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A topology for Mikusifiski operators®*

by
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1. Introduction

The class of continuous complex-valued functions of a non-negative
real variable forms a commutative algebra without zero divisors where
the product is defined as the finite convolution and sums and scalar
products are defined in the usual way. Mikusiiski [2] calls the gquotient
field of this algebra the operator field. In this operator field he introduces
concepts for limits, continuity, differentiation and integration, and
applies the resulting theory to the study of differential equations.

However, his theory suffers from two defects which he has noted.
First, Urbanik [6] has shown that the definition of operational conver-
gence given by Mikusinski is topologically inadequate. Second, Mikusiriski’s
operational calculus applies only to functions defined for non-negative
reals. This creates an unpleasing situation with regard to left shifts or
tranglates of a function. The right translate of a function is always a fune-
tion, whereas this is not always true for the left translate of a function.

It is our purpose to develop an algebra of operators in which these
defects are eliminated. In order to overcome the problem associated
with left translates of a function we will start with the continuous com-
Plex-valued functions of a real variable, each of which is zero to the left
of some point which depends upon the function itself. In fact, Mikusinski
[2]; p.124, suggests that this should be done himself. This class will
form a commutative algebra without zero divisors where produet is
taken to be convolution and sums and scalar products are defined in the
usual way. We select from the quotient field of this algebra a subalgebra
which contains the operators needed for application.

Furthermore, we will topologize this subalgebra in a way which
yields satisfactory concepts for limits, continuity and differentiation;
satisfactory in that the concepts used by Mikusiniski when applied to
this subalgebra are compatible with our topological concepts.

* This paper is based on my doctoral dissertation presented to the Ohio State
University.
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2. Preliminaries

2.1. We denote by C the set of all complex-valued continuous funec-
tions of a real variable with the property that for every ¢ in C there is
3 real number ¢ such that ¢(t) = 0 for all ¢ < 0. The supremum of these o
is denoted by o(c), if ¢ is not the zero function. In the case of the zero
function we use ¢(0) = +co. Addition in ¢ and multiplication of an
element in ¢ by a complex number is defined in the usnal way. We define
the product of two elements ¢ and b in C to be

0o
(@*b)(t) = [ a(@)b(—a)de.

It is readily seen that (' is closed under these operations. Further-

more, for real numbers r < o(a) and s < o(b) it is clear that
t—s
(@xd)(t) = [ a(@)b(t—a)da.

We denote by C, the subset of (' consisting of those elements ¢ for
which ¢(¢c) > 0. Clearly, O, is closed under the algebraic operations given
above. Let o and b belong to C. Suppose r and s are any two numbers such
that » < o(a) and s < o(b). Then 4, (t) = a(t+r) and b, (¢) = b (t-+ s) belong
to C, and (a * b)(f) = (a, * by) (T—r—s).

2.2, LemmA. The real valued function o (c) has the following properties:
(i) If ¢ belongs to O and r is a real number, then ¢,(t) = c(t-+7) is
n O and o(c;) = o(c)—r.

() If c is a function whose derivative ¢’ belongs to C, then o(¢’) = o(o).

(i) If ¢ belongs to C and a is a non-zero complew number, then
o(ac) = o(c).

(iv) If @ and b belong to O, then o(a-b) >min(o-(u), o (b)).

(v) If a and b belong to O, then o(a*b) = a(a)+ o (b).

