z,/(M/N) and %, = %,/(M/N) that
Ty = U,. Hence the map K determines a unique image of a‘al_m (1.3/_2\7 Y(M/N).
Conversely, suppose T, e (R/N)/(M/N). Then % e {Z,} * & J.mpht:,s for some
%, e R/N that 7, e {Z,} » & and (Z,, %) ¢ M/N. Let T e {7} iF . T'he)i for
some %e{%}*F', for some 7e{Z}*F, for some Ze{%}*F, TekR
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and (Z,%) e N C M and (7, 2) « M and (2, @) ¢ N C M, and hence (7, &) « M.
Setting #* = F/M and @ = %/M we conclude that #' = @, and therefore
that 2! is the unique image of Z, under the map K' =G o ¥’ o H.

4. On subdirect and direct products of relational systems.
By the direct product of a family of sets X,, ¢ed, is meant the get
X = || X, of all functions & on A such that #(a) ¢ X., a e A. The direct

product of a family of vectors 7, € Xa, a e A, is the vector & = [] %, ¢ X"
whose ith component x; is the funetion satisfying aia) = w:i, acd.
The direct product of a family of relations, R, C Xz, ae A, is the rela-
tion R = {]:[E,,l Zoe Ry, acA} = [[R.C X" A relation R on a set X is
Tepresentable as a direct product of a family R, on X,, e A, iff there
is a one-one mapping T between ¥ and [l X. such that R~ Il R..
R is representable in a class § of equivalence relations on X iff th;re is
a family Bo, a4, contained in § such that X ~ [] (X/H.), R~ [](R/E,).
X is a subdirect product of a family of sets X,y aed, ifft XCJ]Xx, and
X % Po= Xa, ac A, where P, = {(z, #(a))| @ e [] X} is the ath projection
map. A relation R C LY R.y B, on X,, aed, iy a subdirect product of
the E, iff there is a set ¥ C [] X, such that (1) R = (]] R) Y, (2) TP,

= X,,and (3) R+ P, = Ry, aed. A relation R on a set X is subdirectly
representable as a subdirect product of the family R., a4, iff

R~([] R,,)l Y and X ~Y, where ([] R.,)I Y is a subdireet product. We
write X VIHY X, B~[]R,. R is subdirectly representable in a class § of

f:quivalenee relations on X iff there is a family B, ae 4, contained
n & such that X~[](X/H,), B~][] (R/B,), acA.

The above definitions require that both the relation R and the set X
be represented asa product of corresponding factors. Thus, we are asking
thaat.the relational system (X,R) he represented as a product of the
rela,tlon.aI systems (X., R,). Pickert’s definition of a subdirect product
of relational systems replaces condition (1) above by the weaker con-

dition (1) R C ( yRa)l Y. However, it seems more natural to require
a subdirect product to be a subsystem of the direct product system,

as in the‘ algebraic case. With the condition (1’) theorem 2, below, which
18 & special case of Birkhoff’s [3] theorem 9, p. 92, provides a necessary

Subdirect representations of relational sysiems 227

and sufficient condition for a relational system to be represented as
a subdirect product.

TEEOREM 2. (Birkhoff) The representations of a set X as a subdirect
product correspond one-one to the families B, a e A, of equivalence rela-
tions on X satisfying the condition:

(C1) NE.=1I.

Proof. Suppose X~]]X,. Then there is a one-one map K be-

tween X and a subset YJC [] X., and the mapping K, = K o P, taking

X onto X, is many-one for each aeA. For each a, define F, to be
{(x, )| 2K, = yEK,}. If (2,y) €[\ Ea, then (2K)P,= (yK)P, for each «,
so 2K = yK and hence (z,y) ¢ I. Conversely, let E., a e A, be a family
of equivalence relations on X satisfying (Cl), and let X, = X/E., a e 4.
Let M be the map carrying each » e X into the element y e [] X, such
that y(a) = @/Fa., a e 4. M is many-one from X to X+ M =¥ C [| X,
and, since (C1) is satisfied, #; M = o, M implies that o/F, = ,/F., aec 4,
and thus that @, = #,. Hence 3/ is one-one from X onto ¥, and ¥ % P,
=X,, aed.

The following theorem gives necessary and sufficient conditions for
the stronger requirement (1) to be met (3).

THEOREM 3. (Subdirect representation theorem for relations). The
representations of a velation R on X as a subdirect product correspond
one-one to the families B,y a e A, of equivalence relations on X satisfying
(C1) of theorem 2 and the further condition:

(€2) R=\(RB=H,).

Proof. (a) Suppose X~ [[X,, R~]]R., a e A. Denote by M, the

map which takes each z ¢ X into the oth component of its unique re-
presentative in ¥ C [] X.. By definition, R % M, = R,, a ¢ A. For each q,
define B, = {(z, )| M. = yM.}. By theorem 2, condition (C1) holds for
these equivalence relations. To prove (C2) we first observe thab
R C N (R+F,), since R * B, D R+I=R. Therefore, suppose @ e [ | (B * o).

