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On simultaneous extension of continuous functions
A generalization of theorems of Rudin-Carleson and Bishop
by
A. PELCZYNSKI (Warszawa)

Let us denote by Cg(T) the space of all continuous mappings
f: T —B from a topological space T into a linear topological space B. For
B = A, where A denotes the complex plane, we shall write C(T') instead
of Cy(T). Let S be a cloged subset of 7 and let X and ¥ be linear sub-
spaces of Cp(T) and Oz (S) respectively and let X and F be linear topo-
ogical spaces with certain topologies 7x and tp respectively.
Definition 1. An operator L : B — X is said to be a linear operator
of extemsion provided that the following conditions are satisfied:
(i) Lf is an extension of f, i.e. f(s) = Lf(s) for every ¢ in § and
for every f in B,
(i) L(eifi+eofs) = 6y Lfy+ ¢, Lf, for freB and et (k=1,2),
(iti) L is continuous with respect to the topologies 7z and zx.
The first result concerning linear operators of extension is due to
Borsuk [6], who considered the case where X = O(T), T being a separable
metric space. The result of Borsuk has been generalized by Dugundji [11]
(see also Kakutani [18] and Michael [20]) to the case of the space Cp(T),
where B is a locally convex linear topological space. All these authors
_ have considered only the case where B = Cp(S) and X = Op(T). In
the present paper we give certain sufficient conditions for § and a sub-
space X of O(T) for the existence of linear operators of extension from
B = (0(8) into X. Our conditions are closely related to some recent
results of Bishop [1] and Glicksberg [14]. Obviously, in the general case,
where X is a (proper) subspace of Op(T), the necessary condition for the
existence of linear operators of extension from Cp(8) into X is that
rsX = Op(8), where rg: Op(T)— Op(8) is the operator of restriction of
functions to §, i e. rgF =f with f(s) = F(s) for se8 and F<Cp(I).
We shall show that this condition is also sufficient in the case where X
is a Dirichlet algebra (*) on a compact metric space 7. In this case there

(*) A subalgebra X of O(T) is called a Dirichlet algebra provided that every
real continuous function on T is uniformly approximable by real parts of functions
in X (see [13] and [17], p. 54).
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exigts a linear operator of extension with the norm precisely one. The
first non-trivial example is the algebra A of all continuous complex-
-valued funections on the unit circle of »#° which are the boundary values
of holomorphic functions on the unit dise. As is shown by Rudin [24]
and Carleson [7], rgA = C(8) if and only if § is a closed subset of the
unit circle with Lebesgue measure 0. Therefore for every such subset §
there is a linear operator of extension from C(S) into .4 with the norm
equal to 1, i.e. preserving the norm of every extended function. Thig
fact enables us to show that the space 4 is isometrically universal for
separable Banach spaces, i. e. every separable Banach space iy isometri-
cally isomorphic to & subspace of A. A slightly weaker result is given
in [21]. Another example of an isometrically universal Banach space
is the space ((T) for any uncountable compact metric space 7' (cf, [83,
D. 93, and [217]). However, we shall show that the space 4 is of a dif-
ferent isomorphic type from any space C(T) for compact T.

The present paper consists of three sections. In Section 1 we formulate
the main result and give some corollaries. Section 2 contains some wun-
solved problems and remarks. Section 3 is devoted to the proof of the
main result. All the results of this paper remain valid if we replace every-
where the space of complex-valued functions by the space of real-valued
functions.

1. Results

Unless otherwise stated, by T we shall denote an arbitrary compact
metric space and by § a closed subset of 7. The metric funetion on T
will be denoted by g¢(-, ). Elements of O(T) and C(8) will be denoted
by P,6,H,... and f,g,h,... respectively. If T is compact, then O(T)
and C(S) are Banach spaces under the norms IF|| = sup |F(z)] and

teT'

Il = ?;11)] f(s)] respectively. In this cage if X is a cloged subspace of C(T)

and E is a closed subspace of 0(8) and L: F-> X is a linear operator
of extension, then
1<IHl = sup |Lf] < +oo.
7eB, Il =1 .

A funf:tion K in ¢(T) is said to be a peak function for a subset S
of T provided that |K(f)] <1 for 1eI\8 and K(s) =1 for sef.

.M.AIN THEOREM. Let X be a closed subspace of the space C(T) of all
continuous compler-valued functions on g compact metric space T and let S
be a closed subset of T. Let us suppose that

(B) for every f in C(8) and Jor every A in O(T) such that A(2)> 0
for 1T and A(s) > [f(s)] for seS there s in X an ewtension F of f with
[F @] < 4(2) for teT.
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Then for every 6> 0 there ewists o Linear operator of extension
Lyt O(8) — X with |L,|| < 14 6.

Moreover, if

(G) there ewists in X a peak function K for 8 such that K-FeX for
ewery F in X (2),

then there is a linear operator of extension I : ¢ (8) = X with 1] = 1.

Agsumption (B) may be justified by a recent result of Bishop [1],
namely that if § is such a subset of 7 that

(R) every Baire measure » on T orthogonal to X (i. e. such that
[F(t)»(dt) = 0 for FeX) is identically zero on § (i. e. »(8,) = 0 for every
T

Baire subset S, of S),

then condition (B) is satisfied.