Proof. Only the proof of (v) is non-trivial. If either @ or b is the
zero function then (v) is obviously true. If neither is the zero function
Wwe may choose r = ¢(a), 8 = o(b) and set a, () = a(t+7), by () == b(t-+5).
We have observed that (a+d)(t) = (a,*b,) (t—7r—s). Thus o(a*b)
Zo(a)+o(b) since o(a;*b)>0. On the other hand, assume that
(a;%b) (@) = 0 for 0 <& <t—r—s where t > r-s. By a theorem of
Titchmarsh ([5], p.324) there are non-negative numbers o and f such
that o+ =t—r—sand a;(z) =0 on 0 < < o, bi(@) =00n0 <z <p.
But, o(a;) = o(b,) =0 by (i) above, so it follows that a = f = 0 and
t = r-+s contrary to assumption. Thus (@, %) (F—r—s) is not identically
zero in any neighborhood of zero, — that is, (a*b)(t) is not identically
zero in any neighborhood of o(a)+ o(b) — s0 that o(a*b) < o(a)+a(b)
from which the desired conclusion follows.
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2.3. We shall let L denote the set of all complex-valued functions
of a real variable which satisfy (i) if f belongs to I, then there is a real
number o such that () = 0 for all ¢ < o and (ii) if f belongs to I, then f
is Lebesgue integrable on every interval —7 <¢< 7. The algebraic
operations defined on C can also be defined on L. Furthermore, L is
closed under these operations. We shall let D denote the subclass of O
consisting of infinitely differentiable functions. D is a subalgebra of C.
We shall have occasion to make use of the fact that D * L < D and
C * L < C. Mikusiniski and Ryll-Nardzewski [3] have proved these results
for functions defined on the non-negative reals. Their results carry over
immediately to our case with use of the observation made at the end of
part 2.1.

3. General theory

3.4. We will now investigate the problem of introducing a topology
on a subalgebra of the quotient field of an integral domain when the
integral domain is already topologized. This will serve as the theoretical
basis for our work with Mikusinski operators. We shall let 4 denote
a complex commutative algebra without zero divisors which has a topol-
ogy generated by a family of seminorms {p(-;n):neN an index set}
such that p(a; n) = 0 for every = if and only if @ = 0. We shall call this
the A-topology for A. Let @ denote the quotient field of A and let 8 denote
a subalgebra of Q. Let w: A — @ be the natural embedding of 4 in Q.
We can provide wd with a topology homeomorphic to the A-topology
be merely setting p(wa;n) = p(a; n). We shall call this the wA-topology
for wA4. We shall be particularly interested in the case when wA is
contained in §.

3.2. Definition. Let wA < 8. Let ¥ denote a family of linear
maps from 8§ into w4 such that

(i) F distinguishes points,

(ii) if @ and b belong to S and f belongs to F, then f(axb) = a+*f(b).
Here * denotes the multiplication operation in @. We shall also write
Ja(b) = a*f(b),

(iii) f, belongs to F for every a in § and every f in F. We say, in
this case, F is multiplicative on 8.

3.3. Let p(z; f, n) = p(f(2); n) where & belongs to 8, f belongs to F,
and »n belongs to N. It is easy to verify that each p(-;f, ) is a seminorm
on 8. This collection of seminorms generates a topology for S8 which we
shall call the S-iopology for 8. It is well-known that S, with this topology, -
is a locally convex linear topological space. Since #' distinguishes points,
the S-topology will be Hausdorff. Furthermore, the S-topology is the
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smallest topology for which each f in F' is continuous. S has a local sub-
base at zero consisting of sets of the form V(f,n,é) = {eS:p(x;f,n)
< &}. These results can all be found in [4].

If {m} is a net ([1], p. 65) in §, then lima, = « in the S-topology
if and only if limf(a,) = f(a) in the wd-topology for every fin 7. The
necessity follows immediately from the continuity of each f. Since
Vifim,e) =" (V(n, &) where V(n,e) = {mewd:p(w;n) < &}, the suffi-
ciency is also clear.

34. THEOREM. Let F be multiplicative on S; then products are sepa-
rately continuous in the S-topology.

Proof. Since § is a linear topological space, it suffices to show that
for each neighborhood V of zero in the S-topology and every a in §,
there is a neighborhood U7 of zero in the S-topology such that a * U < V.
Let V be given. Then there is a basic neighborhood V(fi, My, ) me.
~ V(fk.y 'nk_y g)c V. Let U= V((fl)a; ) 61) AN V((fk)a! Ny 8}:)-
It w is in U, then p(axu;f;,n) = plarf;(u); ) = p((f)a(u); ny) =
P2(u; (flas 1) < &. Therefore, a+u is in V.