() The referee has kindly brought to my attention the paper On extending of
models. V by J. Loé, J. Stomidski and R. Suszko, Fund. Math. 48 (1960), pp. 113-121.
Theorem 4 of their paper is equivalent to theorem 3 helow.
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Then for each o, for some 7, ¢ R, (@, %,) ¢ B., and hence ZM, = Z,1, ¢ R,,
where M, indicates the unique element of {Z}  M,. This, since 7 ¢ X",
and thervefore [] ZM, ¢ Y", implies || ZM, < ([] R.)| ¥, and thus # <R,
(b) Conversely, suppose that H., ae 4, is a family of equivalence
relations on X satisfying (C1) and (C2), and set X, = X/E,, R, = RIE,,
aeA. By theorem 2, X ~¥ C [] X.. As in part (a), let M, be the map

taking each # e X into the ath component of its unique representative
in ¥. Then clearly R+ M,=R,, for each aed. Let 7% eR. Then

]J FM, e E[ R.)| Y. Conversely, let []%. ¢([]R) Y, and let @ be that

unique member of X" such that for each a, @M, = %,. Then for each a,
for some ¥, € B, TM, = B, M,, and hence (%, z,) ¢ B,. Since B = N (R * B,),

it follows that % ¢ R.

CoroLLARY. The subdirect representations of B in a class & of equiv-
alence relations on X correspond one-one to the families B,y aed, con-
tained in & satisfying (C1l) and (C2) above.

The conditions of the following theorem are implicit in Adam [1],
where the deficiency of the theorem of Birkhoff for the finite case is
pointed out.

TarOREM 4. The representations of a set X as a direct product cor-
reeipo-n,d one-ong with the sets E., a € A, of equivalence relations on X satis-
fying condition (Cl) of theorem 2 and the condition:

(C8) for each set (.| wae X, ae A} there emists an element © in X such
that (z, %) e B,y acA.

(Bguivalently, (C3) says that the system of congruences, x = m, (H,)
can always be solved.)

Proof. Suppose X =[] X, and, as in the proof of theorem 2, set

B, = {(5{;, y)| zP, = yP.}, aeA. (C1) must hold, sinee a direct product
of sets is a subdirect product. If {z,] ae A} is contained in X, let y be
a member of X such that y(a) = w.(a), a ¢ A. Then 2a Py = yP,, or equiv-
alently (2., y) ¢ E,, -for each aed, and hence (C3) is satisfied. If, con-
versely, H,, ae A, is a family of equivalence relations on X satisfying
(01) and (C3), there is by theorem 2 a one-one map M taking X onto
a set Y_(_:[JX,,. oM =y iff y(a) = /B, acAd. Let ue ] X,, so that
(@) = t,/Ba, Where 4, ¢ X, a ¢ A. By (03), for some & ¢ X, 2/F, = t/Fo,
aed, and hence « =M ¢ Y.

COROLLARY. The represaaftations of a relation B on X as o direct prod-
uct corresg;onfi one-one to the families Ba, aeA, of equivalence relations
on X satisfying conditions (C1), (C2), and (C3) above.
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Proof. A direct product is the subdirect product obtained by re-
striction to the whole product space.

COorROLLARY. The representations of R in a class & of equivalence rela-
tions on X correspond one-one to the families Bq, ae A, contained in &
satisfying conditions (C1), (C2), and (C3) above.

We remark that if (X, R) is an algebra and F., a4, is a family
of congruence relations for (X, R), then (Cl) implies (C2), for if (@, ...,
nyy) eR and (2y,..., T, 2) €[ (B * B,), then (y,2) e E,, ae<A, which

imyplies (%y, ..., ¥n, 2) € B.

5. The subdirect representability theorem. In view of the
results of section 4, we are free to make the following definition, in
which & is the class § with I excluded. We say X is subdirecily irreduc-
$ble in a class & of equivalence relations on X iff (C1) holds for no set
of equivalence relations in &, and hence in particular if it does not hold
for the set of all equivalence relations in &°. Similarly, R is subdirectly
irreducible in § iff (C1) and (C2) do not simultaneously hold for &°.

THEOREM 5. (The subdirect product representability theorem.) Let
X be a set, B a relation of finite rank on X, and & a family of equivalence
relations on X satisfying (1) I € & and (2) the union of the members of amy
nest (2) in & is a member of & Then R may be represented in & as a sub-
direct product of factors, each of which is subdirectly irreducible in the
corresponding factor family of equivalence relations. More gemerally, anmy
findtary relational system whatsoever may be so represented.

Proof. For each a,b in X, a # b, let £(a, b) be the family of all
members of § which do not hold (a, b). £(a, b) is not empty since I does
not hold (a,b). Let N’ be any nest in £(a, b), and N the union of all
members of N. N is in §, and (@, b) is not in N so N is in £(a, ). By
Zorn’s lemma, there is a maximal element, say L(a, b), in L(a, b). Clearly,
Qb L(a,b) = I. Since any member of & which properly contains L(a, b)

must hold (a, b), (\[B/L(a,b)], the intersection being taken over all F
in § which properly contain L(a, b), properly contains I = L(a, b)/L(a, b).
Hence X/L(a, b) is irreducible in &/L(a, b).