A subspace X of C(T) is called an algebra approximating in modulus
(briefly: an a. m. algebra) provided that for every ¢ > 0 and for every
Ae0(T) with 4(¢) =0 for teT there exists an f in X such that
[]f(t)[—A(t)[ < ¢ for teT. The class of a.m. algebras has been intro-
duced by Glicksberg ([14], p. 430); it contains the class of Dirichlet
algebras as a proper subclass. Glicksberg [14] has shown that if X is
an a. m. algebra on a compact metric space T and if 8 is a closed sub-
set of T, then conditions (B), (G), (R) are equivalent to one another
and equivalent to the fact that »gX = ((S). Thus in view of the Main
Theorem we get

COROLLARY 1. Let T be a compact metric space, let S be a closed subset
of T and let X be an a. m. algebra on T (in particular let X be o Dirichlet
algebra). Then a linear operator of emtension L :0(S) > X with L =1
ewists if and only if one of the equivalent conditions (B), (G), R), or 74X =
= 0(8) holds.

As is pointed in [1], for special Dirichlet algebras condition (R)
is closely related to various generalizations of the clagsical theorem
of ¥. and M. Riesz ([17], p. 47). Therefore, by Corollary 1, in view of the
results of [5], [16], [10], [2], in which various general theorems of ¥.
and M. Riesz have been proved, we obtain

COROLLARY 2. In each of the following special cases there exists a linear
operator of emtension L :0(S)-> X with ||Lj = 1:

LT ={eet:e| =1}, 8 is a closed subset of T of Lebesgue measure
zero and X = A,

IL T 4s the tore {vef :|e| =1} x{wek : |w| =1}, 8 is a closed
subset of T with the surface area equal to zero and X is a closed subspace
of C(T) spanned on the functions ™™ with (m, n) belonging to a sector
of lattice points of opening greater tham .

(*) Assumption () is superflous; see the remark at the end of this paper.
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1L T = G is & metric compact abelian group, S its closed subset such
that for each se8, {teR: s+o(t)eS} has zero Lebesgue measure, where :
R > @ is a homeomorphism from the. group B of real numbers into G in-
duced (%) by & continuous homeomorphism v G—-R (G t'imot.es waasigcww
dual group to @) and X consists of all continuous functions in C(T) Fourier
transforms of which vamish on the set {creG: p(o) < 0. -

IV. T is the boundary of a simple connecied open set U, 8 is a closed
subéet of T of vy-measure 2670, where v, is the measure induced b:t{ the Lebesque
measure on the unit circle (see [2], Theorem 4) and X consists of contin-

uous functions on T which have continuous extensions to T v U analytic

" Uéne may obtain further generalizations for the spaces of continuqus
funections on metrie compact Abelian groups, on Riemann su.rfa.ces with
boundary and on subsets of the complex plane more complicated than
those in IV (using the results of [10], [27], [23] and [3])..

The eondition 7y = C(8) is obviously satisfied (by the Tietze exten-

gion theorem) in the case where X = O(T') for on arbitrary closed sub- -

set S of 7. Then Corollary 1 gives for compact metric spaces the result

of Borsuk [6] mentioned above. N
The next corollaries need the following simple proposition:
ProPOSITION 1. Suppose that T is a compact Hawusdorff space a‘nd

that 8 is a closed subset of T. If there ewists a Vinear operator of emtension

L:C(8) =X c O(T) (with |L|| = 1), then
(a) L is an (isometrical) isomorphism from O(8) into X,

(b) the space X is the direct sum of its subspaces ¥y = L{0(8)) and

Zy={FeX:F(s) =0 for se8},

(¢) there are projections (= linear idempotent operators) from X onto Yg

and onto Zg, i.6. Yg and Zg are complemented in X.

Proof. (a) is an immediate consequence of the inequality

Al = sup Fr< sup \ZLF @) = LAl < LI Ifl - for  feCO(8).
(b) follows from the formula
F = IrgF+(F—LrgF) -for F in X.

(e) is a well-known consequence of (b) (see [12], p. 480).

COROLLARY 3. Let X and T have the same meaning as in cases I-IV
of Corollary 1 (én IIL suppose also that T 4s infinite). Then X contains
a complemented subspace isometrically isomorphic to the space C(C) of all
continuous comples-valued functions on the Oantor discontinuum €. Henoce

(3 i. e. p: B~>@ is the unique mapping satistying o (p (1)) = o™} (t¢R,0e6).

©
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(by [8], p.93) every separable Banach space is isometrically isomorphie
to a subspace of X (cf. [21]).

For the proof it is sufficient to note that under the assumptions
of Corollary 3 there exists a closed subset § of 7T homeomorphic to €
and such that S, T and X satisfy the assumptions of Corollary 2 in each
of cases I-IV and to apply Proposition 1 (a).

COROLLARY 4. For an arbitrary closed subset 8 of the unit circle there
ewists a projection from the space A onto its subspace Ag — {Fed : F(s) = 0
for sefS}.

Proof. If § is of positive Lebesgue measure, then according to the
theorem on unicity (see [17], p. 52) Ag consists only of the zero func-
tion. In the other case we apply Corollary 2 (case I) and Proposition 1 ().

