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easily arrange that the sets I™A are disjoint, of positive measure, and
cover X; and we define x4 on T"4 by
pB= [ yaw)id(@) (BCI"A).
"B
In other words, the functions w, can be preseribed arbitrarily on any
proper subset A of X, provided the tramsformation T' is allowed to be
compressible and the total measure uX is not required to be finite.

Thus, for example, we can arrange that ws,—0 bub 2 On = co
throughout any such A4; and so on.

.As another application of this construction, suppose we start with
an tnoompressible transformation T) on (X, ) as above; then we can
find a compressible transformation T, on (X, u) such that # and 1 agree
on 4, and further wa(w; T,) = wa(w; T,) on A for all (these w’s being
calculated in terms of u, 4, respectively). Thus, it is impossible to tell
solely from the behavior of the functions w, on a proper subset A4 of X’
whether or not the transformation 7 is compressible on X, ’

8.7. We conclude with one more corollary to Theorem 4 (8.2):
CoroLLARY. If T dis incompressible, then for almost all xe X

limsup w,(s) = lims =
o onl0) = Imsupon@) = sup waa) > 0.

For the set where %upwn(w) < Supw() is just X,, and so is
n

null from Theorem 4. This proves one equality; the other
the first applied to 7% 4 Vi other follows from
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On products of sets in a locally compact group
by
J. H. B. Kemperman* (Rochester, N. Y.)

Introduction. Let & be a locally compact group, u a left Haar
measure on @, u, the corresponding inner measure. The group @ is said
to be unimodular if the left invariant measure p is also right invariant;
this happens, for instance, when @ is either compact, or abelian, or
discrete, or a semi-simple Lie group.

Let further A and B be given non-empty subsets of & Then AB
will denote the set of all elements » ¢ G which admit at least one repre-
sentation as a product @ = ab with a e A and b < B.

TugoreM 1.1. Suppose that G is unimodular and connected. Them

(1.1) /h(AB) = /‘*(A) + ui(B),

unless p(@) < pa(d)+puy(B);, in which case G 18 compact and AB = G.

The special case, where @ is abelian, is due to Kneser [6]. The fur-
ther special case, that G is also compact and second countable, is due
to Shields [9]. It remains to determine the class of pairs (4, B) such
that (1.1) holds with the equality sign. For an abelian connected group,
this problem was solved by Kneser [6].

THEOREM 1.2. Suppose that G is unimodular, and further that there
ewists a pair of non-empty subsets A and B of @& such that

1.2) sl AB) < uy(A) +p(B) .

Assertion: @ contains at least ome open amd compact subgroup F
of sige p(F) < pis( AB).

More precisely, the set AB is both open and compact, and the open
and compact subgroup F can be chosen sn such & way that

1.3) aFb CAB whenever aeA and beB.
Finally, if a subgroup F satisfies (1.3) then AB = A,B, as soon a8

(1.4) A,CAF, B,CFB, puds)+pdB))> p(4dB).

* This research was supported in part by the National Science Foundation,
grant G-24470.

4%


GUEST


52 J. H. B. Kemperman

If @ is connected then the only subgroup of G which is both open
and closed is @ itself, thus, Theorem 1.2 implies Theorem 1.1, A com-
plete description of the special situation 4(AB) = u(B) (A and B megs-
urable, p(4) >0, p(B) < oo), was already given by Macbeath [71.

Given the compact open subgroup F of @, the largest closed and
normal subgroup of & contained in F is given by
(1.5) H= "\ oFs.

ze@
This group H is also open, provided that @ is either abelian or compact.
Using this remark one easily (section 4) obtains from Theorem 1.2 the
following result. Here and in the sequel, if D is a set then [D] denotes
the number of elements in D.

THEOREM 1.3. Suppose that G is either abelian or compact. Then the
following construction yields Drecisely all the pairs of non-empty subsets
A and B of G for which (1.2) holds.

Let H be any open and compact normal subgroup of @. Choose A’, B’
as any pasr of non-empty finite subsets of the (discrete) group G/H such that

(1.6) [4'B] <[AT+[B1].

Let o denote the quotient mapping G~G/H. Now, choose A as amy subset
of 6724', B as any subset of o~1B' in such a way that

7y [A'Bu(H) < uy(4) + uy(B) -
We mention that in this case always AB = o=YA'B').

For the case where @ is abelian, this result is due to Kneser [6].
His proot is quite different from ours. ‘

In a natural way, Theorem 1.3 leads to the problem of determining
the pairs (4’, B') of finite subsets, of a given discrete group, for which
(1.6) holds. For an abelian group this problem was solved by the author [5].
The general problem remsins open and seems rather difficult; a few
necessary properties of the pair (4’, B') may be found in [4].