Next, for a given R in the relational system, and @ ¢ E, let A6(G)
be the family of all members E of § satisfying the condition

(C) TeR implies (Z,3)¢H.
(@) is not empty, since I satisfies this condition. Let N be any nest
in (@) and N the union of the members of N'. N is in § and for each

(%) A nest is a family of sets simply ordered by C.
16*
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TeR, (z,a)¢ N, for if so then for some Ny, N,, ..., Ny in N°, where # ig
the rank of R, (@1, ai) ¢ N;, for each 4 =1,2, ..., n. Since one of them
contains the others, (%, @) ¢ K for some K in N. This contradiction estab-
lishes that N is in f(@). By Zorn’s lemma, J46(@) has a maximal mem-
ber, say M (@).

Since @¢ R, for no ZeR is (Z,a)e M(G). Hence aé¢ Rx M@). It
follows that R (| [R+ M(@)] Since always RC N[R* M (@] we

a¢R Eg‘R

conclude that B = M [R = M(@)]. Now for each @¢ R, a/M (@) ¢ B/ M (),
a¢R

for this would imply that (%, @) ¢ M (@) for some % ¢ R. Because of the
maximal character of M (@) any member E of § properly containing
M(@) has the property that for some ZFeR, (7,3) <X, from which
we conclude that @/M(a)e[R/M(@)]*[B/M(@)], ie., that R/M (@)
# N ([B/M (@)] * [E/M (@)]), where the intersection runs over all mem-
bers of & properly containing M (z). Hence R/M () is strictly subdirectly
irreducible in &M (a).

Let 5 be the family of all T(a, b), a % b, and all M(z), ¢ R, B in
the relational system. It is clear that (1) F = I, F in ¥, and YN(R*+F
=R, B in the relational system and F in ¥. Since by the corollary to
theorem 3 these are necessary and sufficient conditions that each B in
the relational system be subdirectly represented in &, and since the re-
presentation is irreducible, the theorem is proved.

With suitable restrictions on § the above theorem may be extended
to nonfinitary systems as well. This is our only contact with non-
finitary systems.

TEEOREM 6. Let X be a sety, R = (X, Ry, By, ...) any relational system
whatsoever, and & a family of equivalence relations on X satisfying (1) I €§,
and (2) the ascending chain condition holds in & Then R may be repre-
sented in & as a subdirect product of factors, each of which is subdirectly
irreducible in the corresponding factor family of equivalence relations.

Proof. We first observe that theorem 3 applies equally as well to
non-finitary systems. The proof is then identical to the proof of theo-
rem 5, except one has directly that for a nest N in (@), the union N,
of the members of N, is a member of N, and hence of AG(z)

6. On sentences possessing the nesting property. The use-
fulness of theorem 5 comes in part from the following considerations.
In representing an algebraic or relational system satisfying certain
axioms as a subdirect produet it is natural to desire the factors to be
systems of the same kind; that is, to satisfy all of the axioms specified
for the original system (3). We will call 3 subdirect representation of

(®) I am indebted to Professor Bjarni Jonsson for the above remark, and for
the application to partially ordered sets given in section 7.
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a system a proper subdirect product if all of the factors are systems
of the same kind, and we will say that a system is properly subdirectly
irreducible if its only representations as a subdirect product of systems
of the same kind are trivial, ie., some factor of the representation is
isomorphic to the original system.

Let R = (X, Ry, Ry, ...) be a finitary relational system and let
S(Byy ..., Baj @y, ..., 4n) be a finite first-order sentential function with
unbound variables &, ..., #m, in which the equality relation I, together
with the primitive relations of &, may appear as constants in elementary
positive sentences of the form “Z ¢ B”, joined by the logical connectives
As Vi A, V, =, and ~(%). An equivalence relation ¥ on X preserves S
into the factor system R/E providing the truth of S(R,, ..., Ru; @1, ..., Tm),
for a specific occurrence of the unbound variables Ly -y Tm, implies the
truth of S(Ry/H, ..., Ra/B; @/E, ..., 2xn/E), that is, the sentential fune-
tion obtained from § by replacing each occurrence of a primitive rela-
tion R by the relation R/, each occurrence of an unbound variable x
by @/, and changing the range of the bound variables from X to X/E.
Furthermore, § has the nesting property iff for every nest N of equiv-
alence relations on X, if S(RJ/E, ..., Ry/B; x/H, ..., 22/E) is true for
each B eN, then S(Ry/N, ..., Ra/N; /N, ..., 2m/N) is also true, where
N=3N(=UE,EeN).

THEOREM 7. A finitary relational system R = (X ; Boyy Ry, ...) which
satisfies a (possibly infiniie) set of finite first-order amioms, each possessing
the mesting property, has a proper subdirect representation with properly
subdirectly irreducible factors.

