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On Egoroff’s theorem
by
E. P. Rozycki (Buffalo, N. Y.)

I. Although Egoroff’s theorem [6] is usually stated for sequences
one finds it used in certain instances when the collection of functions
involved is non-denumerable ([5], [7]). However, several counter-exam-
ples exist in the literature which show that the conelusion of the theo-
rem does not in general follow in this case ([2], [8], [9], [10]). Hahn and
Rosenthal [3] must have realized this, although no reference to a counter-
example i3 mentioned, since they state and prove a non-denumerable
analogue to Egoroff's theorem, but by placing certain restrictions on
the functions not found in the original form of the theorem. Essentially,
they prove:

Let m be a measure junction on an additive class of sets A of a space
X, 4 an element of A such that m(4A) < +oco and F a real function de-
fined on A x (0, 1) such that for each z ¢ A, F(x, -) is continuous on (0,1)
and for each te(0,1), F(-,1) is measurable on A..If

im P(x, t) = G(x)
-0

a.e. on A, where G is finite a.e. on A, then, for each 5> 0, there ewists
a set BC A such that m(A—B) < n and the convergence of F(-,t) to @
15 uniform on B.

It is the purpose of this note to weaken the hypotheses of the
above theorem. In what follows F, m, 4, @ and 4 are to have the same
significance as above as well as the notation F(z, -) and F(-,1). We
obtain our results by replacing the set (0, 1) with an infinite set M and
varying its nature.

IL We first suppose that M is an infinite subset of a topological
space Y which is Hausdorff and second countable while its closure,
<l M, is countably compact (see Hall and Spencer [4]). This allows us
to assume without any loss that if we let M’ denote the derived set of
M and H a countable subset of M dense in M, then, if » eclM but
p e H, then p e M'— M. Let ls.c. (u.s.c.) denote lower [upper] semi-con-
tinuous. If f is a rveal function defined on a set ¥ and H C F then the
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symbol supf(H) means the supremum of the set {f(y)| y ¢ H } A cor-
responding meaning is given to inff(H). The main result of this section
is the following theorem.

THREOREM 1. If (i) F(-, t) 4s measurable on A for each t e M, (ii) F(z, )
is 1s.c. [u.s.e.] on M for each x e A, (iii) ]fEF(w,t) exists and equals

G(z) ae on A, and (iv) G(z) < F(z,t) [G(z) = F(z,t)] jor each ze A
and for every t in some neighborhood V of a e M’, then for each ‘prescribed
7 > 0 there emists some set BC A with m(A—B) < n on which }Eil Pz, 1)
= G () uniformly.

The theorem cited in the first section turns out to be a covollary
of the above theorem. In order to prove the above theorem we need
the following lemma.

Lemwa. If F(x, -) is Ls.c. [us.c.] on M for each s e d and F(-, 1)
is measurable on A for every te M and if

supF (-, M)(=) = supF(z, M),
int# (-, M)(z) = int¥(z, M),
lim supF (-, t)(z) = lir?supﬁ’(w, 1),

i->a —>a

lim infP (-, ) (x) = linélian(w, t),
i—a >

then both sup¥ (-, M) [infF (-, M)] and Iin}supF(-,t) []inli.hifﬁ(‘,t)] are

measurable on A, the latter holding for all a e M'.

We prove only the Ls.c. part of the lemma, the proof of the w.s.c.
part being similar. )

Since M is second countable, then it is separable. Let H — {ra}C M
be a countable set dense in M. Place fa(z) = F (2, r,) and C(z) = s&p]‘n(w).

We assert that C(w) = supF(z, M). Indeed, all we.need show is O (z)
= supF (2, M) since U(z) < supF(z, M) follows from HC M. Therefore,
suppose to the contrary that for some a* e 4, C(2%) < sup B (z*, M).
Then there exists a t* ¢ M such that

C(z*) < F(a*, t*) < supF(z*, M).
Hence
[a(@) = F(a*, ra) < C(2*) < F(a*, t*) < supF (a*, M) .

Since this is true for every u, then t* ¢ H and so #* « M’. From this fol-
lows i* ¢ H'. Therefore, if we let N(*) denote the family of all neigh-
borhoods of t* then U~ H =@ for every U e N(i*); thus

inf P(a*, U) < O(a*) < Fa*, 1*) .
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But then
sup {inf ¥ (x*, U), U eN(t,)} < O(x%) < F (a0, *)

which contradiets the hypothesis that F(z* ) is Ls.c. on . Thus our
assertion holds and since (' is measurable on 4, so is supF(-, ).

