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Section 0. Introduction

In this work, we will study solutions to the heat equation in upper
half spaces. In particular, we will be interested in conditions on these
solutions or their derivatives under which certain limits, which we will
call parabolic limits, exist for a set % in the boundary hyperplane t = 0.

We will denote by By, the upper half space {(x,1):2 = (@) Boyney
@n)elly, t >0}, where E, is .the n-dimensional Eueclidean space. We
consider #, to bhe imbedded in B, as the set {(,0): weH,}, and |u)
= (a]+af+...+22)%. A continuous function % which satisfies the heat
equation

o =y 0%
R
=1

on the domain D will be called a temperature, or a solution to the heat
equation, on D.

Let P(z; a) = {(2,1): 2¢B,, |¢—u|* < o™} be the paraboloid with
vertex # and aperture a, P(x; o, b) = P(z; a) ~ {(2, t) eBl 110 <t<h}

Definition. Let g(#,t) be a function on Ef,,. We say that g has
a parabolic limit (p. lim. ) g(z, 0) at zel, if g(2,) - g(x, 0) as (z,7)
tends to (#, 0) along any curve in P(#; «) for each a >0. We similarly
say that g is parabolically bounded (p. bdd.) at weB, if there exist M,
h>0, and o> 0 such that |g(z,t)] < M for (z,%)eP(s; a, h).
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With these definitions and certain preliminary results, we will show
the following connection between these two concepts in section 1:

TeeorEM 1. Let u(x, t) be o temperature-in B, ,. If u is parabolically
bounded on a set B < E,, then w has parabolic limils almost everywhere
(a.e) in E.

The converse statement is trivially true, i. e., if % has parabolic limits
on a set B < E,, then » is parabolically bounded on E.

The proof of this theorem depends on utilizing the known lLimit
properties of a special class of solutions of the heat equation, the Wejer-
strass transforms. We will develop these properties in the preliminary
results in section 1. The essence of the proof then is to approximate our
function by one Weierstrass transform and then dominate their difference
by another.

The central result of this work is another property which is both
necessary and sufficient for parabolic limits to exist almost everywhere
on a set B < B,. This result will be proved in section 3 as

TEROREM 2. Let  be a temperature on B, ,.

(a) If u has parabolic limits on a set B < B,, then

2
t‘"”{l%ul"’—l—t’-‘;—q;—‘ }dmdt

P(ayah)
is finite for almost every wyeB, a > 0, h>0.
(b) If, for every myeR < B,,

t”"“{leulert

a 2
i . } dwd
Pagah) o

18 finite, for some a > 0, b > 0, then u has parabolic imits a. e. in B

) ou

|7 = pyre |

In the proof of this theorem, we rely heavily on being able to obtain

the value of a temperature at a given point by means of taking the integral

of the temperature with a kernel function, over a surface which “surrounds”

the point. This is gimilar to the case of harmonic functions where we obtain

the value at a point interior to g sphere by integrating over the gurface

of the sphere with the Poisson kernel. Deriving this representation for

temperatures and developing some of its properties will be the comtent
of section 2.

) In section 4, we will show an application of theorem 2. If two solu-
171011:8 to the heat equation are related in g given way, we will prove that.
. lim. for the second on a set B B, imply p. lim. for the first almost
everywhere on #; more Precisely:
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TurorREM 4. Let u(x, 1), v(w, ) be, respectively, k- and m-dimensional
wvector valued solutions to the heat equation on B 1,4 6., k- and m-dimensional
veotor valued functions on B, such that each component is a temperature
on E;f_H o the uswal sense. Let P(D) be a % xm matriz, each of whose eniries
is a homogeneous differential polynomial in x of degree 2r with constant
coefficients. Suppose that 8"u|ot” = P(D)w. Then, if v has parabolic limits
on a st B < By, w has parabolic limits almost everywhere on B,

We prove thig theorem by applying theorem 2, a lemma relating
certain integrals (Lemma 12), and theorem 3, which states that the two
terms of the integral in theorem 2 are essentially equivalent, i. e.,

THEOREM 3. Let u be a temperature on P(xy; 8, k).