4. The topology

4.0. We shall now use the theory developed in section 3 in order to
topologize a certain subalgebra § of @, the quotient field of €. With the
aid of the remark at the end of 2.1 it is not difficult to show that O is
a complex commutative algebra without zero divisors. We give C the
topology of compact convergence through the family of seminorms
ple;m) = sup{|e(t)|: —oo <t <, ¢ belongs to C}. Clearly, p(e;n) =0
for all » if and only if ¢ = 0.

41. Definition. (i) § ={aeQ: a*wD < oD}, Here D is the
natural embedding of D (infinitely differentiable functions in 0) in @.

(ii) Let wd belong to wD. wd: 8 — w0 such that wd(a) = odx*a.

Thus, we interpret wD as a family of maps from § into wC as well as
a subalgebra of wC.

4.2. It can be shown that § is a subalgebra of @ such that w( is
contained in 8. Furthermore, the complex field is isomorphically embedded
in 8. It can also be shown that all the elements in I (see 2.3) have a repre-
sentation in §. The Heaviside unit step function 7 behaves as an integral
operator in § just as it does in Mikusifiski’s theory. We denote the inverse
o# 1 by s (as does Mikusiriski) and since the elements of oD are infinitely
differentiable, s is in S. Of course, it is the differentiation operator. Let

0
Ha(t) = {1 ﬁgi

t<a,
t>a.
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‘We shall let H, denote the representation of H,(f) in 8. Then, as
in Mikusingki’s theory s*H, = h® is the translation operator. Now,
however, if a is negative we merely translate functions to the left. That
is, the left translate of a function is now always a function.

“43. Tt can be easily verified that oD is multiplicative on S and
therefore S has a locally convex, Hausdorff topology in which products
are separately continuous where the seminorms on § are defined by
p(a; od, n) = p(wd*a;n). A useful criterion for establishing convergence
in the S-topology was given in 3.3; i.e., if {a;} is @ met in §, then
lima;, = a in the S-topology if and only if limwd*a; = wd*a in the
wC-topology for every wd in wD.

4.4. Definition. Let P denote a subvector space of C. Conver-
gence in 8 is P-compatible with convergence in O (with the C-topology)
if o restricted to P is continuous from P into S. If P is all of ¢ we shall
merely say convergence in S is compatible with convergence in C.

4.5. We shall now give an example to show that convergence in §
is not compatible with convergence in C. In the next theorem we will
give a collection of subspaces of ¢ for which convergence in § is com-
patible.

Let

0 for
e(t) = { (1/k)yexp (—1/(t+k) for

Clearly, {¢} is in € and lime, = 0 in the C-topology. We kunow
(see 4.3) that lim we, = 0 in the S-topology if and only if imwe,*wd = 0
in the wC-topology for every wd in wD. Because «C is homeomorphic
to O, this is equivalent to requiring lime,*d = 0 in the C-topology for
every d in D. Let

t< —k,
1> —k.

0 for

<0
) = {e‘”‘ for Y

t>0.

Now T belongs to D and we will show lime,*T 5= 0 in the C-topology.
From the monotone character of T'(f) and each ¢(f) it is clear that

3

plep*T;2) > (1/k) [ exp(—1/(z+ k) exp(—1/(2—z))dw

-k

1
> (1/k) fe-fdx =¢? forallk>1.
1~k

Thus, lime,*T 7 0 in the C-topology.

