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but these discontinuities are nice in the sense that ¢ = 0 for these arcs,
It appears that our technigues would handle the cases of a finite num.
bers of ares A, like [0, «] with bad discontinuities, that is, the sets ¢,
(like C) are nonempty and also A,—Cy is nonempty.

Finally, it is conjectured that C contains n-cells, and that ¢ iy
closed under the operation of taking cones.

Question. Suppose that a compact metric continuum § containg
a subset I such that (a) § satisfies Conditions (1)-(6) for a ruled con-
tinwum and (b) I admits a topological semigroup structure with zero 2
and unit % where I and % have the same meaning as in (1)-(8). Does §
admit the structure of a topological semigroup with zero and unit #?

The continuum S above is a more general type of ruled continuum
than that considered in Conditions (1)-(8).
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On the lexicographic dimension of linearly ordered sets
by
V. Novdk (Brno)

L Introduction. In earlier papers from the theory of representa-
tion of linearly ordered sets chief interest was concentrated on finding
so-called universal sets. Under an m-universal linearly ordered seb (where
m is cardinality) we understand a linearly ordered set which contains

‘a subset isomorphic with every linearly ordered set of cardinality <mn.

It was been shown that such universal sets are ordinal powers (in Bir-
khoff’s sense) in which the base in any chain containing at least two ele-
ments and the exponent is a well-ordered set. Thus Hausdorff proved
{1], p. 181) that every linearly ordered set of cardinality <8 where
8¢ is a regular cardinal number is isomorphic with a certain sebt of se-
quences of type w; formed from three cyphers 0,1, 2, and ordered lexi-
cographically. In other words, he proved that an ordinal power of
type 3 is an s;-universal lineaxly ordered set if s, is regular. Sierpinski
([2]) improved his result in the following way: An ordinal power of type 2
is an mg-universal linearly ordered set for every cardinal number ;.

Now it is clear that the type of base cannot be reduced. Hence
interest has been concentrated on the problem if it is possible to reduce
the type of the exponent. It has been shown, however, that in general
this type cannot be reduced. In some cases it is possible, however, to
map a given linearly ordered set of cardinality s, isomorphically onto
a subset of a power with the exponent of a lower type than ;. Thus
Novotny ([8]) proves that: Every Ng-separable (1) linearly ordered set
can De isomorphically mapped onto a subset of ordinal power of type 2.
This survey makes clear the effort to find the most economical repre-
sentation, i.e. a representation in-which both the base and the exponent
are of the smallest possible types.

Now it is possible to pose this problem: Let the type of the base
be constant. What is the smallest possible type of exponent such that
the given linearly ordered set can be mapped isomorphically onto a sub-
set of the corresponding ordinal power? This problem was partially

(*) A linearly ordered set @ is called m-separable if it contains a dense subset H
of minimal possible cardinality m.
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solved by I. Fleischer for a base of type A (A= the type of the set of real
numbers). Fleischer ([5]) proved the necessary and sufficient conditions
for the possibility of mapping a given linearly ordered set isomorphically
onto a subset of ordinal power of type “A, where a is a countable, re-
spectively finite ordinal. An analogical problem has already been solved
for (partially) ordered sets. The universal ordered sets are cardinal po-
wers in which the base is a chain and the exponent is an antichain. It has
been shown that the minimal eardinality of the exponent of a eardinal po-
wer on a suitable subset of which the given partially ordered set can be iso-
morphically mapped is very densely coherent with the so-called a-di-
mension of set @ defined by H. Komm ([6]). In the paper [7] the so-
called «-pseudodimension of the ordered set G is defined and shown
to be equal to the minimal cardinality of the exponent of a cardinal
power with base of type ¢ which contains a subset isomorphic with 6.
This paper introduces the so-called lewicographic a-dimension of a linearly
ordered set &, which will be shown to be equal to the minimal type of
exponent of an ordinal power with base of type o which contains a sub-
set isomorphic with @ In this manner the problem of economy of re-
presentation of a given linearly ordered set with a given base is definitely
solved. In the conclusion of the paper there iy introduced a partition
of type « of a linearly ordered set which is a generalization of the dyadie
partition ([8], [3], [9]) and it is proved that the lexicographic a-dimen-
sion of a linearly ordered set G iy equal to the minimum of all orders
of all partitions of type « of set G.

