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Connected chains in quasi-ordered spaces
by
R. J. Koch (Madison, Wisconsin)

We establish here a theorem on the existence of connected chains
in quasi-ordered spaces. This is a partial generalization to quasi-ordered
spaces of a previous result on partially ordered spaces, and furnishes
an order theoretic extension of a theorem of Whyburn on the lifting
of arcs through light open mappings. Throughout the paper, arc is used
in the sense of “continuum irreducibly connected between two points”.
We do not assume metrizability of the spaces, but all spaces are assumed
to be Hausdorff.

Recall that (X, <) is a quasi-ordered space if X is a space and
< I8 a veflexive transitive Dinary relation on X. If < is also antisym-
metrie, then (X, <) i3 a partially ordered space. A chain in X is an
ordered subset of (X, <). We denote by Graph(<) the set of pairs (z, ¥)
in XX with o <y. Let L(z) = {yly <2} and L; = {y|L(y) = L(x)}.
By the notation y <  we mean that y e L (%) Lz, We say that 4 C (X, <)
has no local minima if for each @ ¢ 4 and any open set V about z, there
exists eV ~ A with ¥y < 2. We say that 4 has no proper local minima
if the set of elements of 4 which are not minimal in A has no local
minima. We denote by A\B the complement of B in 4; closure is de-
noted by *, F(A4) denotes the boundary of 4, and [J denotes the
empty set.

Lmmma 1. Let (X, <) be a compact quasi-ordered space, and let V be
an open set in X. If )

(1) For each m e X, {y: y <w} 45 closed, and

(2) V has no local minima,
then if O is a component of V, C* A F(V) =

Proof. If O* ~ F(V) =[], then there is an open and closed set &
with C* C N CV. Let T be a maximal chain in N; it follows from (1)
that T has an inf in ¥* which by maximality and (2) must lie in ¥(¥),
a contradiction. We note that this argument is essentially the same as
that given in [1].
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THEOREM 1. Let (X, <) be a compact quasi-ordered space, and let W
be an open set in X. If

(1) W is a chain,

(2) Graph (<) 4s closed,

(3) W contains no local minima,

(4) Ly is totally disconnected for each x € X,

then any element a of W belongs to an ordered arc K with K ~ F(W) # 3
and a = sup K.

Proof. Let W be as above, and fix a e W. Since [W ~ L(a)]* is
& compact quasi-ordered space and W ~ L(a) satisfies the above hypo-
theses, we may assume that X = L(a) and that W is an open set in X
with @ ¢« WC W* = X. Let § be an open cover of X. Let ¥, be an open
subset of some member of 4, with ¢ ¢ V,;C W and FPWVy) AL, = []. Let
0, be the component of ¥, containing a. By Lemma 1, Cf ~ F(V,) £ [O.
Let 2, ¢infC; with 2, < a. Let V, be an open subset' of some member
of 6 with a e V,C W and F(V,) ~ L, = (0. Let W,=V, L(z) and let
O, be the component of W, containing #. Then as above, Cf ~ F(W,)
# [0, and we choose 2z, ¢inf0, with 2, <. Tf « is a limit ordinal, set
C, = ng(sup Of; we show next that O, is a single point.

Let @ ¢ 0., and note that for 8 <a, Cf CL(z). There is a neb
{@s}—>a where zp ¢ C§. Let 2z «supCf; then {g5} clusters at 2z, and we
ay assume that {z} is strictly monotone decreasing. We show that
C.CL,. Note that 0, = ]J':%lsup Cs Cﬂﬂ L(zs), 80 # < 2 for each f; hence

<a >a

by (2), # <z If # < 2, let ¥ be an open set about # with ¥V ~ L(2) = [O.
There exists z; eV n Cf for some §< a. Then for g, > B, O < Cf, so
%< 7p < % < 2, & contradiction.. Hence O, C L,; but O, is a continuum
and L, is totally disconnected, so O, is a point. This argument also shows
that ﬁQ Cf# is a continuum.