4.6. THEOREM. Let P denote the set of all ¢ in O for which a(¢) > .
Convergence in S is P-compatible with convergence in C.
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Proof. It is clear that P is a subvector space of C. Let V(wd; n, &)
be given (see 3.3). If n < v+ o(d), then we belongs to V(wd, n, ) for
all ¢ in P for p(wc; wd,n) =0 since c(c*d) = v+ o(d) = n. Suppose
7> v+ o(d). Let n* = max (n, n—o(d), 'n—r). Let M = p(d;»*) and let

— M H * :
U= {csP.p(O, n’) < W;

Then oU is contained in V and o restricted to P is thus continuous.

5. Relationship between J-convergence and convergence in the S-topology

' 5.1. Definition. Let {4} = @ and let a belong to ¢. Suppose there
is a non-zero b in wC such that:
(i) {brax} c o€ and d*a belongs to w0,

(ii) o(b*ay) = 7 for all &,

(iii) imb*a; = b*a in the wC-topology.

Then we say limay, = a in the sense of Mikusinski, and we shall call b
a regularization factor for the sequence.

This is a slight modification of Mikusifiski’s definition of conver-
gence .([2]., P. 144) so that his definition fits our set-up and terminology.
M{kusﬁlsla does not require the regularization factor to be in w0, but
this can be shown to be no restriction on the definition. Furthermore,
he' d(?es not require (ii) but for functions defined on the positive reals
this is automatically satisfied. The example in 4.5 shows that such
a restriction is necessary.

In the next theorem the connection between M-convergence and
convergence in the S-topology will be shown.

If {a;} and {b,} are sequences in O such that (i) o(ax) > 7, o(b) >
ff)r some real 7, :a.nd (i) limay, = g, limb, = b in the O-topology, then
lima,*b; = a*b in the O-topology. Mikusitski [2] proves this result
Wwhen o(a;) > 0 and o(b;) > 0. Using the remark at the end of 2.1 it is
eagy to prove the result for any .

) 5.2, TH_EOREIV.[. L.et {ax} and {by} be two sequences in S which converge
in the .s:ms'e of Mikusiiski to @ and b in 8. Let g and b be their respective
regularization factors and assume g~ and B~ are in 8. Then,

(i) limay, = a in the S-topology,
() lim (ap+b) = a+b in the 8-topology,
(ifl) imay, *b, = ax*bd in the S-topology,
(iv) limog*a; = a*a in the S-topology where {a;} is the isomorphic

image in S o i G
topo_l;ogy' f & sequence of complexes which converge to o in the usual
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Proof. (i) In 4.6 we showed that econvergence in § is P-compatible
with convergence in ¢, so limg*a, = g*a in the S-topology. Products
are separately continuous in § and g~ belongs to 8, so lima; = a in
the S-topology.

(ii) 8 iz a linear topological space, so the result holds since the
individual sequences converge in the S-topology by (i).-

(iii) {(g*a)*(h*bx)} converges to (g*a)*(h*b) in the wC-topo-
logy. g*h is a regularization factor for the sequence {a,*b;} and this
sequence satisfies the conditions for M-convergence, so by (1) above
lima, *b;, = a*b in the S-topology.

(iv) § is a linear topological space, so products by scalars are con-
tinuous.

6. Relationship between M-continuity
and continuity of operational functions in the S-topology

6.1. Let Z denote the class of functions whose domain is a subset
of the reals and whose range is in 8. If f belongs to Z, then f(a)*d can
be interpreted as a complex-valued function of two variables. We want
to emphasize this interpretation. Therefore, when considering fla)y*d
as 3 function of two variables we will write fz(a, f). We shall have need
to consider other functions of two variables which we shall denote by
f(a,t). Such functions can often be interpreted as elements of Z, i.e.
for each a, f(a; ) is an element of C. Finally, we shall drop the cumber-
some distinction between «C and C since they are isomorphic and homeo-
morphie.

6.2. THEOREM. Suppose f belongs to Z. Then

(i) limf(a) = L as a —>a, in the S-topology if and only if limf(a)*d
—L+*d as a— a, in the C-topology for every d in D.