In this paper we shall use the sign =« for an isomorphism of ordered
sets. If @ is a set, then card @ denotes the cardinality of @; if @ is a li-
nearly ordered set, then @ denotes the order type of this set. We shall
use these synonymous in the whole paper: linearly ordered set = chain
(= totally ordered set, i.e. a set & with a non-symmetric transitive binary
relation < such that for every @,y e @, & # v, there is # <y or ¥y <a).
We shall use Birkhoff’s symbolic (see [11]) such that, for instance, A®B
denotes the ordinal sum and Y denotes the ordinal power. The set &
will be called non-trivial if card@ > 2. All sets in this paper are assumed
to be non-trivial if the contrary is not stated, and all cardinalities and
all order types are assumed to be cardinalities and respectively order
types of non-trivial sets.

2. Lexicographic a-realizer of a linearly ordered set.

DrrivrrioN 1. Let N be a well-ordered set, let M, (¢eN) be an
ordered set of every ae N. By the ordinal product P M, we understand
eEN

the set for all functions f defined on N and such that f(a) ¢ M, for every
aeN ordered in the following way: f<<g <= there exists an ayeN 50
that f(a) = g(a) holds for every a < a, whereas f(a) < g(a). If all sets
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M, are equal to the same set M, then we call the relevant ordinal prod-
uct the ordinal power and denote it by VI

DzrFiniTION 2. Let @ be a linearly ordered set, let N be a well-
ordered set and let us assign to every v ¢ ¥ a chain I, and a mapping
f» of @ into L, so that for #,y e &, # <y holds if and only if there exists
v e N so that f(@) = f.(y) for v < », whereas f,(z) < ful¥). Then we say
that {L,,f,| v« N} is a lewicographic realizer (briefly: 1-realizer) of set G.
If all chains L, are of the same type a, we call the corresponding realizer
{L,, f,| ve N} a lewicographic o-realizer.

THEOREM 1. Let G be a chain, let N be a well-ordered set and lei
L, be a chain for every v e N. Then the following statements are equivalent:

(.A.) G = @ _C IJ’V Lv .

(B) For every ve N there ewists a mapping f, of @ into L, such that
{Ly, f,| ve N} is a 1-realizer of set G.

Proof. I. Let (A) hold. Let ¢ be an isomorphism of @ onto
@ C _lJ’vL,. For any ze@ and for any »< N let us put @(z,») = [p(x)](»).

@ is the mapping of the set G XN into the set (J I, with the property
veN

D(w, %) € L,. D(w,) is therefore the mapping of the set @ into Ly,.
Let us put @(w, %) = f,,(). We shall show that the system {L,, fo| e N}
is an l-realizer of G. Indeed, let # <y in G. Then @) <@(y) so that
there exists & vye N so that for » <, we have lp@)](») = [p(¥)] ()
whereas [p(2))(%) <[p®)](%), ie. ®(z,»)=(y,») for »< vy and
D (w, ) < Py, m)y Le. f(w) =T (y) for » <w, and f,(x) <fy(y). Let us
suppose, on the contrary, that f,() = f.(y) for » <, and f,(z) < Fool¥),
Le. @(w,v)= Oy, ») for » <, and D(x,») < B(y, %). Then [p(z)](»)
?[‘P@/)](T') for » <» and [p(@)](n) <[p®)](%), so that @) <e@y).
Since ¢ is an isomorphism, we have @ <y. Hence [L,, f,| ve N} is indeed
an l-realizer of ¢ and (B) hclds.

II. Let (B) hold. Let us denote again ®(w,v) = fu@) for any z e @

and any v« N. @ is the mapping of the set & x ¥ into the set | J L, with
veN

the property &(wy, »)eL,. Let us form the ordinal product P L, and
veN

let us put @(zy, ») = [¢(2,)](»). In this manner we define the mapping
® of the set ¢ onto ¢’ C E_ L,, which;will be shown to be isomorphism.