For a locally compact group which is not unimodular some results
are given in section 5. It appears that the unimodular case ig definitely
more interesting.

Let us finally mention that in the bresent paper we also consider
the case of locally compact semigroup admitting an invariant measure.
In fact, the mair lemma (Theorem 3.1) in the proof of Theorem 1.2 is
given in terms of this more general cage.

2. An auxiliary result. In the sequel, if X iy a locally com-
pact Hausdorff space then a subset B of X is said to be measurable (or
Borel measurable) if it belongs to the smallest o-field of subsets of X

containing all open (and thug all closed) subsets of X.
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Tet » be a nonnegative regular Borel measure on X, in part_icula‘r,
0 < »(0) < oo for each compact subset € of X. A subset B of X is said
to\be »-summable if for each ¢ > 0 there exists an open set U and a com-
pact set € such that

CCECU and »(UnC)<e,

the bar denoting complementation. A set EC X is said to be v—meaf'tfr-
able it B ~ C is »-summable for each compact subset € of X. In Paxtm-
wlar, each (Borel) measurable set is also »-measurable [1_]. Emall;;.r,
3 1'e,a1-va1ued*function f on X is said to be »-measurable if f7(B) is
p-measurable for each (Borel) measurable subset of the reals.
In this section, G denotes a fixed locally compact Hausdorff space.
Further, (@, ) >0y
denotes a given mapping of @ <@ into G which is' measurable in the‘
sense that the inverse image of each measurable set is me&sm‘_ableg (later
01'1 kwe shall make the stronger assumption that this mapping is con-
tin’uous and associative). Finally, u denotes a fixed nonnegative regular
rel measure on G. ' ‘
BOleLet I, I, and T, be given subsets of & such that I"is (Borel) measur-
b
able and that I, and I, are p-summable:

(21) p(Iy) < oo, p(ly) < oo

Denote by IT = IT(I', I, I';) the collection of all pairs (4, B) of y-sum-
mable subsets 4 and B of @ such that

(2.2) pAdnT)=0, pBAl)=0,
and
(2.3) (uxp){(@,y): wecd, yeB, oy ¢I}=0.

THEOREM 2.1. Assume that IT is non-empty. Then there ewist.s mi‘i le«gt
one pair (Ay, By) in IT with the property that for amy other pair (4, B)
in IT one has either
(2.4) #(A) + p(B) < p(Ao) +u(Bo) s
or
(2.5) p(A)+u(B) = ulde) +u(By) and  u(d) < p(4o).

By the way, it is easily seen that Theorem 2.1 in turn ilﬁphesdt];f
analogous result for the more general case, Yvhere we allf)w 1 and 1,
to be arbitrary subsets of G- having a finite inner measure.

Let h(z,y) denote the function on @ x@G defined by

if ayél,
(2.6) h(m,y)={0 it ayel.
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Note that the function h(w,y) is (Borel) measurable and therefore
# % u-meagurable. Further, condition (2.3) can be written as
(2.7) / J 14(2) 250) b2, y) e (d2) u(dy) = 0 ,

where x4 denotes the characteristic function of the set A,
The following result is implicit in the literature.

LeMuvA 2.2. For each number ¢ > 0 one can find finitely many bounded
and continuous functions gi(w), yi(z) (k= 1,..,N) such that

similaxly, 5.

N
] |n(@, 9)— 2 weny)| w(do) w(ay) <.

Proof. Let 6 and 7 be given positive numbers. Cho

ose Uy open
and 0y compact such that

CGiCTiC U1, w(UinC)<s (i=1,9).

Let further ¥ be an open set with compact closure such that €, C V,C U,.

Because the function h(z,y) is # X p-measurable, there exists
(1], p. 180) a compact set

ECOX0, with (uxu){(C,x0)nE} <o,

and such that the restriction of h(z,y) to K is continuous. Noting that

h(z,y) =0 or 1, one easily ([3], p. 216) obtains a continuous funetion
Iy(®,y) on G x @ which on K coincides with h(z,y), while 0 < hy(z, ¥) <1
and hy(#,y) =0 for (z,y) ¢V, xV,. In particular,

=0 f
o, )~ha, i Z) O @9
<1 for (2,y9) @G x@G.
Moreover ([1], p. 89), there exist finitely many continuous funections

qz_k(w), v(®) having a compact support (contained in ¥, and V,, Tespec-
. tively), k=1,..., ¥, such that

»
(e, y)— 2 @iy <,

for each (z,y)e @ x G Choosin

g ¢ and # sufficiently small, one obtains
the stated assertion.

