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On formal trigonometrical series
by

Z. ZIELEZNY (Wroctaw)

Using derivatives of infinite order we have extended in [5] the
methods of the elementary theory of distributions due to J. Mikusiriski
and R. Sikorski (see [3] and [4]). The elements so obtained, which we
call wlira-distributions, may be regarded as Fourier transforms of distri-
butions of finite order.

This note deals with Fourier series expansions of ultra-distributions.
For simplicity we restrict ourselves to the case of one variable. We show
that each periodic ultra-distribution has a Fourier series converging to
that ultra-distribution. The Fourier coefficients are defined by the clas-
sical formulas, which we interprete similarly as for periodic distributions
(see [3], § 20). Moreover, each formal trigonometrical series, i. e. a series
with no restrictions on the coefficients, converges in the sense of ultra-
-distributions and is the Fourier series of its sum. We also prove an
analogue of the last result for generalized trigonometrical series.

Throu t the paper we use the notation and basic properties of
ultra-distributions given in [5]. We recall briefly the definition of the
convergence. Let ¢,(x) be an ultra-distribution of # for each value of the
parameter ¢ and ¢(z) another ultra-distribution, We say that

limpy () = p(@),

N
if there exists an entire function A (), an integer », and continuous funec-
tions &, (w), @ (x), which are O (|z|™) a8 |#| - oo and satisfy the following
conditions:

(Ly) 4 (—%- D),@,(w) =q(2), A (—i—:— D)@(w) = @ (),

(L) For t —t,, (L+a*)"®,(x) converges to (1-+2*)~" d(e) uniformly
in R,.

A series of ultra-distributions 2 o (®) converges to ¢ (@) if the sequence
Nw=l
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0
of partial sums o,(z) = Y () eonverges to o(x). We say that p(z) is
k=1

the sum of the series and we write
[o]
(o) = D gul®).
Na=1

For sequences and series of numbers (constant functions) the above
convergence coincides with the ordinary convergence.

Let now @(w) be an arbitrary ultra-distribution. Since ¢ (x) is an
infinite derivative of a slowly increasing continuous function, one can
easily prove that there exists a primitive of ¢(2), i. e. an ultra-distribution
w(z) such that

Dy(z) = ().

Any two primitives of ¢(x) differ by a constant function. We adopt
the following notation (introduced in [3] for distributions):
b

f p(o+t)dt = p(@-+Db)—p(®+a),

I

)
the expression on the right-hand side being independent of the choice

of the primitive y(»). If, in particular, the integral (1) is a continuous
function, its value at # == 0 will be denoted by

b
f(p(t)dt.

We say that the ultra-distribution () is periodic Wit@eriod 2m, 1
p(@+27) = p(x).

In what follows ‘““periodic” will always mean “periodic with period

2nM.
If ¢(x) is periodic, then the integral (1) with ¢ = —= and b ==
is & constant function, because its derivative is zero. Thus we may write

™

[ewa

—TC

T

f¢(x+t)d-¢.

-—TT

&)

Moreover, any convergent series of periodic ultra-distributions may
be integrated term by term:

[ D it =

—T N=1

kg

d
2)

78

(3) o (1) k.

3
[
-

This is a consequence of equation (2) and the fact that, for every
convergent series, the integration (1) may be carried out term by term.
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THEOREM 1. Ewery periodic wltra-distribution @

Fourier series (@ is the sum of its

S

ina
S @6,

M= — 00

v (@)

T

.[ (P(t)e-«inidt’ %207i1;:l:2,‘..

—TC

1

Ay, = =
27

If A(z) is an entire function without real zeros and D (x)
function such that

o continuous

(6) p(z) = A (%I))(I)(m),
then

7 I

(M) :‘1(7%)7;% as n] — oo,

Conversely, every formal trigonometrical series

[a-]
2 an Pty

Pz e 0O

(8)

converges to a periodic ultra-distribution @(x) and the coefficients a, are
determined by formula (B), 4. e. (8) is the Fourier series of ¢ ().
Proof. A representation of the form (6) exists for every ultra-

distribution. If @(z) is periodic, then the continuous funection D(z) is
also periodic, since

1
4 (71)) [P (z+2m)— P (2)] = @(2+27)—¢(2) = 0

and A4 (z) # 0 implies
D (w4-2n)—D(x) = 0.