(i) If limf(a) = L as a— a, in the S-topology, then limb *fla) =
= b*L as a—> a, in the S-topology for every b in 8.

(iii) f 45 continuous af a = a, if and only if, for each d in D,
Hmf;(a,t) = fa(ag, t) as a — a, wniformly in i on every interval —oo <
<t <N

(iv) If f 4s continuous on an interval I, then b* f belongs to Z and
is continuous on I for every b in S.

Proof. (i) This follows from the remarks made at the end of 4.3.

(ii) This is an almost immediate consequence of the fact that
products are separately continuous in the S-topology (see 3.4).

(iii) f is continuous at a = g if and only if limf(a) = f(a,) as
a — oy in the S-topology, or equivalently, if and only if limf(a)*d =

= f(a,)*d in the C-topology for every d in D by (i) above. This happens
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if and only if for every ¢ > 0, d in D and integer #, there is a § > 0 such
that |a— o] << & implies p(f(a)*d—f(ao) *d; 'n) <& or equivalently,
Ifale, t)—falag, t)] < e for —oo <t < m which is the desired result.

(iv) This is immediate from (ii) above.

6.3. LEMMA. Let f(a,t) be continuous in a and t. Suppose f(a,-) be-
longs 1o C for each a in a closed interval I and also suppose o(f(a, V)=
for some real T and every a in I. Then for each g in O and a, in I it is true
that lim(g *f(a, ) (t) = (g% (0, ) () as a—a, uniformly in t on every
interval —oo <<t < M.

Proof. Let ¢ > 0 and # be given. Without loss of generality assume
o(g) >tv. If n—7 <7, then the result is trivially true, so assume
n—t >1. We have

| 1
llg*f(a, ) (O —(g*F (o0, )W < [ lgt—0)||f (2, ®)—F (a0, )| de.

But, f(a,s) is uniformly continuous on IX [z,n—t] and ¢(¢) is
bounded on [z, #— 7], 8o the integral on the right can be made arbitrarily
small simply by requiring a to be sufficiently close to a,.

6.4. Definition. Let f belong to Z. f is continuous in the sense of

Mikusinske if
(i) there is a continuous function f,(«,?) such that f,(a, -) belongs
to C for each g,

(ii) o(f(a, ) = for some real v and every « in an interval I,

(iii) there is & b in § such that f(e) = b*f,(a, ) for every « in I,
where f,(a, -) is considered as an element of Z.

Note that (ii) is already inherent in Mikusinski’s definition ([2],
p.180) since his functions are only defined on the non-negative reals.
We can now easily establish the connection between continuity in Miku-
siski’s sense and continuity in the S-topology.

6.5. THEOREM. (i) If f is continuous in the sense of Mikusinsks, then f
is continuous in the S-topology.

(i) If f(a,t) satisfies the conditions listed in Lemma 6.3, then f(a, )
8 continuous in the S-topology.

Proof. (i) Suppose f is continuous in the sense of Mikusinski. Then
there is a b in S and f,(e,?) with the properties listed in 6.4. Then
limfy(a,t) = Hm(d*b*fi(a,-))(t) as a->a,. But, b*d belongs to D,
say b*d =d,, and by Lemma 6.3, lim(d; *f,(a, ))(t) = (dy *f1(ao, *)) (1)
a8 «—>a, uniformly in ¢ on —oo <t << n. Thus, f is continuous in
the S-topology, for lLimfy(a,1) = (fy(aq, ) *dy) (1) = (b*dxf(ag, ) (t) =
= fa(ay, 1) a8 a — ap uniformly in ¢ on —oo < t < u.
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(ii) If f(a,t) satisfies the conditions listed in Lemma 6.3, then
fla, ) is continuous in the sense of Mikusifiski (choose b = 1), hence
is continuous in the S-topology.