Proof of Theorem 2.1. Let Ly denote the real linear vector space
of all real-valued u-measurable functions  on @ which have a finite norm:

W= J 1f(@)| (da .
Here, we identify any two (so-called equivalent) functions f, and f,
for which

pr@: fi(0) £ fyz)} = 0.
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- We shall supply L, with its weak topology. In particular, if @(#) is any
pounded u-measurable function on @ then

2.8) Gy 9> = [ (f2)p(@) u(da)

is a continuous function of f el .
Now, consider the subsets of Iy defined by

29)  Ki={fels 0<f(0)<1, [@=0 for a¢ly.

Here, i =1 or 2. More precisely, if f e L, then fe.K? if and only if at
1ea;st’one function in the equivalence class of f satisfies the stated con-
ditions, that is, if each function in the equivalence class of f satisfies
A ; iti i f p-measure zero.
gtated conditions outside some set of u ‘ )
e We claim that Ky is a closed subset of L. For, let ¢ l?e fixed and
let {f.} be a generalized sequence of elements f, € K; converging to f, € Ly.
Applgring (2.8) with ¢ as the characteristic function of any u-measurable
set H, one obtains

0< [ fodp < u(B); _ffod#= 0.
B Iy

Choosing F as the set: of points # where fol@) < —8 <O (orfo@)=1+e>1
respectively), it follows that foe K.

o Usingy(2’.1) it follows that ||f|| is bounded on K (namely, by u (I} < o)
and further that

lim [ f()p(ds)=0
=00 B,

holds uniformly for fe K;, whenever {Hy} is a \.iec.reasi.ng sequencgg;f
u-measurable sets with empty intersection. This implies ([2], p- )
that K, is sequentially compact. .

Ne;t, consider I, x L, with the product topology having (ﬁl Xle
as o subset which is both closed and sequentially compact. Clearly,
the expression

N
> [ 1 (@) g@)prtw)pely) p(do) (@)
k=1 I1<I:

defines a continuous function of the pair (f, g) € Iy xLs, whe;;a;r;pz;(:;)
and () are bounded x - measurable functions on GE=1 PR ,f t,joné
The limit of a uniformly converging sequence of contlm}orlﬁ% tmcf e
being continuous, it follows by Lemma 2.2 and the definitions of X
and K, that the integral

[ [ 1@ g@)h(@, y) p(de) pdy)

defines a function which is continuous on K, X K,.
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Now, consider the set M consisting of all (1, 9) € By XE, for which

(2.10) [ H@)g(w)h(w, y) p(da)u(dy)=o0.

By the above remarks, we have that M is a subset of Iy XL, which i
both closed and sequentially compact. Moreover, by the definitions of 77
and M, see (2.7),

(2.11) (4, B) ell'=(14, xn) e M.
Hence, M is non-empty.
Clearly, the expression

JH @ w(dw)+ [g(y) u(dy)

defines a continuous function of (f:9) e Ly xL,. On M, it assumes its
(finite) maximal value at at least one point. In the non-empty closed
and sequentially compact subset of M, where this maximum is assumed,
there in turn exists a point (fos 90) where the continuous function

J# (@) (da)

assumes its maximum value. We claim that the pair of sets

(2.12) Ao = {m: fo(2) >0}, By={z: gifw) >0}
has all the required properties. That
(2.13) (4o, By) el

follows easily from the definitions of M and I7.
Further, by 7,¢ K, and o K,, we have

Jhodn < p(do) = [ yagip
and

J 908 < w(By) = [yiu.

It follows, by .(2.11.), (2.13) and the maximal character of (f,, g,), that
here the equality signs hold. By the same token, if (A, B) € IT then

#A)+u(B)= [ gadu+ [ yadu <ffodu+fyodﬂ=/t(1lo) + 4 (By) .
Finally, if here the equality signs hold then

wd) = | 7adu < [ fodu = u(4y) .
This proves Theorem 2.1.
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8. A locally compact semigroup. In this section, ¢ will denote
a locally compact semigroup, that is, a locally compact Hausdorff space
together with a continuous mapyping (#, y) ~ay of G x @ into @ such that

z(yz) = (xy)% .

We shall further assume that there exists on G' a nonnegative regular
Borel measure x (to be kept fixed) with the property that
3.1) w(@B) zp(E) and u(le) > up(B),
for each measurable subset F of & and each element e G.

For instance, if @ is discrete then (3.1) holds for the counting meas-
ure u(¥)=[F] if and only if @ satisfies both cancellation laws.

As a further example, let H be any locally compact group with
left Haar measure g. Then u(Bw)= A4(2)u({H), where A(w).> 0 Is con-
tinnous, 4(wy) = A(x)4(y). Now, take G as the set of points # in H
with 4(z) >1. o

The central result of the present paper is given by:

TraroREM 3.1. Let C, be a given compact subset of G and let o be
a given number, o > 0.