Let us denote by b,, n =0, &1, --2,..., the Fourier coefficients
of @(x). Then

oo
®) o= 3 g
e 00 1+ "
i3 a continuous function, the series on the right being uniformly conver-
gent. Furthermore, if

A* () = (1+a") A (@),
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then )
p(a) = A(—%’;—D) O (x) = A* (—z_D) D* (x),

and taking into account the expansion (9) we infer that

% bn 2 c ne
p(®) = 2 T A* (n)é™® 2 by A (n) €™,
N=m—00 Ne=—00

On the other hand, an expansion of the form (4), if it exists, is
unique; the coefficients are necessarily those defined by (5). In order
to prove this we multiply both sides of (4) by ¢~ and integrate from
—x to =. In view of (3), the geries may be integrated term by term. Thug
we obtain

10)

kid (-] kid
f o) e ™t = Z W f =t = 9ma,,,
— N=—00 —_T

and so formula (5).
An application of the lagt argument to (10) leads to the desired
equality (4). We also get condition (7), because
Gy = b, A(n), n=0,+l1,+2,...,

and b, = 0 a8 |n| - oo,
Finally, let (8) be any formal trigonometrical series. Then there
exists an entire function A (x) such that

|4 ()|
14+n
Hence it follows that the series

N==—00

converges uniformly, say, to @(x). Consequently

|| <

A

a, .
n g
(n)

00

®(2) = A(%D) D (%)
Nz=— 00
and, by what we have said before, a, are the Fourier coefficients of ¢().
The theorem is now established.
The Fourier coefficients (5) depend continuously on the ultra-distri-
bution ¢(z). Thus we can draw from theorem 1 the following
CoroLrARY. The space of periodic wlira-distributions is isomorphic

to the space of all sequences of complen numbers, provided with the normal
topology (see [2], p. 410).

icm
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Let now 4, m=0,41,2,..., be real numbers such that
Ay —> o0 a8 1> foo.

TuroREM 2. Ivery formal generalized trigonometrical series

o0
2
é Qy 0®

M= 00

(11)

comverges to an ultra-distribution ¢(@), which is an infinite derivative of
o uniformly almost periodic function. The coefficients are determined by
the formula .

1
ay = lim —— f p (@ t) e~ HnE+igy
2T _,)

12
( ) To0
n= 0, j;l, :]:2, N

Proof. The convergence of the series (11) can be proved in the
same way a8 for A, integral. There exists an entire function A(z) such
that

) o, | < JACR)
" 1-+n
and therefore the series
0
L A(T)

converges uniformly in R,; its sum P (x) is a uniformly almost periodic
function (see e.g. [1], § 6). Hence, applying term by term the infinite

1
derivative 4 = D, we obtain

(14) p(@) = A(%D) O (z) = n_}; a6,

which proves the first part of the theorem.
From (14) it follows that

7t

1
= | p(@41) e @ = gy 41 (2, T),
2T
where
- 0y, 80 (AT — A 1) 40 4
TY = il ol P C Y
'rm(w7 ) %1 lnT"“lmT
To complete the proof we have to show that

(15) lim sy, (#, T) = 0.

T'so0
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For this purpose we set

a0, 8in (A, L' — 2, 1) A= A
Bl D)= 2 =2

By virtue of (13), the last series converges uniformly in R,. There.
fore E,(x,T), as a function of #, is continuous and bounded. Also

4 (—-}Dz)ﬂm(w,m = (@, T),

and, for T — oo, R, (x, T) converges uniformly to zero. This means that
condition (15) is satisfied.

Remark. If P.(z), n =0, +1, 42, ..., are polynomials of degrees
less than a given integer and 1, are defined as before, then the series

200 -Pn (w) 6’5}.”;1:

N=—00

converges to an ultra-distribution ¢(#). Furthermore, there exists an
enfire function F(z) such that

(16) #(22) ) .

Conversely, in the space of ultra-distributions each solution of equa-
tion (16) has the form

p@) = ' Py(z)eh

N=—00

where the exponential polynomials P, (z)6"* satisty the equation.
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On infinite derivatives of continuous funections
by

%. ZIELEZNY (Wroclaw)

Bach distribution of L. Schwartz is locally a derivative of some
order of a continuous function. The word “locally” is superfluous, if
solely distributions of finite order are considered. This property is of
great importance for the theory itself as well as for its applications. In
particular, it is the starting point for some of the simplified approaches
to the theory of distributions.

On the other hand, analytic functionals defined by L. Ehrenpreis
[2], [3], and I.M. Gelfand-G. B. Silov [4] in connection with Fourier
transforms of rapidly increaging functions are not, in general, deriva-
tives of continuous functions defined for real values of the arguments.
The space D’ of those functionals contains all tempered distributions
and, in particular, all continuous slowly increaging functions. Further-
more, an operator of the form

1 Qy %
Al-——D| = E — D
W) (27:71 ) — (2mi)%
where & = (ky, ks, ..., k), D" is the partial differential operator of order
o = Ryt Tyt Ty, and A(z) = Japa® = Y mafiak.. . ofisan
13 Ty, kg, 100y og=0

entire function, carries each element of D’ into an element of D’
In this paper we are concerned with the subspace Dy < D' con-
sisting of Fourier trangforms of distributions of finite order. Dy is closed
with respect to the “infinite derivation” (1) and containg all tempered
distributions. We prove that each element of Dj i an infinite derivative
of & continuous glowly increasing function (of real variables). The theorem
can be extended to sequences converging in Dy, and therefore enables
us to extend in a natural way the methods used by J. Mikusitgki and
R. Sikorski in [7], [8], so as to obtain a sequential description of the
elements of Dy, We also characterize Fourier transforms of infinitely
differentiable functions as “rapidly decreasing” elements of Dy.
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