Proof. Let § be the class of all equivalence relations on X which
preserve all of the axioms of the relational system R into the correspond-
ing factor systems. Then I e§, since R satisfies all of the axioms, and
if N is & nest in &, then N ¢ & Forlet §4 be the family of equivalence
relations preserving axiom A. Then N’ C §4, and 3 N ¢ &4, since A pos-
sesses the nesting property. This is true for each axiom A, so ) N e§
= [184. Thus each factor system is of the same kind, and & satisties
the two conditions of theorem 5. The factors of R obtained by theo-
rem 5 are not further reducible, for suppose some factor family &/F
belonging to a factor could be augmented by an equivalence relation D
on X/F which preserves all of the axioms of R. Set D = {(=, y)| (w/E, y/E)
eD}. D is an equivalence relation on X, and DD F, so D/E = D. By
theorem 1, R/D ~(R/H)/(D/E) = (R/E)/D for each primitive relation of R,
and consequently any sentence D preserves is also preserved by D.
Hence D is initially a member of §/F.

(!) ~ means negation when used within a sentential function.
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A useful corollary of theorem 7 is that if the axioms of R can be
separated into two sets, say 4 and B, such that the axioms in 4 have
the nesting property, and such that each equivalence relation which
preserves all of the axioms in A also preserves all of the axioms in B,
then the conclusion of theorem 7 still holds. For, the family of equi-
valence relations which preserve all of the axioms coincides with the
family preserving the axioms in A.

Following theorem 8 we shall characterize recursively a large class
of sentential functions which possess the nesting property. For con-
ciseness we use 8 or, to indicate a specific unbound variable, S (z) as an
abbreviation for the sentential function S(Ri, .., Bu; %, ..., Zm), and
Sg or 8(x)z for the sentential function S(R,E, ..., Bu/E; 2 /B, ..., on/E).
The characterization is framed in terms of the following six properties,
of which the third is the nesting property. § has nesting property 1
(briefly, np,(8)) iff for every equivalence relation ® on X, and equi-
valence relation D on X, D C B, if Sy is true, then Sp is also true.
8 has nmesting property 2 (npy(S)) iff for every nest N of equivalence
relations on X, if for every F N, there exists D eN, D D E, such that
Spis true, then Spy is also true, where, as above, > N = UE, EeXN.
8 has nesting property 3 (nps(S)) iff for every nest N’ of equivalence re-
lations on X, if for each F ¢N°, 8z is true, then Sy is true. In an ob-
viously dual fashion we say § has the reverse property 1 (rpy(S)) iff for
every equivalence relation E on X, and equivalence relation D on X,
DD B, if 8p is true, then also Sg is true. § has the reverse property 2
(rpe(8)) iff for every mest N of equivalence relations on X, if Sy is
true, then for some F e N, for every D N, D D E, Sp is true. § has the
reverse property 3 (rpy(8)) iff for every nest N of equivalence relations
on X, if Sypp is true, then for some F €N, Sz is true. Theorem 8 explores
the interdependence of these six properties. It is understood that the
subseript ¢ may have the values 1, 2, or 3.

THEOREM 8.

A, npi(8) is equivalent to Tps( ~8).

B;. a. npy(8) implies np,(8), but not conversely.

b. npy(8) is equivalent to np,(S).

C,. If T is a logical consequence of S then

. npy(S) implies npdS A T),

. npy(T) implies npy(S v T).

.- np«(8) and npT) imply nps(S A T).
. ap«(8) and npT) imply np«(S v T).
- np«(8 (@) émplies npi(Az 8 (x)).

. 0Py (8 (@) implies np, (Ve 8 ().

e T T
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E,. 1pi(8) and np(T) imply npy(S—-T).
B,. a. 1p(S) implies 1py(8), but not conversely.

b. 1u(8) s equivalent to rps(S).
Cy. If T is a logical consequence of S then
a. rpe(8) implies rpy(S A T),
b. rpi(T) implies Tpy(S v T).
a. 1pi(8) and rpyT) imply rpdS A T).
b. rpi(S) and rpi(T) imply rp(S v T).
c. i (S(x)) implies py(\V 2 S(@)).
d. 1p1(S(®)) implies tp, (Az S(x)).

E,. npi(8) and rp(T) imply rpi(S—T).

F. a. npy(T e R) and rp,(T « R).

b. py( ~% € R) and np,(~Z ¢ R).
c. If 8 is either a tauiology or a contradictory then npy(S) and
py(8).

Proof. A. This is evident from the definitions upon observing that
~ Sg is true iff Sy is false.

B;. a. Let N’ be a nest such that for every E eN, for some D eN,
D D E, 8p is true. For such an equivalence relation D, D C YN, and
using np,(S) we conclude Sx) is true. This establishes npy(S). On the
other hand, as a consequence of E, and F, proved below, it follows that
the sentential function “zeR->zeS”, where B and S are relations
of rank 1 on X, has nesting property 2. The following simple model
shows it does not have nesting property 1. Take X = {1, 2,3}, R = {1},
8 ={3}, E=1I, and D the equivalence relation with block decom-
position [{1,2}, {3}}. Then “2/FeR/E->2/Ec8/B” is true, but
“2/D ¢ R|D—~2/D e §/D” is not.