Let @ <y in @. Then there exists a™v, ¢ ¥ so that Fo(@) = f(y) for' v <y
whereas f,(x) < 1,,(y), i.e. ®(z,»)= B(y,») for » < »,, whereas D(w, v,)
< B(y, »). Therefore [p(2)](v) = [p(y)](») for » <, whereas [p(2)] (%)
< [@(y)]{), which implies p(x) < p(y). If we suppose, on the contraryy
that ¢(#) < ¢(y), then there exists a voe N so that [p(z)](») = [¢(¥)](»)
for v <, whereas [p(2)](m) < [p(y)](%), i.e. B(@,)=B(y,») for » <7
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whereas D(w, v,) < (y, ) and therefore f,(z) = fi(y) for » < v, whereas
@) < fro(¥). Since {L,,f,| ve N} is an l-realizer of &, we have » <.
Hence ¢ is indeed an isomorphism and (A) holds.

THEOREM 2. Let @ be a chain, let N be a well-ordered set and let L be
a chain of type a. Then the following statements are equivalent:

(A) G =@ CVL.

(B) For every ve N, there ewists a mapping f, of G into L so that
{L,f,| ve N} is a lewicographic a-realizer of the set G.

The proof is clear from Theorem 1.

LemmA. Let Ly, L, be such chains that Ly 02 Iy C L,. Let @ be a chain
and let N be o well-ordered set. If G =~ @, C "L, then G = @, C VI,

Proof. If I, o~ L], then clearly ¥, o~ ¥L;. It ¢ iz a relevant iso-
morphism, then @ oG CYL, and @ ~@(G) =G C" L, o that
G =G, CVL,

THEOREM 3. Let G, L be chains. Then there exists a well-ordered set N
such that G =~ @' C L.

Proof. Let B be a chain containing exactly two elements. Accord-
ing to Sierpinfski’s theorem ([2]) there exists a well-ordered set N such
that @ =~ & C7B.

Our statement now follows from the preceding lemma.

CoNSEQUENCE. Let & be a chain and let I be a chain of type a. Then
there emists at least one lexicographic a-realizer (and hence af least one
L-realizer) of the chain @. :

The proof follows from Theorems 2 and 3.

3. Lexicographic o-dimension of a linearly ordered set.

DEFINITION 3. Let & be a linearly ordered set and let « be a type
of a chain L. The minimal ordinal type of the well-ordered set N such
that {L,f,] ve N} is a lexicographic a-realizer of the set G is called
a lexicographic o- dimension of the set @. This ordinal iy denoted by
a-1dim G.

TrBOREM 4. Let & be a linearly ordered set. Let I be a chain of type a
and let N be a well-ordered set of type ». Then the jollowing stalements ave
equivalent:

(A) a-1dim@ < v,
(B) G CVL.

The proof is clear from Theorem 2.

THEOREM 5. Let G be a linearly ordered set and let « be the type of
& chain L such that G ~ G CL. Then a-1dim@ = 1.

The proof follows from Theorem 4.
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THEOREM 6. Let @ be a lineawly ordered set and let I, , Ly be chains
of types a and B, respectively such that Li=IL'CL, Then a-1dim@
> f-ldim@G.

Prooi. If the assumptions of the Theorem are true, then ¥I, ~ VL
C VL, for every well-ordered set N. The statement now follows from
Theorem 4.

Note. A linearly ordered set containing no gaps and no jumps is
called a confinuous set. A continuous set containing a smallest and
a greatest element is called a continuum.

We now prove the following

LevmA (%). Let @ be a continuum, and let P be o well-ordered sei.
Then TG is o continwum.

Proof. Let us denote by ¢ the smallest and by § the greatest ele-
ment in @. Then the function f; such that fi(p)= 4 for every pe P iy
the smallest element in ©@, and the function f; such that fy(p)=j for
every peP is the greatest element in F@. Suppose that there exists
in @ a jump, i.e. such two elements f, ¢ that f < ¢ and that there exists
no b eF@ such that f<h, h<g. Since f < g, there exists a p,e P such
that f(p)= g(p) for p <p,, whereas f(p,) < g(p,). Since @ is a con-
tinuum and f(p,) e G, g(p,) € G, there exists an a ¢ @ such that f(po)
< a <g(po)