It seems interesting to compare Corollaries 2 and 3 with the following

PROPOSITION 2. Let @ be an arbitrary compact Hausdorff space. Then the
space A is not isomorphic to any complemented subspace of the space C(Q).

Proof. We shall use the following notation. By X/Y we shall denote
the quotient space of the space X by its subspace Y. We shall write
X~X; provided that the spaces X and X, are isomorphic. If X is a B-
-space, then X* and X** denote the first and the second conjugate spaces
to X respectively. The symbols H', H*, 4, I', I have the usual meaning
(for the definitions ef. [17]).

‘We recall that a B-space X ig said to have property P provided that
for each of its isomorphic images X; in every B-space Z there is a pro-
jection from Z onto X, ([8], p. 94). It is well known that o) if X has
property P and Y is a complemented subspace of X, then ¥ has pro-
perty P [15], §) the second conjugate space to any space C(Q) has pro-
perty P ([15], [8], p. 95-106), v) the space H* does not have property P,
because the natural embedding of H® into L* is not complemented in
L™ ([24]; see also [17], p. 155). It follows from o) that if Y is a comple-
mented subspace of X and X™** has property P, then ¥** also has this
property. Hence to complete the proof it is sufficient to show that

3) the space 4™ does not have property P.

Let us put

A* = [ e[0(T)]*: [ F(t)(dt) = 0 for every F in A},
T
where T' = {2: |2 = 1}, Then the theorem of F. and M. Riesz ([17],
D. 47) implies that 4™ is isometrically isomorphic to the space

2m
Hy={gel’: [ g(t)e™at =0 for n =0,1,...}.
o

We have A%~ [O(T)]"] A"

Studia Mathematica XXIV b
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Tt follows immediately from [12], p.132, that [C (T)]*Nlevslngy
where ¥, denotes the space of all set functions singular (with respect
to the Lebesgue measure) complex-valued countable additive defined
on the class of all Baire subsets of T. Thus we have

Ao (T X V ) [Hy~ (T [H) X Vg -

Therefore
(L1/H0 Vsing) N‘Hm (Vsing)*7

because (LI/H;) ~H®([17], p. 187). Thus, by «) and y), A™ does not
have property P.
COROLLARY 5. The space A is not isomorphic to any space C(Q).

2. Remarks and unsolved problems

1° It seems interesting to extend the Main Theorem to arbitrary
metric spaces and to vector valued functions.

2° Recent results of Glicksberg [14] suggest the following problem.
Let X be an arbitrary Dirichlet algebra on a compact metric space T
and let 8 be such a subset of 7' that the restriction operator rg: X v a(8)
has a closed range. Is it then true that there exists a linear operator of
extension (with the norm equal to one) from rgX into X%

3° There are & few examples which show that the Borsuk-Dugundji
theorem cannot be extended to arbitrary topological compact Haus-
dorff spaces (see [9], [19] and [20]). A very simple example given in [26]
is the space BN with its closed subset SN\ XN, where SN denotes the
Cech-Stone compactification of a countable discrete set N. Then there
is no linear operator of extension from the space O(BN\ ) into C(BN).
Indeed, if it were not so, then, according to Proposition 1 (¢), there would
exist a projection from C(fN)~m onto its subspace Y = {F<C(pN):
F(t) = 0 for tefN\N}~c,, which would contradict a result of Philips
(see [22]).

Consequently, the Main Theorem is not true if the agsumption of
metrisability is omitted.

3. Proof of the Main Theorem

31. Peak partitions of unit. We give

Definition 2. By a peak partition of unit in ¢'(S) we mean a finite
collection 1 = (L)% of functions in ¢ (8) satisfying the following con-

ditions:
@) Z’/’l1 for sin 8,
=1
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(2) 0<(s) <1l forsin § (i=1,2,...,N,),
(3) the sets Vi = {seS:4;(s) =1} are non-empty (i =1,2,...,N,).
Let us put
Ui = {seS: A(s) > 0} (1=1,2,...,N,),
d(}) = max diam U}, where diam Ui = sup o(sy, 5s),
1<igNy

U

and let E, be a finite-dimensional subspace of C(S) spanned by Agy
Aayo- }“Nz It p = (p)P% is a finite system of points with p;eV%
(¢ = 1, 2,...,N;), then we define = : C(8) - E,, where

N;

apf = D f(wil

for f in C(8). It is easily seen that «} is a linear projection of the norm 1.
LemMA 1. Let B be a finite-dimensional subspace of C(S). Then for
every & >0 there 18 n = n(H, &) > 0 such that if u is a peak partition of
unit with d(u) <, then ||7if—fl <e|fll for every feBE and for every
¢ = (@) with gV, (4 =1,2,..., N,).