To show the second part of the lemma we make use of a countable
basis {Un} at a such that U,.,C T,. Define the sequence of funetions
{Fx} by Fu(a) = supF(z, U,). Then by what has just preceded, F, is
measurable on 4 for every n. Since {Ux} is a decreasing sequence of sets,
{F} is a decreasing sequence of functions and thus lim F, () exists for

n

each @ e A, say D(xz). It follows immediately that IimsupF(x, t) < D(z).
i—a -

The opposite inequality also follows. To see this, let ¥ be an arbitrary

neighborhood of a. Then there is an integer N such that Uy C V. This implies

sup F(z, Uy) < sup F(z, V). But then D(z) <sup F(z, T) and the desired

result follows from the arbitrariness of V. Thus D(z) =lLmsup F(x, t).
i—~a

Now D is measurable on ; consequently so is limsup# (-, 1).
t—a

As above we now give a proof of the Lg.c. part of Theorem 1, the
proof of the w.s.c. part being similar. By removing from 4 a set of meas-
ure zero we may assume that F(-,?) converges to & everywhere on A
and that @ is finite on A. Let {Us} and {F,} have the same significance
as in the second part of the proof of the Lemma. According to this
is measurable on A.

. t>a
Since

lilinsupF(m, 1) =lim F(z, 1) = G@) = Lm Fy(z),
~a t—a n

the same must be true of G. Also, in virtue of the fact that & is finite.
on A4 and the properties Fn(@) 2 Fpia(2), 3¢ A, and (iv) (Theorem 1),
for each > 0, there exists a measurable subset O of 4 and an index n*
such that m(4—0) < 27y and F, is finite on O for each n > n*. Thus.
we may apply Egoroff’s theorem to the subsequence {Foeiz} (k =1, 2,..)
and assert that there exists a subset B of C such that m(C—B) < 27
and {Fus.z} converges uniformly on B to G. Consequently, letting
P =n*+k, for each §> 0, there exists an integer N; such that
Fp(@)—G(@)| <6 for each @ eB and p>N,.
Aceording to the definition of By, Fy(x)>F(m,t) for each ze A and
te Up. Therefore, if P> N,
F(z, 1) —6 < G(w)

for each @ ¢B and te Up.


GUEST


292 E. P. Rozycki

According to our hypothesis there exists a neighborhood ¥V of a for
which G(z) < F(xz,t) for each ze A and { ¢V. Let N, be an integer such
that p > N, implies U, CV. Then, if p > N,,

G) <F(w,t)+06 for each w@ed and telUp.

Hence if p > max(¥N;, N,) we have |F(»,!)—G(x)| <6 for each te U,
and x ¢ B, i.e. F(-,1) converges uniformly to G on B at a. Since m(4—B)
< 5, our proof is complete.

III. In this section we assume M C Y where Y is a space which
is a complete chain relative to a partial order relation E. Then every
two elements of ¥ are R-comparable and we may say that #(z, -) is
isotone (antitone) on M for each zeAd if a,be M, aRb imply that
Flz,a) < F{z,b) (F(z,a)>F(z,b)). The space ¥ can then be con-
sidered a topological space by taking as a basis the “intervals” induced
by the partial order R. It is known [1] this space is Hausdorff. We as-
sume that M and Y satisfy the further topological conditions stated
at the beginning of the second section. The proof of the following theo-
rem is quite similar to that of Theorem 1 and therefore we omit it.

THEOREM 2. If (i) F(-,1) is measurable on A for every te M, (ii)
Fl(x, -) is monotonic on- M for every x e A and (iii) ]tim Bz, t) = G(=),

>0

a.e. on A, then, for each % >0, there exists a subset BC A such that
m{4—B) < 5 and the convergence of F(-, 1) to G is uniform on B.

IV. Although the conditions imposed on F(x, -) in Theorem 1 are
stronger than striet semi-continuity, nevertheless, they do not imply
continuity of F(z, -) on M. Aside from the topological conditions im-
posed on M and Y, the question arises whether or not this theorem is
really an extension of the result of Hahn and Rosenthal. To see that
the conditions imposed in Theorem 1 are significant, we cite the counter-
example given by Vinti [9]. Let M = A =[0,1], a = 0, and let {H,}
be a sequence of mutually disjoint non-measurable sets whose union
is [0, 1] and such that any finite union of these sets has inner Lebesgue
measure zero. Define F as follows:

1
F(m,t):{l if ‘EfE"’ t=uafn, 20,
0  otherwise.

Then ]t.Lm F(x,t) = 0 for each ze[0,1] and F(-,t) is measurable for
—0

every 1 [0, 1]. But F(-,?) does not converge uniformly on any subset
of [0,1] of posifive measure. We note that F(z, -) is u.s.c. on [0,1]
but no neighborhood of a = 0 exists for which #(z,?) <0 for each
z e[0,1] and every t in this neighborhood.
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