Let us define the function % in the following way: h(p)=f (p) for
P < Po, h(p)=a for p >p,. Then heF@, f <h, h < ¢ and this is a con-
tradiction. Hence @ contains no jumps. We shall prove that *@ contains
no gaps. Let us suppose that in £@ there exists a cut (4, B) which is
a gap. Let us denote P'= {p| p e P, there exists f ¢ B such that f(p) + j}.
If P’ is an empty set then B contains only the greatest element in 7@
and this is a contradiction. Hence P’ @ and let p, be the smallest ele-
ment in P’. Then the following holds: for every p < p, and every feB
there is f(p) = § while there exists g ¢ B such that g(po) #94. In A there
necessarily exist functions k such that k(p) = j for p < p,. If such a fune-
tion % did not exist, then the function %, defined as ho(p) = j for p < p,,
ho(p) = ¢ for p = p, would be the smallest element in B, giving a con-
tradietion. This implies that the given gap is also a gap in the set F C £@
containing those functions & e A for which h(p) = j for p s p, and those
functions f e B for which f(p) = ¢ for p > p,. But it is clear that F o &
and @ contains no gaps, which is a contradiction.

By an interval in a linearly ordered set & we shall understand a sub-
seb TC G such that o,yel, 2¢@, a <2<y implies 2 ¢ I. By a closed

(3) This lemma is a generalization of one of Hausdorff’s theorems ([10]). Hausdarft
proved this lemma for the case P < w,.
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interval [a, b] (a, b e @, a < b) we understand a subset I C @ containing
those elements % e @ for which a <@ <b.

TEEOREM 7. Let @ be a continuum of type a and let N be o well-
ordered set of type ». Then a-1aim ™G = ».

" Proof. According to Theorem 4, a-1dim¥@ < v. The contrary state-
ment will e proved if we show that Y@ = @ does not hold for any
segment () Ny of the set N. We shall apply the theorem proved in [4]:
If @ is & continuum, then no system of disjoint closed intervals in @ ordered
in a natural way is tsomorphic with Q.

Now let N, be any segment of the set N. Let us form the ordinal
power 7@ and let us denote f(g) = {f| fe NG, f(v) = g(») for v e Ny} for
every g ™@. Then {f(g)] g ¢ '@} is a disjoint system of closed intervals
in ¥G and it is isomorphic with Y@ with respect to natural order (the
natural order of a disjoint system of intervals in a linearly ordered set
will be defined in the beginning of section 4). As V@ is a continuum,
the relation V@ = {f(¢)| g« V&} is not valid and the proof is complete.

DrrFINITION 4. Let G be a linearly ordered set, let L be & chain
of type a and let N be a well-ordered set. Let ¥ C "L and let ¢ o F.
Then F will be called an a-representation of the set @. The order type »
of the set N will be called the a-economy of this a-representation and
will be denoted by » = a-ek{G, F}.

TaroreM 8. Let @ be a linearly ordered set and let a be an order type.
Then mina-ek{¢, F} = a-1dim@.

Proof. According to Theorem 4, a-ldim@ < a-ek{@@, I'} for every
a-representation F of the set @, so that o-ldim@ < mina-ek{@,F}.
On the other hand, if ¢-1dim@ = v, then according to Theorem 2 there
exists guch an o-representation ¥ of @ that a-ek{G,F} =

Now TFleischer’s results can be formulated in the following way.

If @ is a linearly ordered set, then 1-1dimG < w, (*) if ond only if
every gap in G has character ¢y and every element in G has character (1,1)
or (0,1) or (1, 0*) or (w, w*). If this condition is satisfied, then the suffi-
cient condition for A-1dim@ < n is that the equivalence o (°) applied suc-

cessively to its own equivalence classes should yield after ot most n iteration
to the universal equivalence.

4, Partition of type o of a linearly ordered set.

4.1. Let 8 be a system of intervals in a linearly ordered set @ such
that any two distinet intervals of this system have at most one point
in common. For X,YeS we put X < ¥ if and only if @ <y for all

() A set K is a segment of a chain & if G = K@ H.

(*) A denotes the order type of the set of all real numbers.