Now, suppose that there exists a pair of measurable subsels 4, and B,
of G, for which

(3.2) 4B, C Cy  and  u(do)+p(Bo) = p(Co)+e.
Assertion: then there must ewist a compact subset
(3.3) FCO,

which is a compact group of measure
(3.4) . 0 <o < pu(F)<u(l).

In particular, Cy contains at least one idempotent; further, the restriction
of uto F is a Haar measure on F.
More precisely, one can find a pair of compact subsets A, and B, of C,
satisfying (3.2), such that :
F= A4, B, V

is a compact group, while
A=A, aB,=B, for each wek.

Proof. Let I, denote the collection of all pairs (4, B) of measurable
subsets of C, such that ABC C,.

Then II; is non-empty, in fact, it contains a pair (d,, B,) satis-
fying (3.2).
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Let forther IT stand for the collection of all pairs (4, B) of u-meas-
urable subsets of @ satistying

(3.5) ,u(Ar\@"u)=0, ,u(BmD}):O,
and
(3.8) (wxu){(@,y): wed, yeB, ay ¢ )} =0.
Clearly, :

mc i,

thus, IT i3 non-empty and, in fach, contains a pair (4, B) for whieh
(8.1 #(d)+u(B) = u(Ch) +o.

Applying Theorem 2.1 with I'= I, = Iy = (,, it follows that there
exists a pair

(Ao, By) e IT
with the property that, for any other pair (4, B) eI,

(3.8) #(A)+p(B) < p(4o) + 1(By);

moreover, if (4, B) e IT satisfies (3.8) with the equality sign then u(4)
< 4(4y). Observe that, by (3.7) and (3.8),

(3.9) 4 (o) +u(By) = u(Cp)+ .-

If D is a u-measurable subset of @, we denote by 8(D) the sup-
port of D, that is, the (closed) set of all points 4 € ¢ such that u(D ~ U)
> 0 for each open neighbourhood U of z. Tt is eagily seen that

(3.10) #(DA8D) =0.

On the other hand, it is quite possible that u(D) < /,L(S (D)); (in [0,1],
let D be the union of small intervals I, about the mth rational number).

The pair (4,, B,) belongs to IT and thus satisfies (3.3) and (3.6).
I.Tsing the fact that C, is closed and that the product #y is jointly con-
tinuous in # and v, it follows that

(S (o), S(By) eI, C 17
Hence, by (8.8),

P8 (Ao) + 1 (8(By)) < u(do)+p(By),
thus, by (3.10),

#S(A)) = u(de),  w(8 (Bo) = u(By) -

Consequently, replacing 4, by S(4,)

and By by S(B,), we may assume
that (4, By) 1T;, that i, ’ N v

(3.11) 4,C 0y, B, CO,, A4,B,COC,,

©
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and further that

(8.12) Ay=28(4dy,) and By=8(B,).
In particular, the sets 4, and B, are closed and hence compact ({, being
compact).
Let us now introduce the compact set
(3.13) F=AynB,CC,.
By (3.9) and (3.11),
(3.14) 0 <eo<ulF)<p(0y),
showing that F is non-empty. We assert that
(3.15) deF=>Ad=4, and dB,=B,.

Let d e F be fixed, and consider the measurable sets

A'={acdy adedy}, B ={beB; dbeB,},
A" =T{aedy adédy}, B’ ={beB,: db¢By).
Note that A’y A" and A''d are pairwise disjoint, 4g= 4’ A", similarly,
B’, B" and dB".
Using (3.11), d e 4y, d e B, and the associative law (ad)b = a(db),
it is easily seen that

(3.16) (A, BywdB") ell,CII,
and
(3.17) (Ao A"d, B') e II, CIT.

By (3.8) and (3.16),
#{A)+p(Byw dB") < pu(do) +p(By)
that is, u(dB") < u(4”). By (3.8) and (3.17),
p{dow A”d)+p(B') < p(Ao) + p(Bo)
that is, u(4”d) < u(B'); moreover, the latter equality sign can only
hold when u(A"'d) = 0. Invoking (3.1), it follows that
(3.18) #(A") = p(A"d) = p(B") = p(dB") =0.

We assert that A is empty. For, let ae A" C 4,, thus, ad ¢ 4,.
But 4, is compact. Thus, there exists a neighborhood U of a such that
Ud is disjoint from 4, and, hence, 4y~ UC A". By u(Ad”)=0 this
would imply a ¢ S(4,), which however contradicts (3.12).