B,. b. That nps(8) follows from np,(S) is an obvious consequence
of the definitions. Conversely, suppose np,(S), and let N’ be a nest such
that for each E N, for some D N, D D E, Sp is true. The subnest N,
of all members D of N° such that Sp is true, has DN, = Y N. Using
1py(8) we conclude that Syp is true, and obtain as a consequence
npy(8). We assume this equivalence throughout the remainder of the
Pproof.

C;. a. Suppose np,(8), and let ¥ and DD E be equivalence rela-
tions on X such that (8§ A T)g is true. Then Sz, and as a consequence
of np,(8) also Sp, are true. Since T is a logical consequence of 8, Tp is
true, whenece (8 A T)p follows, verifying np,(8 A 7). Now suppose np,(S),
and let N’ be such a nest of equivalence relations that for each B N,
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for some D eN, DCH, (8 A T)p is true. Then Sp is true, and from
np,(8), also Syy is true. As above, this entails (8 A Ty, giving
up(S A 7).

C;. b. Assume np,(7) and let E and D D F be equivalence relations
on X such that (8 A T)g is true. Then Ty is true, since T is implied
by 8, and by virtue of np,(T) we conclude that Tp, and therefore
(8 v T)p, are true. From this np,(§ v T') follows. Next suppose np,(T)
and take a mest N’ of equivalence relations on X such that for every
B <N, for some DeN, DD H, (8v T)p is true. Because § implies T,
Tp is true. Hence, from np,7), we conclude that T'sy, and thus
(8 v TI)gyp, are true. From this follows npy(§ v T).

D;. a. If npy(8), upy(T), it E and D D E are equivalence relations
on X, and if (§ A T)g is true, then we may conclude in sequence that
Sz and 'z are true, that Sp and T'p are true, and that (8 A Tp is true,
proving np,(8 A T). In a corresponding fashion, if N’ is a nest such that
for every E <N, for some D eN, D D H, (8 A T)pis true, then Sp and Tp
are true, and np,(S) and npy(T) imply that S8sx, Tspne, and hence
(8 A I)gpe, are true. We conclude np,(8 A T).

D,.b. I D and B, with D) F, are equivalence relations on X,
and if (8 v T)g is true, then either Sz or T is true. From np,(S) and
np,(T} follows either that Sp is true or that T'p is true. Hence (8 v I
is true, and we conclude np,(S v T). Suppose npy(S) and np,(T). Let
N be a nest of equivalence relations on X such that for each ¥ N,
for some DeN, DI H, (Sv T)p is true. Let Ny be the subnest of N
consisting of all D eN such that (8 A T)p is true. Tt is clear that >N
= )'N,. Now for each B €N either S8z or T'g is true. Let Ny and N,
be respectively those subnests of N such that Sz is true, B €Ny, and
T is true, BeXN,. Either YW, = YN, or YN, — 2N, We suppose
the former. Then for each F e, for some D eNy, DI H, Sp is true.
From np,(8) we conclude that Sz is true. Hence (8 v Tz is true
and npo(S v 7) follows.

D,. c. Suppose that E, and D D &, are equivalence relations on X,
and suppose that ( A z8 (Q)) z 18 true. Here @ indicates a variable ranging
over the factor space X/B. It is clear that (A 28(@)), is true iff Az [8(2)z]
is true, where # is a variable ranging over X. Therefore, for each x ¢ X,
8(z)g is true, and by np,(8) we have the consequence that S(x)p is true.
Hence Az[S(x)p], or equivalently, (A28(®))p, is true, and thus
ap, (Az 8 (@) follows. In a similar way, given np,(8(s)) and a nest N°
of equivalence relations on X such that for each E N, for some D eN,
DO B, (\z8(2), is true, we conclude  first that for each zeX, for
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each H e N, for some D e N, D D B, 8(x)p is true, and therefore S(x)gy-
is true. Hence, Ax[8(z)gye], or equivalently, (Az S(z))zy, is true and
nps(Az8(z)) follows.

D,. d. Assume np,(S(z)) and let B, D be equivalence relations on X
such that (\/g S(Q&_)}E is true and DD E. (\/a"; S(gc_))E is true iff \/a [S(x)g]
is true, where @, » range over X/E and X, respectively. Let z,e¢ X be
such that S(w,)z is true. From npl(S(m)) follows that S(x)p is true.
Hence \z[S(z)pl, or equivalently (\/ z 8(x)),, is true. We conclude
ap, (Ve 8(2)). A counter example to show that np,(S(z)} does not imply
np, (Ve S(2)} is easily constructed. As a consequence of F, proved below,
we have np,( ~» e R), where R is a relation of rank 1. Take X to be
the half-open interval [0,1), R = {0}, and N the nest of equivalence
relations F, = [0, a) X [0, a) v I, 0 < a < 1. It is clear that (\/# ~z e R)r
is true for each H N, since R/E, = {0/E.} = {0, a)}, but (Vo ~2z ¢ R)gN
is false, since )N =[0,1)x[0,1), and therefore R/ N = {0,1)}

E,. This can be obtained as a consequence of A and D;, part b,
by replacing § by ~ 8. However, we shall give a direct proof.