. ©) ¢ is defined in following way: z,y¢@, #<y, gy <> the closed interval [z,¥]
Is isomorphic with a subset of a set of type A.
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weX, ye¥. Relation < iy clearly the linear order of the set §; this
order will be called a natural order.

Let a, f be order types. YVG put a C B, when there exist linearly
ordered sets A, B such that 4=a, B=48, A C B (%). Note that, by
the definition, a one-point set is also an interval. In the sequel, one-
point sets are also counted as intervals but all other sets are assumed
to be non-trivial.

Let @ be a linearly ordered set and let o be an order type (7). The
system § of intervals in the set G will be called a partition of type «
of the set G if the following conditions are satisfied:

(1) GeS;

(2) X, YeS8§=2XnY=X ot XnY=Y or X~nY=0;

(8) Xe8, X is mon-trivial = there exists a subsystem §(X)C §
containing disjoint intervals from § and having these properties:

X= U 7,8(X)= o(X)C a with respect to the natural order, ¥ ¢ §(X),

FPesS(X)
Ze8, YCZCX=»Z=Y or Z=X.

(4) An intersection of any monotone subsystem 8, C 8 is empty
or a one-point set or an interval belonging to S.

Note that by definition every dyadic partition of set @ is a parti-
tion of type a.

In the system 8 we define the order < inthis way: X <Y <= X ) ¥.
Then we have the

Levwva. 8 does not contain any infinite decreasing chain with respect
to order <.

Proof(®). Suppose that $ contains an infinite decreasing chain
XX & & Xy~ Then |J X, =X is an interval in G. From (1)
n=1

it follows that there exist intervals ¥ e § such that ¥ D X. Let us de-

note the set of these intervals by 8,. If ¥, ¢8;, Y,¢8;, then ¥; ~ Y, D X

and, according to (2), ¥; n ¥, =Y, or ¥y~ Y= ¥y, ie. ¥, C Y, or

Y, C Y;. Hence 8, is a monotone system of intervals belonging to 8§

and, according to (4), ng Y= Y,¢8 and clearly ¥,¢8,. Now, accord-
€1

ing to (3), there exists a subsystem §(¥,) such that ¥,= J Y with
PeS(To)

the properties §(¥o)= a(¥,) Ca; Y e§(¥,),Z¢8, YCEZC Y, »Z=X
or Z = Y,. As Y°=er Y, the relation ¥ D X is not valid for any
€21 .

(*)3It is easy to see that relation C is reflexive and transitive; thereforeit is the
quasiorder of any set of order types. Example: AC A+1C A, 4 # A--1 shows that this
r@lation is not antisymmetric, therefore it is not an order.

() @ # 0, a # 1 because all sets and all type are assumed to be non-trivial.

(*) This proof if accomplished in the same way as the proof of Lemma 1 in [8].
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interval Y e $(¥,). Hence there exigts an integer m, such that ¥ ;Q X,
for any Y eS(¥,). Hence there exist ¥, e8(Y,), Y,e8(Xy), ¥, #7T,
such that Xn, ~ X, # 9, Ko n Yo # ¢. This implies A, n ¥ #= X,
X~ Y, # Xy, and according to (2), Xny o ¥Yi= Yyy Xnyn Y,= Y, so
that ¥, C Xy, It follows, according to (3), that the relation X, C ¥,
is not valid. As X, CY, this implies Xn = Y, so that X, ;.2 7Y,

and this is & contradiction, because ¥, C X = U1 Xy
ne

Tet A be an interval in G. Then the subsystem 8, C 8 containing
those intervals that contain 4 as & proper subset is, according to the
lemma, a well-ordered set with respect to order <. We define the order
of A as the ordinal which is the type of the set §;. The least ordinal y
such that there exists no interval of order greater that y will be ecalled
the order of the partition §.

4.9. Tet G be o linearly ordered set. Let us assign lo every non-trivial
interval I C G a system S of intervals having these properties:

(1') any two intervals of the system Sy are disjoint,

@) U X=1I,

Xedy

(8") Sy == a; C a with respect to the natural order.