Proof. Let us put By = {feB:||f|| = 1}. Since F is of a finite dimen-
sion, By is compact and there exists an # = n(H, &) > 0 such that if
0(81, 83) < 7, then |f(s;)—f(s,)] <& for f in By and for every s, and s2
in 8. Let ﬂ be any peak partition of unit with d(u) < 5 and let ¢ = (g)Fa

thqjsV“(j—*l 2,...,N,). By (1) and (2) we have
N

m
lf('?)—f(éli)\ ©i(8),

|f(3 l Z 1:N (8)

j=1
where NV, (s) = {j : u;(s) = 0}, se8. Let us observe that if jeN,(s) then
seU7, and o(s, ¢;) <n (because d(u)<<7); therefore |f(s)—f(g)| < e.
Hence using (1) we get

< D If(s)—

7‘N,u(‘9)
Thus if feBg, then ||f— #if]| < s. Finally, by the homogeneity of the
norm || - |, we get; |f—alfll < elf] for feB, g.e. d.
Definition 3. Let 4 and u be peak partitions of unit and let & > 0.
We say that p is e-swbordinated to A provided that there is a finite system
of points ¢ = (g,)Ns with ¢;eV?, (j =1,2,...,N¥,) such that

very Nads

flan)w 8)1

NI‘
\F(s)—mif (s F@)lwls) <o 3 mls) =2 (se8).
Je=1

(4) there are indices jy, s, ..., jx, With g,eVi (6 =1,2,

(5) nlf—fll <elfl for every f in H,.
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An operator nl:C(8) — B, satisfying (4) and (5) is called a pro-
jection e-subordinating u to 2.

LemmA 2. For every peak partition of unit A in C(8) and for every
positive number ¢ and § there is a peak partition of wnit u which is e-sub-
ordinated to A and d(u) < 6. .

Proof. Choose arbitrary points p;eV; (1=1,2,...,N,) and put
7 = min(8, §8,, 1 (B, ¢)), where n(X,, ¢) has the same meaning as in

Lemma 1 and 8, = min g(p;, ps). Now let ¢ = (g;)/4 be a maximal
1<i<k< N,

system of points in § such that o(g, @) =7 (5 # k) and for every ¢
there is j; with p; = ¢;, (1 = 1,2, ..., N;). Since § is compact, the set ¢
is of course finite. Let us set

‘ 0 for  o(s,9) =,
(8, 4) 7
2—2——=5 for o <ols, g) <7
(6) #(s) = n 2S¢ ’
7
1 for  ofs, @) QE:
(7) Hy = Nij (j=1)27"‘7NI‘)
gl%

Since ¢ is a maximal set of points such that o(g;, ;) =7 (§ # k),
for every s in § there is an index j(s) such that ofs, i) < 7. Thus
N,

«
P (s) # 0 and D g;(s) >0 for every s in S. Hence formula (7) well-
F=1

-defines & continuous function on § (because @; are continuous). Obviously
N

F23
2pi(s) =1 and 0 < j(s) <1forj=1, 2,..., N, and for s<S. It follows
=1

from (6) and (7) that
={se8:p(s) # 0} = {se8: q5(s) # 0} = {s¢S: 0(s,9) < 7}

Since e(g;,q) =74 (j # k), we have 0 = g,(q,) = H/(‘llc) for j ## &
and therefore u;(g) =1 (j =1, 2, N,). Hence g = (m), is a peak

partition of unit with d( )= min du»mUj < 27n. By the definition,
I<IKN,

29 < n(By, &) Henee, by Lemma 1, |n,,f —fll €

are m g(i=1,2,

ordinated to 1, q. e. d

Levwa 8. Let 1 be a peak partition of uwit in O(8) and let
L, : B, —~ O(T) be an arbitrary linear operator of emtemsion. Then

e|lfil for f in E,. Since p;
-y N3), condition (4) is satisfied. Hence u is e-sub-
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N
®) Il = max o forf=g{’aixieEl (Gets i=1,3,..., Ny,
N,
) LA = 2P ILifl = sup gllrazi(t)r.

Na
Proof. Let f= }'¢;4;. Then, by (1)-(3), we get
i=1

Ny
mex o] = max sup| ' ok(s)| < Il = aup| 2 ahi(s)| < max [o.
1IN, 1<i<Nzaw i1
i

Thus (8) holds. Using (8) and conditions (i)-(iii), we have

N,
1Z:f) = sup| 3 6. L,7(1)| < max |a
€. i=1 :

1IN,

N;
+sup g 1Ly 24(8)]

Ny
L
< Al S&p% |Z,2;(8)]

Therefore
AR 2 IZaks(t)
Now choose ?, in 7' in such a way that
Ny Ny
sup D' LA = 3 |Tadi(io)]
L=l i=1
and put
<, , 0 for L, i(ty) = 0,
= EGM«:, where ¢ = o
i Ly 2 (o) - | Ly As (o) for  L,2(t) 0.

N
Obviously [fyl =1 (because, by (i) and (3), sup 2 L :(8)] > 1)
€ i=1

Thus
Ny

IZafull = sup DT, (0.

G=l

L) =
Thus (9) holds, d.e. d.

3.2. Constructions of auxiliary extensions. We now prove

LevwA 4. Under assumption (B), for every g, and g, in O(8) and
for every emtemsion G, eX of g, and for &> 0 there is in X an extension G,
of 9o such that ||G,— Gylf < llgy— gall+ &
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Proof. Let us put f = g1— ¢5- BY (B), there exists in X an extension
F of f with |[F] < [If|+e We put G =G,—F, q.e.d.