Let E, and D D F, be equivalence relations on X such that (S—>T)g
is true. Bither 7'z is true, in which ease, by np,(7'), we obtain 7'p, and
therefore (8 —T)p, true, or Sg is false, and hence, by 1p,(8), Sp is fa,lse_;,
so that (§—+T)p is true. This shows that np,(S—>7). Similarly, if N is
a nest such that for each F N, for some D «N°, D D H, (§—~T)p is true,
we have two cases to consider, assuming 1p,(S) and np,(T). Either Sgy
is false, so that (8->T)gy is true, vacuously, or for some E, in N, for
every E e¢N, F D E,, Sg is true, by rpy(S). Let Ny be the subnest of all
B D FE,, EeXN. Then for every E eN,, for some DeN,, Tp is true.
Using np,(T) we conclude T'xye, and hence (§—>T)xy are true. We may
assert np,(S—T).

B,. This follows from A and B, by substituting ~ 8§ for §. We give
a direct proof showing rpy(S) implies rp,(S). By way of obtaining a con-
tradiction, let W’ be a nest such that Sgye is true and assume 1py(S) false.
Then for every E N, for some D eN, D D E, S8p is false. Let N be the
subnest of N consisting of those D N such that Sp is false. Clearly
2Ny = SN, But by 1po(8), if Sy is true there exists E ¢ N, such that
Sz is true. We have obtained our contradiction, showing.that rps(S)
follows from rp,(S).

C:, D,, B,. These follow in an obvious fashion from A and C,, D,
and E,. Direct proofs are also easily given.

F. a. Suppose that D and F are equivalence relations on X, D 2 E,
and %/E e R/E. Then for some 7, 7 ¢ B and (%, %) ¢ B C D, which implies
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Z/D ¢ R/D. Hence, np,(Z ¢ B). Now let N’ be any mest of eciuivalenee
relations on X and assume %3N eR/JN. Then for some 7R,
(%,9) € 2N, This implies for some H, ..., B, in N, where # is the rank
of B, that (ws,y:) eBsy 6 =1,..,7. Set B, — U By. We have E, €V,

?
and (%, 7) e B,, which implies Z/E, ¢ R/E,. Moreover, if E €N, and F D H,
then (Z,%)eF and hence Z/E ¢ B/E. Thus rp(% e R). Obviously, one
does not have rp,(% ¢ R).

F.b. Suppose DO F and ~z/D €R/D. Then for every y eR,
(#,9) ¢ D. Then also, for every 7R, (%,7)¢ B, and hence ~ Z/E « R/E.
This shows that rp,(~% eR). If N’ is a nest of equivalence relations
on X such that for each ¥ eN, for some D €N, DD E, ~%/DeR/D,
then for every 7 e R, for every B eN, (Z,7) ¢ B, and hence (Z,7) ¢ DN,
Therefore ~ /3N ¢ B/ 3N, proving npy(~z e R).

F. c. This result is immediate.

We remark on two consequences of theorem 8. A positive sentence
has been defined by Lyndon [10] to have only the connectives A, \/ y A
and V. By D, and F, part a, every positive sentential function has nest-
ing property 1. Hence, every positive aziom is preserved into every factor
space, that is, is preserved by every ecquivalence relation. Secondly,
every composition of functions or operators corresponds to a positive
sentential function of a special type: all the quantifiers are existential,
and precede the matrix of the sentence, and the magtrix is a conjunetion
of elementary positive sentences. For example, z = f(g(w)} corresponds
to Vy(@, 9)egn (y,2) ¢f). Again by D, and F, part a, such compo-
sitions have nesting property 1 and reverse property 2.

It is easy now, using theorem 8, to obtain a large class of sentential
functions having the nesting property. We define, on the family of all
subsets of all sentential functions having the primitive relations of R

a8 constants, & binary operation Im, and unary operations 0, D, LG,
LD, 4, E, and ¥, as follows:

Im(P, Q) = {p->q| peP and qe@},
CP)={pAdipeP and qePy,
DP)={pVvolpeP and ¢ P},

LC(P)={pA g peP ana g 18 a logical consequence of P}

LD(P)={pVv gl peP and P is a logical conseéquence of g},

A(P) = {Azp(z)| p(2)eP and s is an unbound variable of p},
B(P) = {Vz p(x) P(2) e P and « is an unbound variable of p},
N(P)= {~p| pe P}

iom®
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Next we let P;,; be the set of all elementary positive sentences,
@, the set of all elementary negative sent_ences, a,nd.set Poy = Qs
=,_P1,1 U Q1,1. Then, for ¢ =1, 2, and, recursively, for j=1,2,.. we
have

Pijir = Py Im(Qu, Pij) v C(Piy) v D(Pys) v LO(Pyj) U LD(Py) v

v A (Py) v B(Pry) v N (@),

Qi1 = Qij v Im(Pyy, Qig) v C(Qi) v D(Qry) w LC(Qi3) v LD(Qu5) v
© A (Q1,7) v B (Qig) © N (Pyy).
TFinally, we set .
Pi=JPiy, i=1,2, and = \3)@1’,;‘; t=1,2.
7

It is clear from theorem 8 that each member of Py hag nesting
property 7, and hence each member of P; has nesting property 7. Ill.l par-
ticular, each member of P, has the nesting property. Correspondingly,
each member of @;, has reverse property i, and hence each member
of @; has reverse property i.