We shall construct a system 8 of intervals in G and we shall assign
to every interval X eS§ a certain ordinal, the so-called order of this
interval in the following manner: The only interval of order 0 is G. Let
us suppose that we have constructed all intervalls of order y for every
y < 8, Then we define the intervals of order 8 in the following way:

1) If & is an isolated ordinal and if I €8 is any non-trivial interval
of order 6 — 1, then every interval X e Sy will be called an interval of
order ¢ and we shall put X eS8.

2) If 8 is a limit ordinal we shall put () I,= X where I, 8 is any
<8

interval of order ». Then X is an empty set or an interval. If X is
an interval, we shall put X eS and we shall call X the interval
of order é.

We shall prove that there exists a certain ordinal ¢ such that theve
exists no interval of order e. If card G < »¢ and if we suppose the exigt-
ence of the interval I,,, of order i, then all sets I—Iyw1, where
{L}s<ens, i8 & monotone sequence of intervals of order », are non-void
and disjoint 80 that card@ > #i.1, and that is a contradiction.

Let y be the supremum of orders of all constructed intervals. It is
not difficult to prove that the system § of all intervals so constructed
forms a partition of type a of the set G and that the order of this parti-
tion is 4.

icm°®
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4.3. TEEOREM 9. Let G be a linearly ordered(set and let B be am
ordinal. Then o every partition of type a of the set G of order B there ewisis
an a-representation of the set @ whose a-economy is B.

Proof. Let § be a given partition of type « of set @ of order g.
Let L be any linearly ordered set of type o, and let B = {b,},<s be any
well-ordered set of type p. If I8 is any non-trivial interval, then ac-
cording to (3) there exists a subsystem §(I) C 8 such that I= |J X

— . XeS(D
and 8(I)= a(I) C a with respect to the natural order. For everye such

interval I, let us choose any isomorphism of system S(I) into L and
let us denote it by ¢r.

Now l_et xe@. Let us denote by I(x) the system of all intervals
from 8 which contain {x} as a proper subset, I(z) is a well-ordered set

with respect to order < and it is of type f(#) < 8. Hence I(«x) can be
written in the form

T(a) = {6 = I2) R L(2) < . R La(0) < ] A < B(a)} .

It p(wx) is a limit ordinal, then {&} = , Q ) I(). If B(z) is an isolated
<B(x:

ord{in}zul, then clearly {z}e S(Iﬁ(z)_l(w)). ‘We shall put in this case Tpy(®)
= {&}.

We assign to #¢ @ an element (@) ¢ L in this way:

(@) (b)) = {‘PIA(Z)[II-H(m)] for 2<p(w),
Iy, for  plo) <A< p,

Whe're lyeL is any element for f(») <A< p. We shall show that y is
an isomorphism of @ onto a certain subset of ZL. Let z,y¢@ z<y.
Then there exists an ordinal 6 < f such that In(z) = I(y) fo’r A<é
?vhereas Iy(w) < Is(y) with respect to the natural order. This ordinal 4
is necessarily an isolated ordinal because if ¢ is a limit ordinal, then
Iy(z) = Q',Iz(w) so that Iyz)= Ii(y) for 1 < & implies Ty(w) = I,(y). This

lr?lplies 9(@)(b2) = or,@lLiva(®)] = 1oL (®)] = (y) (b)) for A< d—1
whereas (@) (bs-1) = 91,_yalLa(@)] < g1,_lLe(y)] = v(y)(Bo—s) 50 that
1_p(a?) <1p(.y). It follows simultaneously that w is one-one and therefore
it is an isomorphism.

4.4. THEOREM 10. Let G be o linearly ordered set and let B be an

ordinal. The'n: to every a.-?’epresemation F of the set @ such that a-ek {G, F'}
= B there ewisis a partition of type « of the set @ of order <8.

c BLProof. W.e can suppose without loss of generality directly G = F
< where L is a chain of .tsfpe a and B = {b,},s i3 a well-ordered set
of type . To every non-trivial ipteryal I C @ there exists an ordinal

Fundamenta Mathematicae, T. LVI
2
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(1) such that for every two elements f, g el we have f(b,) = g(b,) for
» < 8(I), whereas there exist two elements %,lel such that %(byg)
< U(ban). Tt Ly = {f (bo)| f¢ @, f eI}, then let

Li={f| fe@, fel, fbsy)=1} for any ielI,.