The set 4" being empty, we have

(3.19) A,dC 4,.

If there were a point a e .4, with @ ¢ Ayd, then an entire neighborhood
U of a would be disjoint from the compact set A,d. But then (3.12)
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and (3.19) together would imply that u(Ady) > p(A4ed), which contra-
diets (3.1). It follows that A,d = 4,; similarly, dB, = B,, proving (3.15).
In showing that the compact set ' is a compact group, it suffices [10]
to show that F is algebraically a group. Recall that F = A, ~ B,.
In the first place, if d, ¢ F and d,eF then

ddyeAdgdy= A4, and ddyed,By= By,

thus, dyd,e Ay~ By=F. Hence, I is a compact semigroup.
As is well known ([10], p. 99), each compact semigroup contains at
least one idempotent. Let ¢ be any idempotent in F, €* = e. By (3.15).

doy=A4yeCGQe= {we@: xe=0n},

thus, e acts as a right unit on A4,. Similarly, ¢ acts as a left unit on B,
and thus as a two-sided unit on 4, ~ By = F. This shows that e is unique.

Finally, let deF be fixed and consider the compact semigroup
L=dFCEF. It has at least one idempotent, thus eeZL, hence, there
exists an element ™" ¢ P such that e= d-d™". This completes the proot
of Theorem 3.1.

As is easily seen, two cosets 4, F and x,F are either identical as sets
or they are disjoint; moreover, the union of all left cosets aF is pre-
cisely Ge, e denoting the unit element of the group F. In particular,
Ge=TF as soon as u(F)> ju(@), similarly, ¢G = F.

Let us briefly consider the case that G is a compact semigroup,
with u# as a nonnegative regular Borel measure satisfying (3.1), 0 < u(@)
< co. Applying Theorem 3.1 with C,= &, o= u(@) (thus, (3.2) holds
with 4y= B, = &) it follows that @ contains a subset K which is a com-
pact group such that '

(3.20) p(E)=u(@), Ge=eG=K.

Here, ¢ denotes the unit of K. By Kd = dK for each d ¢ K, K is a mi-
nimal left ideal (@K C K) and also a minimal right ideal, implying that
K is unique.

That such a “kernel” K exists wasfirst shown by Rosen ([8], p. 1078);
(he assumed (3.1) with equality signs but his proof carries over). One
has, for any pair of subsets 4 and B of &, that

(3-21) tia(A) + po(B) > (@) > K C AB.

After all, if # ¢ K then the subsets 4 ~ K and #(B ~ K)™* of K must
have a point in common.

The kernel K contains each compact set F which is a group and
meets K. For, K ~ F is a (non-empty) compact semigroup with at most
one idempotent, hence, a subgroup of K with the same unit ¢ as K, thus,
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F=FeC Ge= K. By (3.20), a compact group F with u(F)> 0 neces-
sarily meets K. Thus, the sets 4,, B, and F in the assertion of Theo-
rem 3.1 are all subsets of K.

One has K = @ if and only if there are no idempotents in @ out&lde
of K, in particular, when & satisfies one of the cancellation laws; (for
the right law: we = x¢® implies # = we, thus, ¢ = Ge = K).

Returning o the general case, we have as a further application
of Theorem 3.1: .

THEOREM 3.2. If A and B are subsets of G then
(3.22) pu(d v Bu AB) > Min {g, ps(4) + pus(B)— 0o}

whenever 0 < gy < oy < oo are real numbers such that G contains no subset
F which is a compact group of measure g, < p(F) < p;.

If 4, (4) = pu(B), say, then the left-hand side of (3.22) is not smaller
than p.(4) and, thus, the assertion (3.22) is of interest only when
00 < sx(B) < pa(4) < @

If @ is a unimodular locally compact group with Haar measure u
then (3.22) may be replaced by

(3.23) #x{AB) = Min{o;, uu(A) + pa( B)— 0o} 5
provided that 4 and B are non-empty For, apply (3.22) with 4 replaced
by ag'Ad and B replaced by Bby?, where a,,eA by e B.