7. Applications. A relational system R which is an algebra satis-
fies, for each primitive relation of R, two axioms; th‘e axiom of closure,
and the axiom of functionality. Formally, for a relation R of rank r+41,

(GR)/\ml ... /\fery [(@ys veey @y ) e k],
AFRIN @y e N AYANE[( 815 ooy 81, Y) € B A (D1 ooy Bry 2) e B>(y, 2) e I].

Cg is a positive sentence, and satisfies nesting property 1. Fr satisfies
nesting property 2, as a consequence of theorem 8; F, E,, and Dl., part e.
Furthermore, the congruence relations of amn alge]?ra are prems.ely the
equivalence relations which preserve Fp (eV"ery equlvalepce relation pre;
serves Cg). Hence Birkhoff’s representability theorem is a corollary o
theorem 7. It may be obtained directly from theorem 5 by the obser-
vation that the congruence relations of an algebra fo'rm a complete
lattice, of which I is a member. We remark that‘ the first part of 11;}3;
proof of theorem 5, pertaining to condition (Cl), is enough to estab "
theorem 5 using Pickert’s definition of subdire(.zt product. The proo
of this part is, in essence, the proof given by Blrkhf)ﬁ. i

That the homomorphic images of a ring are rings, Le., that .the
congruence relations of a ring preserve the ring axioms, is a e.la,ssma,l
result. Suppose that R is a ring satisfying the additional axiom:

(ID) NeAylzxy =0)>(z=0Vvy =0)].
Expressed in terms of elementary positive sentences this axiom reads:

NaAy](@,9,0) e x> (@, 0) IV (y,0)I)].
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The nesting property follows easily from theorem 8. Hence, making uge
of the remark following theorem 7, we have the theorem:

An integral domain can be represented as a subdirect produst of prop-
erly subdirectly irveducible integral domains.

This theorem is not a consequence of Birkhoﬂ’s theorem because
& homomorphic image of an integral damain need not be an integral
domain. .

Let R be a ring without proper nilpotent elements. Then it satis-
fies, in addition to the ring axioms, the infinite set of axioms:
(NP)  Az[(@*=0)>(=0)], for = =1,2,..
The composition 4" = 0 has reverse property 2, as indicated in the
discussion following theorem 8. Applying E,, and D,, part ¢, of theo-
rem 8, we conclude that each of these axioms has the nesting property.
C[Thus, as another consequence of the above sort, we have the theorem:

A ring without proper nilpotent elements may be represented as @ sub-
direct product of properly subdirectly irreducible rings without proper nil-
potent elements.

A similar observation establishes that

A torsion free group may be represented as a subdirect product of prop-
erly subdirecily irreducible torsion free groups.

Let (X, <) be a partially ordered set. It then satisfies the axioms:
(PO  Azlz< @],
(PO,)  AzAyle<yry<a-sz=q],
BO;)  AzAyAz[z<yA Yy <z2-w <2,

Each of the axioms possesses the nesting property. A simply ordered
set satisfies further
B0)  AzAyls<yvy<a].
Partially ordered sets with upper bounds (directed sets) satisfy
(UB)  AzAyVelw<zny<a].

These too possess the nesting property, and theorem 7 can be applied.
On the other hand, to have least upper bounds a partially ordered set
must satisfy
(LTB) NeAyValz <z a ySPAAw@<wAy<wsz <w)].

Theorem 8 does not yield the nesting property for this axiom. How-
ever, it is a simple exercise to establish that every equivalence relation
which preserves the order also breserves this axiom. A similar remark
must clearly hold for greatest lower bounds. Hence, again making use
of the corollary following theorem 7 » @& partially ordered set with least
upper and greatest lower bounds (a lattice) has a proper representation as
a subdirect product with properly subdirectly irreducible factors. Thus an
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apparent advantage which the algebraic represeutation.of a lattice h(?lds
over the the representation as a partially ordered set, in virtue of Birk-
hoff’s theorem, is hereby dispelled. ] . .