Hence by transfinite induction there is a continuum K, CX with
aeKs, Ksn F(W)s[J, and K, is the union of subcontinua each of
which is contained in a member of 8.

Let D = {8: 4 is an open cover of X}, % = {(|C is a continuum C X,
ae0, O~ F(W)+# [I}. We give 5 the finite topology, i.e., for the open
sets U and V of X; let N(U,V) = {4]| 4 closed CX, ACU, A~V 0}
and take {¥(U,V): U,V open} as a sub-basis for the open sets in §(X)
(the space of non-empty cloged subsets of X). Then 8(X) is compact
Hausdorff, and % is cloged in 8(X).

- Let K be a cluster point of {Ks}s.q. We claim that K is an arc
from & to F(W). Note that K <. We show first that Lz~ K =z for
each @ ¢ K. Suppose y e L, ~ K with ¥y #oveK.
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Let U and U be the neighborhood systems of  and y respectively,
and give R =DXUXV the product direction. For (5, U, V) R, there
exists (8, Uy, Vi) & (8, U, V) where 6, satisfies the condition: 0 €6y,
O0nU,+0-0CU, and 0'€¢d, O ~V,= 1->0'CV. Then N
=NX, U)nN(X, Uy) ~n X is an open set containing K, so there is
a refinement &, of &, with K;, ¢ N. Hence there exist (¥, Cf contained
in Ky, with 03~ U, 5 3 and Cf ~V, # [0, and hence 0¥ C U, CXC V.
Let (8, U, V)= {0}: y between a,f}; then K (5, U,V) is a conti-
nuum which meets U and ¥, and lies between an element of U and an
element of V. Let K(x,y) be a cluster point of K (3, U, V). Then K (z, y)
lies between x and y (using (2)), and is a continuum containing # and y.
Therefore © = K (2, y) =y, a contradiction.

Thus Ly ~ K = #, for each @ ¢ I; since K is an ordered continuum,
it follows that K is an arc, and the proof is complete.

Let (X, <) be a quasi-ordered space. Define £C Xx X by (z,y)eL
iff L(x) = L(y). If X is compact and Graph (<) is closed, then ¢ is closed,
and X/f is a partially ordered space with closed graph. Denote the nat-
ural map by ¢: X ->X/t. Note that ¢ is order preserving.

We say that a subset €' of X is biconnecied if (i) C is connected,
and (ii) Ly ~ ¢ is connected, for each z ¢ O.

CorOLLARY 1. Lel (X, <) be a compact quasi-ordered space, and let
0 be the set of minimal elements of X. If

(1) Graph (<) is closed,
(2) X\O has no local minima, and
(8) X/t is an arc
then each element a of X can be joimed to 6 with a biconnected chain.

Proof. Let aeX; consider the monotone-light factorization of ¢

x5 ubxpe.

@

—

It can be seen that M inherits a quasi-ordering from X/£, and has closed
graph. Now M\m(6) satisfies the conditions on W in Theorem 1, so
m(a) belongs to an ordered arc B with m(6) ~ B % [] and m(a) e supB.
Thus mB is a biconnected chain in X joining & to 6.

In attempting to weaken (3) of Corollary 1, we are faced with the
problem of finding conditions on X which insure that if B is an are in
X/t, then ¢~1B has no proper local minima. In this connection we have

LeMmA 2. Let (X, <) and (¥, <) be compact quasi-ordered spaces
with closed graphs, and let f: XX be continuous and satisfy z <y +> f(x)
<f(y). The following are equivalent
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(1) Ij B is a closed chain in ¥ with no proper local minima, then
i B has’ no proper local minima.

2) If B is a closed subset of ¥ with no proper local minima, then
[ B has no proper local minima.