Proof of Theorem 3.2, Put A v Bu AB = C and suppose that

2a(0) < pralA) + p(B)— o -

In particular, u.(d) < oo, uu(B) < co. Thus, there exist compact subsets
A, of A and B, of B such that

#(do) +p(Bo) = pulO) + 05

for some ¢ > g,. Putting Cy = 4, v By w 4,B,, we have 0,C ¢, C, compact.
It now follows from Theorem 3.1 that @ contains a subset F which is
a compact group of measure ¢ < u(F) < u(C,). But ¢ > gy, thus, u(F)
= 01, therefore,

ue(0) = u(C)) = &

The above implies Theorem 1.1. For, let @ be a connected uni-
modular group with Haar measure u. Each closed subgroup F of G with
#(F) > 0 is automatically open ([11], p. 50), hence, & contains no com-
pact subgroup F of measure 0 < u(F) < u(@). It follows by (3.23) that

tAB) = Min{u (), puu(4) +p(B)}

whenever 4 and B are non-empty. The last assertion of Theorem 1.1
being obvious, see (8.21), this yields Theorem 1.1.
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TaEOREM 3.3. (i) Let A and B be subsets of G such that

O=AuUBuUAB
satisfies :

(3.24) 4l 0) < s A) + p(B) .
Then C contains af least ome idempotent e.
(ii) Assume in addition that O contains at most one idempotent. Then

(3.25) ceAB.

(ill) Under these same assumptions,
(3.26) paecd: ecaB) =g,
where

0= py(A) +uu(B)— p( 0) .

Proof. Replacing 4 and B by slightly smaller compact sets d4,, B, |

and putting Oy = 4, v B, u 4,B,, C,C 0, assertion (i) is an immediate
consequence of Theorem 3.1.

As to assertion (ii), assume that ¢ ¢ AB. Then either ec 4 or ¢ ¢ B
but not both by ¢ = ¢ Say, ¢¢ A and e¢ B. Now, consider the set 4,
obtained from A by deleting the single element ¢, and further

Ci=4,v Bu A,B.

Clearly, e¢ €;. But 0, C 0, thus, C; contains no idempotent at all. It fol-
lows from assertion (i) that

#x(On) 2 pa(Ay) + pi(B) .
J/This however contradicts (3.24), by

Bl 0) Z pal O + 1 ({6]); el Ar) + p({€}) = pol4) .

In proving assertion (ifi) (which in fact strengthens assertion (ii)),
consider the sets

Ay =1{acd: ¢¢aB), Co=A4,uBu A,B.

The set 0, is contained in € and thus containg at most one idempotent.
On the other hand, ¢ ¢ 4,B with ¢ as the unique idempotent in €. It fol-
lows from assertion (ii) that

paldy) + p(B) < bl Os) < 1y (0) = ba(A) 4 p(B)—p .
Hence,

0 S ilA)—pldy) SpMA A A = pMaed: e aB} .

4. The unimodular case. In this section, & denotes a unimod-
ular locally compact group with a (two-sided) Haar measure u. Clearly,
all the results of section 3 apply equally well to this special -case. Note
that G has a unique idempotent, namely, the two-sided wnit e of the
group &. ’

@ )
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Proof of Theorem 1.2. We are given a pair of non-empty sub-
sets 4 and B of @ satisfying

(4.1) tin(AB) < pulA) + 1u(B) 5

thus, each of the three sets 4, B and AB has a finite inner measure.
Consider a pair of sets 4, and B, such that

(4.2) A;C4A, BCB, uudy)+uBr)> u(4dB).
We assert that under these conditions
(4.3) AB,= AB.

Clearly, 4;B,C AB. Let a,e A and b, ¢ B be given; it suffices to
prove that a,b, e A;B;. Consider the sets

Ay = ao—lAn B2=Blb;1; Co=4,uB, 0w 4;B,.
Then
ay Opby = A by ayB, v A, B,C AB.
Hence,
24(02) < pu(AB) < py (A1) + pu{ By) = pa(ds) + piul By) -
It follows from assertion (ii) of Theorem 3.3 that e e 4,B,, thus,
oo € ag Ay Byby= A, B, .
This proves (4.3).
By (4.1), there always exist compact sets 4, and B, satisfying (4.2).
Using (4.3), it follows that the set AB is compact.
Let A* and B* denote the closures of the sets 4 and B, respectively.
If mye A*, y, e B* and #,y, ¢ AB then oy ¢ AB for # near x,, y near ¥,
a contradiction. Therefore,

(4.4) ACA*, BCB* AB=A*B*.

The set AB being compact, we have that 4* and B* are compact.
Let p >0 be defined by

(4.5) bxlA) + pu(B) = pu(4B) + 0.
Now consider a pair of elements

aed¥ beB*,
and define
Ay=a"'4*, B,=B*%™', (y=a"ABb™".
One has, by (4.4) and (4.5), that
4,C 0, B,,CCB, 4B, = 001
and
#(Ao)+ u(Bo) = p(Co) +o-
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It follows by Theorem 3.1 that ¢, contains a subset Fgp which is a com-
pact subgroup of G of measure

(4.6) a(Fup) > 0> 0.

In particular ([11], p. 50), Fap is also an open subset of G. Finally,
aFopbCalh = AB.