TEumA 5. Under assumption (B), for every non- negative function h
in O(8), for every n>0 and 6, > 0 there is a 8; with 0 < 8; < &y such
that for every & with 0 << 8 < 0y there is in X an extension H of h with the

following properties:

(10) 1=l < s+,

(1) H@)|—H@) <n for teT,

(12) if o(t, 8) > 5, then \H(t)| <= for teT, where ¢(f, S)

(13) f olt,s) < 6, then h{s)—

= infp(s, 1),
8¢S
ReH (t) > —n for teT and for seS.

Proof. The case where || = 0 is trivial. Let us suppose in the
sequel that [[k]] > 0. Let HyeX be an extension of h with |[H,|| < [|A]|+1n
(such an extension exists by (B)). The uniform continuity of H, implies
the existence of 8, > 0 such that if o(f;, ;) < &, then [Hy(t) —H,(%,)| <
< 4y for (,t)eTxT. Let us put 6, = min(éd,, 8,). Then for fixed 4
with 0 < 6 < §; we have

(14) if g(t,s) < 8, then h(s)—ReH,(t) > —4n for T and for se8

(because [h(s)—ReH,(l)| = |Ho(s)—ReH, ()| = [ReH,(s)— ReH, (1) <
< |Hy(8)—Ho (1) < 4n for o(t, ) < 81).

Choose an index n, such that

(15) (14 8)™" < min (35 H,™, 1).
Let H,eX be such extensions of & that
(16)  |Ha(®)] < 4ult) = (L4 o (t, 8))7"0 (| Ho (t)| +1n)
for teT (n=1,2,..).
The existence of such H, follows from (B).
Let us econsider the sequence (Fy) = (|H, —H,). Since |Fy(t)| <

‘< 24,(8), teT, we have HimF,(t) = 0 for teT\ 8. Since h(s) =0 (s¢8)
n

and H, are extensions of h, Fy(s) = |H,(8)| —Hyn(s) = h(s)—h(s) =0

(n=1,2,...; $¢8). Thus im 7, () = 0 for every ¢ in T. Moreover, by (16),
n

1Fall < 20Hal| < 2{Hy||+47. Hence, by [12], p. 265, the sequence ()

weakly converges to 0 in C(T). Therefore, by a theorem of Mazur (cf. [12],

D. 422), there exist non-negative numbers (a,)X, such that

2%:1 “Saﬂ‘l

and

icm
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Let us set
M
(17) H=)aH,.
Then we have =
(18)  H(s) = Za H,(s) = 2 ah(s) =h(s) for sin g,
M
(19) 5| < Zlayuﬂ < 2%) (H o +17) < (Bl +37,
] M
o) [IEOI-HO] = || Zayﬂ,.u)[— a8, 1)
yam ] ye=l
M M M M
<| Yamoi-Yamn) =] Yarn| <|| Yoz <in<n
. for ¢in T,
(21)  if o(¢t,8) = 6 (teT), then (by 15) and (16)) either
M
1 < 4y |Hy™ and [H ()] < 2“ |8, (2)] Zav(HHo”'l'i”})
= |Holl+dn <7nf2-+nf4 <n, or 1> |H,[~ and
M M ’
H{) < \Zla < 2 (IHo(®) ) dn- 1Ho ™ < o,
(22)  if o(s,%) < & (se8; teT), then (by (14) and (16))
h(s)—ReH(t) = h(s)— |H (1) —]Zaﬂ t)|
M
> Y a,(his)—|H, (1) Z’“ (8)— 1 H o (8)] — )
=)t r=]
= h(8)— |H,(t)l—}n > —fn—4n > —7.

Obviously properties-(18)-(22) imply that H is the required exten-
sion of % satistying (10)-(13), q.e.d.

LemmA 6. Let ¢ and o be positive numbers. Let us assume (B). Let
A= (4 and u = (u)Ne be peak partitions of wnit in C(8), let u be
e-subordinated to A and let ni: O(8) - B, be a projection e-subordinating u
to A Let L,: B, — X be a linear operator of extension with |L,|| < 1+ w.
Then there is a linear operator of emtension L,: B, — X such that

(23) L2l f—Lafll <2Nye- |fl - for  fin By,
(24) L)) < 14 0+ 2N,e.
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Proof. Let g = (g)4. Let us set J1={ji,fas.--sfn;}, Where j;
satisties (4) (¢ =1,2,...,N,), and J, = {j < N,:1j¢J1).

First we choose extensions IL,nlA; of af A such that
(25) (L2 d—L Al <26 (E=1,2,..., N}).

The existence of such extensions follows immediately from (5) and
Lemma 4, because [miki—Al <elikll =¢ (1=1,2,...,N;). Let 5 be
an arbitrary positive number such thait

1+ o—|IL
(26) 0<n< m‘l—
and let 8, be chosen in such a way that
Ny
(27) i o(t,t) < &, then D' |L,alli(t)— Dy hilta)l < 7
i=1

for (f,,t,) eI xXT.