7. Relationship between M-differentiability
and differentiability of operational functions in the S-topology

%24, Definition. Let f belong to Z. Then

d a)—
2 e = () = 1 =T

da asay  O— G

when this limit exists.
7.2. TaeoreM. Let f belong to Z. Suppose f'(a,) exists. Then

]
‘E&‘fd(ay Dowmay

exists for all & in D.
Proof. We have
£ (aged — dvim S0 1)
a-sy a—a,
where d belongs to D. Since the limit exists by hypothesis and since
products are separately continumous in S, we have

H@—=flag) _ - d=f(@)—d*fla)

d=lim
a—sag a—ag a0y a—0g
a,t)—fzlag,t d
o Bl@ O alagt) 0
asay a—a, da

?.3. LeEMMA. Suppose g—f(a,t) i8 continuous n a and t, where a
a
belongs to an interval I and, for each a, Fa fla, ) belongs to C. Suppose
0
o2 s10,3) >
da

for some real number v and every « in I. Then f(a, ), considered as an
element of Z, has a derivative with respect o a in the S-topology. This

0 .
derivative —g— fla, ) is equal to the function P f(a, ) considered as an
o

element of Z.
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Proof. We must show

g— - d
Jim Mj(aoy ) =—8_f(a")a=“0

a—ag a— 0y a

in the S-topology. This is true if and only if for every 4 in D we have

ey )=flee 5 _ 0 o ug

a— ay Oa

lim
in the O-topology. Let a— oy = k. Then
]im[f(a’ -)—F (g, )]* i = lim floy ) *d—flaq, ) *d

ayay o— Qg a—ag a-— 0Oy
+o0

= lim f [f(ao_[-h,m>_f(aﬂ’m)]d(t_m)d$
i) B
+oo 8 '

:—f (@, Doy (1= 2) o
%

=E¢- (a,~)a=an*d.

7.4. Definition. Let f belong to Z. f is differentiable in the sense
of Mikusisisks if there is a continuous function f,(a,t) such that f,(«,-)
belongs to ¢ and o'(f,_(a, -)) > t for some real v and every a in an inter-

val I; if ~60~ fi(a, t) is continuous and if there is a b in C such that f(a) =
o
]
=b*fi(a,"). We write f'(a) =bx——f(a, ).
a

Again note the slight modification of Mikusinski’s definition ([2],
p.183) so that it fits our set-up.

7.5, TEEOREM. If f is differentiable in the sense of Mikusiniski, then f

has a derivative in the S-topology, and the values of the two derivatives are
equal.

Proof. Suppose f is differentiable in the sense of Mikusiriski. Then

we find a b in 8 and f,(e,?) such that f(e) = b * f(a, ). Now in the
S-topology

0y — tim D=
aay a— ay
if this limit exists. But, we can write

Lim Fla)—F(aq) — Limb *[f1(a; ) —F1(a, )]

a—a, a—ay a—>a a— Qg
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Products are separately continuous in the S-topology and with
the aid of Lemma 7.3 we have

tim (@) —F(e0)

a—ay a— oy

0
=b= Efl(a, ‘)a=ao

and the derivative exists in the S-topology.

References

[1] J. L. Kelley, General topology, New York 1855.

[2] J. G. Mikusinski, Operational caleulus, 5th Ed., International Series of
Monographs on Pure and Applied Mathematics 8, New York 1959.

[8] J. G. Mikusifski and C. Ryll-Nardzewski, Sur le produit de composi-
tion, Studia Mathematica 12 (1951), p. 52-57.

[4] A. E. Taylor, Introduction to functional analysis, New York 1958.

[8] E. C. Titechmarsh, Iniroduction to the theory of Fourier integrals, 2nd Ed.,
Oxford - London 1948.

[6] XK. Urbanik, Sur la structure non-topologique du corps des opérateurs, Studia
Mathematica 14 (1953), p. 243-246.

Regu par la Rédaction le 5. 7. 1963


GUEST