(a) If
2
£ 2) a_ul dedt < oo,
P(zg;8,k) ot
then, for 0 <a <<B, 0 <h <k,
ou |* .
s . dodt < oo for i=1,2,...,n.
P(zg;e,k) i
(b) If
u |? R
™M | dedt < oo for i=1,2,...,n,
then Pag;8,k) Li
2
-2 %tﬁl dedt < oo for O0<a<fB,0<h<k.
P(zg;0,h)

These results are analogous to results for harmonic funetions which
were proved by Calderén [2, 3] and Stein [13].

Let I'(w; a) = {(#,1): |#—=| << at} be the cone of vertex z and aper-
ture a. Then, we define non-tangential limits and non-tangential boun-
dedness as we defined p. lim. and p. bdd., replacing paraboloids with cones.

Calderdn proved in [2] that if & harmonic function % on B, (i e.,

n
a solution to the equation } 0% /dzi--0%4/0t* = 0) is non-tangentially
g1
bounded on a get F < H,, then 4 has non-tangential limits a.e. in E.
In [3] he showed that if a harmonic function  on B, has non-tan-
gential limits on a set B c B,, then [ ¢ "|Vu|’dndt is finite for

T(@g;a,b)
almost every z,¢X, @03 )
n

wup = )

i=

2 2

ou
ot

ou

awi

Stein showed that this condition was sufficient to gua.rant_ee non-!:a.n-
gential limits a. e. in B, and also proved theorems for harmonic functions
analogous to theorems 3. and 4.

Studia Mathematica XXV
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The powers of ¢ appearing in our integrals seem more natural if we
consider the following

Definition. Let W(z,?) = (4rnt)™%e" ™" for zeB,, t>0, be
the Weierstrass kernel. For fel, (E,), we define the Weierstrass transform
f(@,t) of f by

f@,t) = [W(w—2,0)f(2)de, weHy, t>0.
-En

We note that the Fourier transform W of W is given by W(w,1)

— 47 2]2]2t.
2 1/2
} do clt]

For feL,(H,), let
8(f) (@) = [ J t"”“{lVJ(z, i+
P(a;a)
where a > 0. We note that the indicated powers of ¢ are precisely those
which give us ||S(f)]. = A|fll,, where 4 depends only on a and #.

We will show this for the case a = 1. Throughout this argument,
the A’s and B’s will be constants depending only on o and n. They may
vary from step to step.

Let x(z,t) be the characteristic function of P(0; a). Then,

2
]dz} dt.

Letting 7 be the Fourier transform of f and using Fubini’s and
Plancherel’s theorems, we obtain:

= e

/]
af(z’t)

p )
SO@E = [ {260 [i7.se—s, mw\ sif@=2,)

¢ &,

B = [ [ 1(e, 1) [Ef Vof (@—, ) d] de) di-+
0 Hy, n

)

1—(n/2 a :
+ of - /){E{x(z, ?) [E{,(?_tf(m—z’ t)’ dm]dz}dt
— £ —n/2 2 —8nljr|% ) | H o\ i -
Anft {E{x(z’t)[E{ lol* e~ £ (@) do] e} o+
+B fm 2= [ e, )] [ altetring (@) dw| de} s
0 By, By, X

=4 f, [ J el e 47 (@) ao] -+

+B [ 4] [lal'o™ 7 (o) Pau]ar,
0 B,
since [ x(z, t)de = A2,
En
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Thus,
IS ()18 = AEf {wof e (2)Pdo+
+5 [{ol ofmte**’*z"”'z‘dt} I (@)Pdw

= AEf If (@) "de = A|Ifj2.

I wish to acknowledge the many valuable suggestions given me
by Professor Mitchell Taibleson and the indispensible advice of Professor
Guido Weiss.