According to Lemma 5 there exist 6 with 0 < § < d, and extensions
L,y (jed,) such that

(28) 1 aill < Huagll 4 = 1+,
(29) (1L =Ly ()] < for tin T,
(30) if teT and o(t, 8) > 4, then |L,u (1) < 7,

(31) if o(t,s)< 4, then p,(s)— ReL,pu;(t) > —n for ¢ in T and for s in §.
Further we set

(32) L, = Lads— X (g Ly (1 =1,2,...,1,).
jeJy
Finally for arbitrary complex numbers ¢, ¢,, ..., oy, We put
Ny

(33) (2 omy) = Zcf e

=1

Since g7, V5 = S\ U for ¢ &,

i _1 for i=Fk, b1
Qik)— 0 for ’i;‘:k ('*) - ’2’- 7N)l)
Thus
(34)  alk = 2& G = m+ D (@ (i=1,2,.., ).
jeJg

It follows from (32)-(34) that the definition of Ll (1=1,2,
-y N;) which we get by putting in (33) ¢; = A(g;) for j =1, 2, N
comeldes with the earlier choice of I wTah; (satisfying (28)).

©
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Hence the construction given above defines a linear operator of
extension L, : B, -~ X.

We sha]l estabhsh that the operator L, defined in this way satisfies
conditions (23) and (24).

From (8), (25) and the linearity of operators I, and L, we get

N; Ny
() MEaf—Loifi = | X eZahi— 3 eitata

Ny
< D ledl 1A=Ll < 2N;e max o] = 2Nse |fi] for f = 3ok
=l
Hence condition. (23) is satisfied.
We are now going to prove (24). We begin with the estimation of
N

=1

the quantxty 7 |Lpy (1)} for ¢ in T. We consider two cases
(t 8) > 4. Then, by (32), we have

(36) 2 Lty @ = 3 1Lty (6)] + zy (Ll 2~ 21 (@) Z11) (1)

F=1 jedg
< 1Lt |+ZZM47 )Lt (0] + ZIL 7 h(B)]5
jedg i=1 feTy
Ny

gince (by (1 Z’ Ai(gy) =1 (jed,), we have

(37) 2 D M@ Ly ()] = ) 2% (@) | Lupy ] = D Ty ()]

i=1 feJg jeJg i=1 jeJgy
It follows from (30) that
(38) D Lm0l < N,
feJg
Now
N, N, Ny
(39) D Latai ()] < X1 Dmt k() — L]+ Y 1 T2 (0)]

Gl e L 4=1

Using (25) we get

Ny
(40) DL A—L ) (1)] < 2.

4mal
By Lemma 3 we have

Ny,
(41) DLk <L for ¢in T.

qmal
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Thus finally, by (35)-(41), we get
Ny
(42) Sy (1)] < 2N +2N0+ Ll
j=1

9° There exists an s in § such that o(s,?) < 6. Then, by (32), we
have .

N, Ny
43) DLl =D 1L O]+ ;((Lﬂnm— 2@ gy 1)
j=1 jely =1 Jely

Using (27) and the fact that L, is an extension operator we get

N, Ny
) VILaum— ko) = D 1Tkl —Luaihi(s)] <.

Thus, by (34), we get
N,

Ny
49) J|Bathi— S ui@ Tum)io| < n+ D|aitste)= 3 2uta) L )
im1 fedy i=1 fely

Ny Ny
<nt Ym0+ 3| X hla) by (9)—Lusy 1)

=1 1=1 jely
Let us set
a = D' (05) {1y () — L, 1y (1)
ey
It follows from (2) that

(47)  TIma; = Im( Y 7i(g)
JeJy

(46)

((=1,2,..., ).

——Lﬁ,uj(t)) = - Zli(%‘) Tm L, w4 (1)

feTy

Applying (1), (29) and the elementary inequality |Tmz| < ||z|—¢|
we get

N, N
(48) D may = 37| 32 (¢) I L o 8)
i=1 i=1 jedy
N;
<Y D (@) L (1) < 7.
JeJgi=1
N;
Now we shall estimate the quantity Y (|Rea;— Rea;). Let us set
=1
TI) = {jeJa: (s)—ReL,u (1) < 0}.
‘We have
IReal—Rea; < —2 3 4i(g)w(s)— ReL,p(t) (i =1,2,..., Ny).

dedyt)
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Hence from (31) we get

Ny Ny
N (IReaj—Rea)) <2 3 N ki(g)q < 2N,
=1 i=1 7.:];“)
Thus
N;, Ny Ny
(49)  Ylal <)) (Imai|+ [Rea|) < Nyn+2N,n+ 3 Reas.
q=] de=l =1
It follows from. (1), (2) and (46) that
Ny Ny Ny
(50) Y Rea;=Re(> a)=Re (> ¥ %lg)(u(s)—Lum (b))
i=1 i=1 i=1 fely
= D w(s)— D ReL,m(1).
ey feTy

Comparing (43) with (45), (49) and (50) and using the equality

Y
2 ui(s) =1 we geb

g=1
N, N,

(51) L) < ) 1 L@l 0+ D) w1, (9)+38,7
f=1 Jely d=1

+ ZM (8)— ZReme(t)

Jedy jeJy
=1+ Y (1L (0)] —ReLp 1)+ (3N, +1)7.
feJ3

By (29) and the elementary inequality |2|—Rez < [12]-2} we have

(52) (1L (0 —Re Ly (1)) < D\t (O =Ty ()] < Nam-
Jedy JeJg
Finally (in the case 2°) comparing (51) with (52) we get
Ny
(53) DL (t)] < @N,+1)n+1.
Fual
Hence in both cases, according to (26), (42) and (53) we obtain
N/l .
(54) SLut) <1+o+2Ne for tin T
jet

Thus, by Lemma 3, |L,| <1+ o-+2Ne d. e d.