It is easy to see that the system 8y= {Ii| i e L} fulfils the condi-
tions (1')-(3') so that this according to 4.2 determines a certain partition
of type « of the set G. It is sufficient to prove that the order of this
partition is <.

Accordingly we shall prove that for any interval I of order v of this
partition we have y < §(I). The proof will be made by transfinite in-
duction. For y = 0 the relation is clear. Let y < 6(I) for every y <u
and for every non-trivial interval I of order y of the given partition.
If u is an isolated ordinal then p—1< §(I) for every mon-trivial inter-
val I of order u—1. Let I be any such interval. Then f(b,) = g(b,) for
» < u—1 and for any two elements f, g eI, so that for the correspond-
ing intervals I; C I of order x we have (L) > 0(I) > u—1, i.e. u << 6(Ly).
If pis a limit ordinal, then y < 8(I) for every y < u and every non-trivial
interval I of order y. Hence u= supy < supé(I) (I being of order 7)

r<u

< 8(I) (I being of order u).

Now for every non-trivial interval I of the given partition we have
6(I) < B, so that the order of every interval is <pg. This implies that
the order of the constructed partition is <p.

CoNCLUSION. Let @ be a linearly ordered set and let o be an order type.

Then a-ldim@ == ming, where f runs over the orders of the partitions of
type a of the set G.

S. Two examples. In this section R denotes the set of all real
numbers, P denotes the set of all rational numbers, both with the
natural order and A= R, = P.

1. Let @ be the set of type 7+ 2 (*). @ is therefore the set of all pairs
[#, y] where @ is real and y rational, or the set of all points of the open
unib square with an arbitrary first coordinate and rational second co-
ordinate and this set is ordered lexicographically.

‘We shall prove:

(a) 2-1dim@=o-2,
(b) 7-1dim@ = w41,
(€) A-1dim@=2.

(") The product of order types is understood in Hausdorff’s sense ([1]).
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Proof. (a) We shall construct a dyadic partition of G of order w-2
by sequential halving: we shall put

Gh=6, @A={wyll0<w<i.

G ={z vyl t1<s<l}, G ={z,9]0<s<},

G =zl t<a<i), & ={zy] i<o<i,

G = (o, y]l $<0 <1}, ., GE ={z,y]| o= const},

i = {[w, y]| @ = const, 0 <y <1},

Gt =, yll &= const, 3 <y <1},

o+2

Giiy-Tse — (15 y]| @ = const, y = const}.

It remains to prove that there exists no dyadic partition of G of
order less than o-2. Let 8 be any dyadic partition of @. Let us consider
the subset S, C 8 containing those intervals from § which are of order
less than . The set of all end-points of these intervals is countable;
this implies that there existy at least one real # such that the abscissa
[z,y], 0 <y <1is a subset of some interval I of order o from §. But
then it is clear that at least w steps are necessary for this interval I to
complete the given partition.

(b) It is not difficult to construct a partition of type # of G having
order w--1. The first o steps are the same as an in (a); in the (w +1)st
step each interval [x, y]: ®= const, 0 <y <1, is divided into one-po.mt
intervals. The proof that there exists no partition of type » of G having
order less than o -+1 is accomplished in the same way as in (a).

(e) As 5-AC 2], we have A-1dim@< 2 according to Theorem 4
But A-1dim@ >1 because A-ldim@ =1 implies ¢ =~ @G C R and this
is impossible because G contains a non-denumerable system of disjoint
non-trivial intervals.

2. Let & be the set of type -7, i.e. the set of all points of the open
unit square with a rational first coordinate and an arbitrary second
coordinate, ordered lexicographically. Then we have:

(a) 2-ldim@ =1,

(b) 2-1dim@G=o,

(¢) n-ldimG=ow.

Proof. (a) As R contains a subset R’ isomorphic with @ (for in-
stance, Cantor’s set), we have A-ldim@ =1 according to Theorepa 5.

(b) As 2-1dimR = o (Novotny [3]), we have 2-1dim@G = 2-1dim B’
<21 dimR = w. On the other hand, surely 2-1dim@ > so that
2-1dim @ = o.