Thus, we have shown that to each pair aeAd* beB* there cor-
responds an open and compact subgroup F., of G satisfying (4.6) and

abea-Fy bCAB.

We conclude that AB is an open subset of G. The set aFopb being
compact, there exists an open neighborhood U,y of the unit element ¢
such that

U“,b(aFa,l, b) Ua,b CA4dB.
Hence, letting
Vap=1{(®,y): #eUsp a,yeb Unp},
we have
(4:7) (%, y) EVa,b '-'>.’,?}"Fa,b':lj ¢ AB.
By (a,b)eVgp, the system {Vop: ae A¥ beB*} is an open covering

of the compact subset A* xB* of G x@. Therefore, there exists a finite
set of pairs (@, be), 2=1, .., N, in A* xB* such that

N
A*xB*C U Vg -
=
Now, form
N
(4.8) F= D{F"“b"

Clearly, F is an open and compact subgroup of G. We assert that
(4.9) aFbC AB  whenever aed* beB*.

After all, given ae.A* beB* there exists an index 1<i< N such
that (a, b) € Vg p,; hence, by (4.7) and (4.8),

aFbCa-Fyy, -bCAB.

In view of (4.4), (4.9) implies (1.3).
Note that (1.3) is equivalent to AF-FB= AB. Hence, by (4.1),

if A, and B, satisfy (1.4) then (4.1) and (4.2) hold with 4 and B replaced
by AF and FB, respectively; hence, by (4.3),

AB,=AF-FB=AB.
This completes the proof of Theorem 1.2.

@
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Proof of Theorem 1.3. Sufficiency. In fact, for any unimodular
group @, the indicated construction yields a pair (4, B) of non-empty
subsets of @ satisfying (1.2). For,

¢(4dB)=ga(4) - c(B)CA'B',
hence,
#(AB) < plo~(A'B") = [A'B'Ip(H) < pu(4) + pu(B)

by (1.7). The last assertion of Theorem 1.3 follows from the last assertion
of Theorem 1.2 (or from the assertion (4.3)), on replacing (4, B) and
(44, By) by (c-14’, ¢—2B’) and (4, B), respectively.

Necessity. Suppose merely that the unimodular group G is such
that any open and compact subgroup F contains an open and compact
normal subgroup, equivalently, that for each open and compact sub-
group F the compact group H defined by (1.5) is open. This is obviously
true when G is abelian, and further when & is compact. For, in the
latter case,

N
H = oFa;",
i=1

where {#,.., 2y} is such that each of the finitely many left cosets 2F
of F' contains precisely one element ;.

Now, consider a pair (4, B) of non-empty subsets of @ satisfying (1.2).
By Theorem 1.2 and the above assumption, there exists an open and
compact normal subgroup H of G such that aHbC AB whenever ae 4
and beB. In other words, 4B is equal to the union of finitely many
cosets of H. Let ¢ denote the quotient mapping ¢ -G/H, and put c4 = 4’
and ¢B = B’. Then

o(AB)=A'B’, ACo¢14', BCoB.

Hence, using (1.2),

[ABp(H) = n{AB) < pul4) + pa(B) < ((AJ+[BNp(H) .
This implies (1.6) and (1.7).
5. The non-unimodular case. In this section, G denotes a locally

compact group which is not unimodular, in other words, such that the
left invariant Haar measure g is not right invariant.

One has ([3], p. 264) for any measurable subset B of &
u(Ez) = 4(2)u(B),
where 4(x) >0 is a continuous function on & such that
Ad(zy) = A(x)A(y), Ad(&)z~1.
H={zecG: Ad(z)=1}

is a proper closed and normal subgroup of G.
Fundamenta Mathematicae, T. LVI 5

Hence,
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‘Whether or not @ is connected, there always exist pairs of non-
empty subsets A4 and B of G such that

(8.1) il AB) < pro(4) + pu( B) -

For, let 4 and B, be compact subsets of ¢ with u(4)> 0 and take
B = Bz with 4(x) sufficiently small.
The proper parallel of Theorem 1.1 seems to be:

TrrorEM 5.1. Suppose that G is connected. Then one has for any pair
of subsets A and B of G, such that 0 < %,(A) < co and 0 < u,(B) < oo, that

(5.2) ve(A)u(AB) + pu(B) i AB) < 1.

Here, » denotes a fixed right Haar measure on G for which we may
take »(E) = u(B™"), thus, »(2B) = 4 (s™")»(E). It is an important feature
of (5.2) that ibs left-hand side remains unchanged on replacing 4 by z4
and B by By.