Lewvwa 7. Let us assume (G). Let u = () be a peak partition
of unit in 0(8) and let L,: B, —~X be a linear operator of extension with
ILJ| <1+, where 0 < o < 4. Then there ewists a linear operator of
extension L,: B, - X such that |L,| =1 and 1L, — L) < 160.
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Proof (4). Let us choose the integer n such that 27" > g > 271
Let us set
Ny
AW = DLy for  tin T,
j=1

Tp = {teT: 142" > AN >14+27"7}  (m=n,n+1,..).

Note that (cl Tw)~ S = @, because A(s) =1 for s in 8. Therefore
sup |K ()] < 1, where KX is a peak function for § with the properties
e,

a:smin (G). Let us choose an integer p, such that |K(8)’n < 27" for ¢
in T, (m = n,n+1,...). Let us put

n—-1 <]
Lf= Y oL+ Y 2"E™Lf for fin B,
M=l M="

Obviously, by (@), L, is a linear operator of extension from F, into X,
To compute ||L,| we estimate the quantity

Ny
A') = Y\ Ly for tin T.
j=1

We have .
A0 < _j( S M@+ Y 2" T 1) E(0)")
= A(t)(j 9 "4 22"”|K(t)["m) (teT).

Let us consider two cases.
1° there is an integer m, > n such that tely,. Then we have

Am( Y o+ fz-"wzr(tw’m)@(t)( D 22T R (1))
Mm=1 m=n . MAEM,

< (1+2wm0)(1_2-m0+2a3m0) — 1_2—zm°(1__2-m0__2_2'm0) <1.
2° A(t) <1. Then obviously
n—1 oo o
A@( et YormEePn) <4@ Y <1
M=] M=N M=}
Since 1+27" > 140 > ||L,)| = sup A(t) (by Lemma 38), for every
T
in T' either 1° or 2° holds. Therefore, by Lemma 3, sup A'(¢) = ||L;]| < 1.
tel

Thus ||L,| = 1, because every linear operator of extension has the
norm > 1.

(%) The idea of this proof is similar to thoge of Glicksberg ([14], Lemma 4.5)
and of Bishop [4].
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Now, let feF,. We have

M, f— Lo fll =|

Lf— 2L =| élz-m(zcwhl)zﬂfu

S IZIAL D) 7™ < 272 (1 9™

M=n
Hence [|L,— L, <27"**(1+27") < 8¢(1+20) < 160, q.e. d.

3.3. Proof of the Main Theorem. Let 0 <& < }. Using Lemmas 1
and 2 one may define by induction positive numbers &n, Peak partitions
of mnit A™ = (A")n in O(8) and projections tn : O(8) - B, such
that

(85) M9 = (5), Where eg(s) =1 for s in §,
(56) A" s gp-subordinated to A™ (n =0,1,...),
(57) D Npen < 39,

Noms )
(58) %41 18 & projection s,-subordinating A™+Y o A",
(59) if feHym, then |lm, mf—f| < 27" ™A1 (myn =0,1,...),
(60) (™) >0 ag n-> oo,

Let ng assume only (B). We shall define by an induction process
a sequence (L,) of linear operators of extension such that

(61) Ly: Bymy—X (n=0,1,...),

(62) [|Lnsatinpaf—Lufll < 2Nusallfl  for  feBym (n=0,1,..),
fN—1

(63) Il < 14 wo+ D' 2,6,

#=0
st
where w, = §8— 3N, ¢, (n = 0,1,...) (5). We define L,ey as such an
PR

extension of ey to X that |Lyes|| < 14w, and we put Lyeey = cLyes
for every complex number c. Let us suppose that I, is defined for some
7 > 0. Then we define L, ., as a linear operator of extension satisfying
the agsertion of Lemma 6 in the case where i = A", y = 2™, ¢ =,

-1
T =Py, Ly =1L, and © = w,+ 3 2N,e,. We omit the easy verifi-
=0

cation that sequence (L,) defined in this way satisfies conditions
(61)-(63).

-1
(%) In the case where n = 0 we admit 3 N,e = 0.

V=0
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Let us consider the sequence of linear operators (L,m,). Obviously
L,m,:C0(8) > X (n =0,1,...). We shall show that there exists a limit
lim L, 7, f for every f in C(8). To prove it we shall apply the Banach-

n

Steinhaus prineiple ([12], p. 55). It follows from (63) and the fact that
llwnl] = 1 that sup|Lnm.] < 1+d. Hence it is sufficient to show that
n

]ianai,bf exigts for every f in F, where F = | JE;n) is a dense subset
M=)

il: O(8) (the density of F ig an immediate consequence of Lemma 1 and
property (60)). Let feHyo, n being fixed for the moment. Using (59)
(62) and (63) we get