An abstra,ct projective plane can be defined as a relational system
(X,P,L,D, ON), where P, L, D, and ON have ranks 1, 1, 2, and 2,
respectively, satisfying the following set of axioms:

(PPy) NefzeP v ael],
(PPy) AzAyleP Ay eL—~(z,y)el],
(PPs)  AzAyllw,y)eD>wePAyeP],
(PP NawAyl@,y) e D-+~(,y) ],
®P;)  AzAyllz,y) e D>(y, ) e D], DA s eDs
D ,8)eD A (w,w)eDA(y,2)eD /
(PPs) VaVyVaVwl(z,y)eD Az,2)e (ﬂf\ e oD,
- ul ~|{(®,y) eDA (@,2) e D A (x,w)eD A
G ATV /\?f\/zv,[u) (e.D A(Yy,2)eDAm,w)yeDA (y,u)eDV
A (2, w) eD A (2, u) D A (w,u) e D)],
(PPy) Az ylx,y) eON +(mePAyeLl)Vv{meLAyeP)],
(PP}  AzAyl(@,y) e ON —>(y, ) e ON],
(PPy) AzAylzeP AyeP->NVu((z,u)cON A (y,u) eON)],
: P PA{(z,u)cON A (y,u) eON A
FPa) - Aehyhufoloerrye A (@, v) e(;N A (¥, VJ’) eON —>(u,v)el],
(PPw) AzAylzweL AyeL->Vu((z,u)eON A (y, u) EON)]\’T
\ LAyeLlA (w,u)eON A (y, u) e ON A
(FPa) - AzhyAuivlo e Y Az, v) eON A (y, v) eON —>(u,v)el],
PP s AYNEAw | (@, y) e DA (x,8) e DA{Y,2) e D>~
F) Ay | ~ ({2, %) € ON A (y, u) € ON A (2, u) sON)].

Briefly, everything is either a point or a line (-PP,), (?Pg), Jz dis-
tingnishes four points (PP;)-(PP;), ON is a Syml?netrm I?lathI} be ;gsen
points and lines (PPg), (PP,), two points determine a unique line (t hrlo),
(PPy;), two lines determine a unique point (I*tPu), (PPys), anf. .no o e(f
points distinguished by D lie on a common line (PP,,). Applying theo
rem 8 it is seen that the nesting property holds for each of these
axioms. Hence, an abstract projeciive plane may ?e represented as a smfb-
direct product of properly subdirectly irreducible abstract projective

lanes.
’ Other systems to which theorem 7 may l?e applied m(flude: a]gse-
braic systems with ordering relations, multilattices [2], multlgtfoups :]lfl],
join systems [13], partitions of type = [6], betweenness relations [11],
finite state languages [4], Turing machines, and automata [8].
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The usefulness of theorem 5 is not limited to the systems deseribed.
in theorem 7. For example, a well-ordered set is a system (X, <) sat-
isfying
(WO,) (ZX; <) is simply ordered,

(WO,) AYCX[Va@eX)>VylyeX A As[ze T>y <zl)].

Axiom WO, is equivalent to a set of sentences possessing the negt-
ing property, as shown above, and axiom WO, is a second-order sentence
preserved by every equivalence relation on X which preserves the order.
A fortiori conditions (1) and (2) of theorem 5 must hold. This implies
that a well-ordered set may be represented as a subdirect product of prop-~
erly drreducible well-ordered sets. One may show without difficulty that
the irreducible factors are isomorphic to ({0,1}, <).
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Closed subgroups of locally compact Abelian groups
by
K. A. Ross (Rochester)

Let & be an Abelian group, and let O, and O, be two topologies
on @ such that O, ;z 0, and (&, 0,) and (G, D,) are locally compact

topological groups. E. Hewitt [1] has proved that there is an D, -con-
tinuous character on @ that is O,-discontinuous. We submit here an
outline of a somewhat shorter proof of this result based on an obser-
vation about closed subgroups. We then make some further remarks
about closed subgroups.

We first given an alternative proof of Lemma (2.1) in [1]:

Let R denote the additive group of real numbers with the usual topol-
ogy, and let (B, D) be a locally compact group such that O is strictly
stronger than the usual topology of R. Then O is the discrete topology.

Proof. Let ¢ denote the identity mapping of (R, D) onto R; ¢ is
clearly continnous. Let ¢ be the component of the identity in (R, O).
If 0=R, then (R,D) is o-compact and (5.29) [2] shows that ¢ is
a homeomorphism, contrary to our hypothesis. Hence ¢(C) is a proper
connected subgroup of R in the usual topology. Therefore ¢(0) = {0},
0 = {0}, and (R, D) is totally disconnected. By Theorem (7.7) [2], (R, D)
contains a compact open subgroup H. Since ¢(H) is a compact subgroup
of B in the usual topology, we have ¢(H)= {0} and H = {0}. Conse-
quently, {0} is open in (R, D) and O is discrete.

Hewitt’s theorem follows from the following lemma.

Levwa 1. Let @, Oy, and D, be as before. There exists a subgroup
H of @ that is O,-closed but not O,-closed.

Proof. Let ¢ be the [continuous] identity mapping of (&, O,) onto
(@, D,). Arguing as in the proof of Theorem (3.3) [1] and noting that
invoking Theorem (2.2) [1] is unnecessary, we find that there is a sub-
group J of @ such that the topology O, on J is strictly stronger than
the' topology O, on J, and such that either

(1) (7, O,) is topologically isomorphic with R,
or

(2) (7, O,) is compaet.
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