(8) If B is a closed subset of ¥ with no proper local wminima, then
for y e B, (y not minimal), and t<f 'y, there exists {y}C B with eack
Yo <Y, Wat=>y, and te(Uf 7 (¥a)"

Proof. (1)->(2). Let B be as in (2), and let ¢ <f'B with z not
minimal in f7B. Let a: Y=Y/ be the natural map; note that a(B)
has no proper local minima, so by [1] there is an arc O C a(B) with
af(z) = sup C. Then f(#) e ¢~ C, a closed chain, and by (1), z ej a ¢
which has no proper local minima. Note that # is not a minimal element
of fa™'C; otherwise let e ¢ with t < of (x). Then it follows that for
any y ef ‘a”'t we have y <, a contradiction.

(2)— (3) Let B be as in (8). Choose a non-minimal element yeB
and e f '(y). Since B satisfies (2), for each neighborhood W of t there
is an element tw ¢ W ~ f7'B such that tw < t. Hence {tw] >t so j(tw)~—
—](t) = y. Note that f(tw) <f(t) and te (|7 "f(tw))*

(3 —>(1) Let B be a closed chain in ¥ with no proper local minima;
let t e 'y for some non-minimat y € B, and let ¥ be an open set rLbout 1.
By (3), there is a net {y,}C B with each y,< v, {ya}—u/, and te ([ {ya)) ™.
Then T~ f Y(y) # [T for some . Let ze¥ ~f* Ya); then f(2) = y. <y
= f(f), s0 # e1. Hence "B has no proper local mlmmq, and the proof
is complete.

DerINIrIons. 1) Let X, ¥, and f be as above. If  satisfies one of
the conditions of Lemma 2 we say that f is dense from below.

2) V\ e say tha,t ]‘ is open from below if: (ya) C Y, each 7, < z/, {WYa} =Y
imply fy.)>1"(y) (i.e., limsup j~ Ye) = f(y) = liminf 77

COROLLARY 2 Let X, ¥, and f be as above. If | is open ]‘wm below,
then f is dense from belm[

Proof. Let B be a closed subset of ¥ with no proper local minima.
Let y be a non-minimal element of B, and let te Fy). Since y is not
a local minimum, there is a net {¥.} C B with each y, = y and {y.} ->’t/
Since f is open from below, j ™ (y.) >/ Y(y). In particular we -have !
<= limsup /" (ya) C (Uj“l(ya)} , 850 f is dense from below.

CoROLLARY 3. Let (X, <) and (¥, <) be compact quasi-ordered spaces
with closed graphs. Let f: X —-Y be continuous and onto, with x < y < f(x)
< f(y). If | is dense from below, then ]‘m any ordered arc BC Y there is
a biconnected chain TC X with §(T) =

Proof. Since f is dense from below, 7B has no proper local min-
ima. The conclusion now follows from Corollary 1, where X is replaced

»
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by j'B. Note that a similar conclusion holds if B has no proper local
minima and is minimal with respect to being a closed chain.

We note that Corollary 3 contains the are-lifting theorem of Whyburn
([2), p- 186). For, let X and ¥ be compact spaces with f: X—=Y con-
tinuous, open, and onto, and let'd be an are in ¥. Then the natural
ordering on 4 induces a quasi- ordenng on j7'4, and the graph is closed
since f is continuous. Let f, = (f| f~ t4): f"lAﬁA then f; is open and
hence dense from below. By Corollary 3, there is a biconnected chain
TCf 4 with #(T) = A. Tf further f is ]ight, then T' is an are.

COROLLARY &. Let (X, <) be a compact quasi-ordered space with
unique minimal element 0. If .

(1) Graph (<) s elosed,

(2) L(x) is connected, for each x ¢ X, and

(3) p: X=XJC is dense jrom below,
then each element a of X les in a biconnected chain T with 0 ¢ T and
aesup”.

Proof. Since L(z) is comnected, @L(8) is connected. Thus by [1]
there is an ordered ar¢c 4 Ce(X) from ¢(a) to ¢(0). The conclusion
follows from Corollary 3.

Remarks. 1. It is conjeetural that (1) of Theorem 1 may be de-
leted; perhaps an argument of the sort given in Theorem 2 of [1] may
reveal this.

. It would be of interest to have further information about the
blconnected chain T in Corollary 1. For example, does there exist T
with mo proper loml minima?
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