H

]]Lm+n+1 ”m+n+1f‘“Lm+n7Tm+nf” < ||Lm+n+1”m+n+ 1f"Lm+n+1"m+n+1 77"m+nf” +
+||Lm+n+17ﬂm+n+1"‘m+nf—Lm+n”m+nf” < “Lm+'n+1 ”m+n+1” Ilf— ”m.mfﬂ‘l“
+2Nm i nempallmafll < (L4027 "+ 2Nm i emynllf] -

Since the series Y'((1+8)27"""+ 2N, ném.n) is absolutely conver-
m=0

gent, (Ly,mTtnymflm=: i8 a Cauchy sequence. Thus there exists a limit
M Ly 30 Top o f = U Ly 75, f for every fin Hym (n = 0,1,...). Therefore
m mn
there exists a limit
lim I, 7, f = L,f for every f in C(8).
n

Obviously Z;: 0(8) — X is a linear operator with the norm 1Ll <
< SUp Ly )| < 146, Since m,feBym and L, : Bym - X are linear opera-
n

tors of extension, L,z,f(s) = m,f(s) for every ¢ in § and for every f
in O(8) (n = 0,1, ...). Thus L,f(s) = lim Ly, f (s) = lima s, f (s). It follows
n n

immediately from Temma 1 and property (60) that limm,f(s) = f(s) for

every s in § and for every f in (/(§). Hence L,f(8) = f(s) for s in § and
for f in O(8). Thus L, is a linear operator of extension required in the
first part of the Main Theorem.

Now, let us agsume (B) and (G). Then we shall define by an induction
brocess a sequence (L) of linear operators of extension such that

(61 Ly: Bymy—> X (n=0,1,..),
(62") s atnaf—Lofll < 50N, e, (0 = 0,1,...),
(63°) IZall = 1.

, Let Ly: By — X Dbe an arbitrary linear operator of extension with
IHoll = 1. The existence of such an operator follows immediately from
Lemma 7 and the fact that there exists a linear operator of extension

Ly: B+ X with |Ly| <1-+}. Let us suppose that for some = >0 the

©
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operator Ly : Eym —> X is defined. We define Lnyy =L,: Byniy — X
as a linear operator of extension satisfying the assertion of Lemma 6
in the case where 1= A", u= " ¢ — Eny W= Tny1, Ly = L, and

o = Nney > [[Ln]|—1 = 0. It follows from Lemma 6 that

(64) ”Ln+17'5n-|—1f”‘Lﬂlfbf” < 2Nnen 1Al for SeBm,
(68) gl < 14-8Npep < 1446 < 14-1.

Now, using Lemma 7, we define Ly, ;: Bymsy — X ag such a linear
operator of extension that ||L,,,|| =1 and

(66) g1 —Lnpall < 1416 - 3N, = 148N, ¢,.

Obviously the sequence (L) defined in this way satisfies the condi-
tions (61)-(63’). Condition (63') for n+1 is an immediate congequence
of (64) and (66).

To complete the proof we put

If =limIym,f for fin O(8).
n

In exactly the same way as in the proof of the first part of the
theorem (using formulas (61')-(63') instead of (61)-(63)) we show that
L': 0(8) -~ X is a linear operator of extension with L' =1, q.e. d.

Added in proof. Recently we obtained the following improvement
of the Main Theorem:

Let X be a closed subspace of the space O(T) of all continuous complex-
valued functions on a compact metric space T and let S be a closed subset
of T. Then (B) (see p.286) implies the ewistence of o linear operaior of
extension L: O(8) — X with || L|| = 1.

For the proof see A. Pelezyniski, Supplement to my paper “On
simultaneous ewtension of continuous fumctions”, Studia Math. 25.1 (1965).
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On formal trigonometrical series
by

Z. ZIELEZNY (Wroctaw)

Using derivatives of infinite order we have extended in [5] the
methods of the elementary theory of distributions due to J. Mikusiriski
and R. Sikorski (see [3] and [4]). The elements so obtained, which we
call wlira-distributions, may be regarded as Fourier transforms of distri-
butions of finite order.

This note deals with Fourier series expansions of ultra-distributions.
For simplicity we restrict ourselves to the case of one variable. We show
that each periodic ultra-distribution has a Fourier series converging to
that ultra-distribution. The Fourier coefficients are defined by the clas-
sical formulas, which we interprete similarly as for periodic distributions
(see [3], § 20). Moreover, each formal trigonometrical series, i. e. a series
with no restrictions on the coefficients, converges in the sense of ultra-
-distributions and is the Fourier series of its sum. We also prove an
analogue of the last result for generalized trigonometrical series.

Throu t the paper we use the notation and basic properties of
ultra-distributions given in [5]. We recall briefly the definition of the
convergence. Let ¢,(x) be an ultra-distribution of # for each value of the
parameter ¢ and ¢(z) another ultra-distribution, We say that

limpy () = p(@),

N
if there exists an entire function A (), an integer », and continuous funec-
tions &, (w), @ (x), which are O (|z|™) a8 |#| - oo and satisfy the following
conditions:

(Ly) 4 (—%- D),@,(w) =q(2), A (—i—:— D)@(w) = @ (),

(L) For t —t,, (L+a*)"®,(x) converges to (1-+2*)~" d(e) uniformly
in R,.

A series of ultra-distributions 2 o (®) converges to ¢ (@) if the sequence
Nw=l
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