Let @ be any non-unimodular locally compact group, and suppose
that there exists a pair of subsets 4 and B such that

(5.3) 0<n(d)<oo, 0<puB)<oo,
and
(5.4) v(A)/2(AB) + us(B)[us(AB) > 1.

Replacing 4 and B by slightly smaller compact sets, we may assume
that 4 and B are compact.

The continuous function 4(x) assumes on A4 its smallest value ab
some point @, in A. Replacing 4 by a;'4, we may assume that ¢ e 4
and that A(z) >1 for each v ¢ A. Similarly, we may assume that ¢ ¢ B
and that 4(z) <1 for each x¢B.

Thus A4 is equal to the disjoint union of a set 4, with
6ed,CH
and a set 4. on which 4(z) >1, thus ([11], p. 40)

wd)= [d@d>v(4,),
Ay

W]'?‘Ille #(4o) = »(4,). Further, B is equal to the disjoint union of a set B,
wi
(4 EBOCH
and a set B_ on which A(x) <1, thus
u(B_) < v(B).
By (5.4), one has , ’ V<)

clther  u(AB) <#(4)+u(B) or »(4B) <»(4)+u(B).
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Observing that 4B confains the disjoint union A, v 4,B,v B_, and
using the above remarks, one obtains in eifher case that

(5.5) (Ao Bo) < p(Ag) +p(Bo) 5

(for subsets of H, p and » coincide).

It follows that the subsets 4, and By of H are of positive measure,
hence, the group H is a proper open subgroup of & This being impossible
when @ is connected, one obtains Theorem 5.1.

Assuming (5.3), (5.4), we actually proved move, namely, that there
exists a pair of non-empty subsets 4, and B, of H such that (5.5) holds.
Then H is a unimodular open subgroup of G with x as Haar measure.
Tt follows from Theorem 1.2 that H in turn contains an open compact
subgroup F (in fact, F C 4,B). No such F' can be a normal subgroup
of G. For, if # ¢ H then the conjugate group #~'Fo has measure

u(o~ Fa) = A(x) p(F) # p(F).

The following example seems to indicate that (unlike in the uni-
modular case) the inequality (5.4) does not imply any definite structure
of the product set AB.

Assume (as we must) that H contains an open compact subgroup F.
Choose A as a measurable subset of ¥, »(4) > 0, B as the disjoint union
of F and Dw», where D is an arbitrary but fixed compact set, (while
satisfies F' ~ Dz = @). One has AB = F « ADg, thus (5.4) is equivalent to

v(4) p(F) +p(D) 4 ()
»(F)+2(4D) * u(F)+pu(4D)4 ()

Clearly, the latter inequality and the condition F ~ Dx= @ hold as
soon as A(z) is sufficiently small.

>1.
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On quasi-translations in 3-space

by

S. Kinoshita* (Saskatoon, Canada)

The topological translation (1) of the plane was characterized by
Kerékjarté [1] and Sperner [2] independently by apparently different
conditions. To show that their conditions do not characterize the topo-
logical translation in 3-space is the purpose of the paper. Our example
is naturally constructed from Fox-Artin’s pathological one [3] (§ 3).

The notion of quasi-translation is due to Terasaka [4]. His condi-
tion is also apparently different from those of Kérekjarté and Sperner,
but we shall prove that their three conditions are equivalent to each
other for any m-sphere (n >1) (§1).

In § 2 we shall be concerned with locally polyhedral 2-spheres with
one singularity in 8-sphere; this may be of independent interest, even
though it appears in the paper only ag a preliminary to § 3.

The paper has an appendix, in which we shall prove that if an auto-
homeomorphism of a eertain kind that includes quasi-translations oper-
ates on a manifold, then that manifold must be an n-sphere.

The author of the paper acknowledges with great pleasure his gra-
titude to Professors R. H. Fox and D. Montgomery for their valuable
advices.

§ 1. Let % be an auto-homeomorphism of a compact metric space X.
Then % is said to have equi-continuous powers at » ¢ X, if for each ¢ >0
there exists &> 0 such that whenever d(z,y) <6, d(A™(z),A"(y)} <s
for every integer m. First we prove the following:

* The paper was completed when the autor was at the Institute for Advanced
Study, being supported by the National Science Foundation of U.S.A. It was announced
in the University of Georgia Institute 1961. See Topology of 3-manifolds and related
topics, Proe. The Univ. of Georgia Imstitute, 1961, pp. 223-226, Prentice Hall, Engle-
wood Cliffs, N. J. 1962.

(*) Let g and k be two auto-homeomorphisms of a topological space X. Then g
and  are said to be topologically equivalent, if there exists an auto-homeomorphism f
of X such that g = fhf™*. A topological translation means a transformation that is topo-
logically equivalent to the ordinary translation.
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