(¢) As 2-1dim G = o, we have 5-1dim & < o according to Theorem 6.

2%
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Let us suppose that #-1ldim @ < o, i.e. 4-1dim@ = n where n < w.
Then & o~ @ C™P according to Theorem 4 and this is impossible be-
cause card@ = 2%, card "P = §,. Therefore n-1dim& = .

References

[1] F. Hausdortf, Grundziige der Mengenlehre, Leipzig 1914.

[2] W. Sierpiski, Sur une propriété des ensembles ordonnés, T'und. Math. 36
(1949), pp. 56-67.

[3] M. Novotny. Sur la répresentation des ensembles ordonnds, Fund. Math. 39
(1952), pp. 97-102.

[41 — O podobnosti uspordddnyeh kontinut typd v a v, Casopis pro pestovini
matematiky 78 (1953), pp. 59-60

[5] I. Fleischer, Embedding linearly ordered sets in real lexicographic product,
Fund. Math. 49 (1961), pp. 147-150.

[6] H. Komm, On the dimension of partially ordered sets, Amer. Journ. of Math.
(1948), p. 507.

[7] V. Novik, On the pseudodimension of ordered sefs, Czechoslovak Mathematical
Journal, 1963.

[8] J. Novik, On partition of an ordered continuum, Fund. Math. 39 (1952),
pp. 53-64.

9] D. Kurepa, Bnsembles ordonnéds et ramifiés, Thése, Paris 1935, Publ. Math.
Belgrade 4 (1935), pp. 1-138.

[10] F. Hausdorff, Untersuchungen diber Ordnungstypen, Berichte tiber die Ver-
handlungen d. koniglich Sichsischen Gesellschaft der Wissenschaften zu Leipszig, Ma-
thematisch-physische Klasse 58 (1906).

[11] G. Birkhoif, Latiice theory, New York 1948.

Regu par la Rédaction le 25. 6. 1963

Semigroups and clusters of indecomposability *
by
R.F.Dickman, R.L. Kelley, L. R. Rubin, P.M. Swingle (Miami, Florida)

In [4] and [9] we have generalized indecomposable continua in var-
ious ways; here we wish to consider these types of continua as topo-
logical semigroups. The examples in [4] and [9] are based upon Wilder’s
construetions for his Theorems 1 and 8 of [15], pp. 275-278, 290-292;
these constructions and examples are complicated. However, we also
give below simpler examples for which our definitions and theorems hold.

Below, 8 is a topological semigroup, which we call a semigroup,
such that there is a continumous mapping m: 8 x8 -8, called multipli-
eation, where § is a Hausdorff space and m is associative. For @,y €8,
we write oy = m(w,y); and AB= {my: < A, y<B}. We let % be the
unit of § and 0 be the zero, if these exist, where, for all we 8, 4u ==
= ux and 20 = 0 = 0z. We use E to denote the set of idempotents of 8,
where for ¢ ¢ H, e¢ = e. We recall that a non-null subset 4 of S is a left
ideal if and only if SA C A and it is a right ideal if AS C A; it is an ideal
if and only if it is both a left and a right ideal. We denote the minimal
ideal by K and the null set by 9.

Basic definitions and results concerning semigroups are in [14]; for
topology they are in [6] and [16]. By a continuum, or a subcontinuum
of 8, we mean a connected subset of § which is closed in 8. We think
of § imbedded in another space, so that the connected semigroup S
need not be the same as its closure S; but then the multiplication oper-
ation m is extendable to §; this is true for the examples of connected
semigroups in [5] and [7].

DerFINITIONS. We say, for 4 C B, that A is region-conlaining in B
if the interior of A with respect to B is non-null; that is if there exists
a region (neighbourhood) B such that 4 DR ~ B: if <R n B, we say
that 4 is region-containing at @ The connected set § has an n-fold
set \JZ; (j=1,2,..,n) of indecomposability if and only if every region-
containing connected subset W of § is such that W, the closure of W
in 8, contains some Z;, and we take each Z; non-pull: if » =1, we let
Z = Z, and say S has a set Z of indecomposability, and if § is a con-

* This work was done under National Science Foundation grant G 19672,
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