Section 1. Parabolic boundedness and parabolic limits

We will first introduce a few necessary results after which we will
prove theorem 1.

LevMA 1. If feL,(B,), 1 <p < oo, then the Weiersirass transform
fz,t) of f is a temperature on B, and f@, 1) converges to f(x) almost
everywhere as t—0 [1, 8, 9, 12].

Proof. Since W(z, 1) is a temperature on Hf,,, so is flz, ).

W has the following properties, which we will use in the proof:

(@) [W(z,t)de =1 for all > 0.

En

(b) W(z,%) =0 for zcH,, > 0.
(e) For a fixed 5 > 0,

W(w, t)%dz}" = o
U [ 1@, b))

z|=n

a8 1> 04,1 < g < oo; sup|W(w,8) -0 as ¢t > 0+ for ¢ = oo,
|21=n

i}
(d) “é;"W(Tm'y 1) <0,

(@ [

These properties follow directly from the definition.
Let @, be a point of X, such that

%' =1, r>0.

6 1
37W(rm', t) ‘dr < ¢ < oo, where ¢ is independent of t > 0.

—T

s [ fl@—2)—f(@)lde >0 as s 04.

I2l<s
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Such points occur almost everywhere in H,. By property (a),

F@o, )—f(@o) = [ [fl@—2)—f(@)]W (2, 1)de
Tip,

Z{ f+ f}[f(wﬂ“z)‘“f(%)]w(%t)dz.

12|<<n |#l>n
Let » = |2}, # = r¢’. Then

[ [fl@o—2)—f(@)1W (2, 1)dz

l2l<n
= [{[ U@—a=5@)IW s, o 1ar} @z
&0

n

= f 9ay (YW (7', )"
0

where X' ig the unit sphere in H,, and g, () = f [f (g — =) —f (@) ] 2",
Integrating by parts gives us:
| Ul@o—2)—f(@)IW (2, t)de

lel<n

El P
[y (VW 1, ) [ G (1) W (r2!, yar,
[}

or
where

Goy(1) = [ guy(0) 0" *de
0

= [ [ Uw—e)—f@)]""dede’ = [ f(o—=)—F(@y)de = o(s").
0

2] <r
Given &> 0, choose 5 >0 small enongh so that, if 0 <7<y,
1G4y (7)] < er™. Then,

| ] ta—e)~f(@)W e, i

1#g<n

7 0
< en (4t —n/ze—-nz/ntt e [ o]0
< en’ (4nt) = of o

) = 4 —nl2
<e [n”’ 2= Vin (—I/—g) o+ a] ,

2n

W(ra',t)| dr

| [ (eI e, yas|

121>n

< [ 1 @—a)W (s, 08+ f(@) [ Wiz, t)dz = T+1L.

12> 12]>n
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Now, IT -+ 0 as t—0 by property (c) with @ = 1;

L<Ifb| [ 1We e, qp+afg =1,

21>

which tends to zero as ¢--0 for fely(E,), 1 <p < oco.

CoroLLARY. The Weierstrass transform f(z,1) of f(®)eL,(B,), 1 <p
< oo, has parabolic limit f(z) a.e. in B,.

Proof. Note that, for (z,1)eP(z; ), le—ul* < 2le—ul* 2w — 2°
< 2[e—ul*+2at, whence ¢~%2g (5~  ~(—uiZi) Thus,

JF@—F@IW (e~ adtyan < 26" [ If(@)—f() W (0—u, ) du,

Ep,

which tends to zero for almost every wekl, as t — 0.

In his paper, Nirenberg {11] proved a maximum principle for the
solutions to a fairly general class of parabolic equations. We will state
his results appropriately specialized to the solutions of the heat equation.

Definition. Let T be a bounded domajn in B, ... For PeT, we define
8(P) as follows: (z,t)eS(P) if (z,1)eT and there exists a simple curve
f¥), 0 <y <1, such that f(0) = (v, 1), f(1) = P, and, if 4, >y,, then
the t coordinate of f(y,) is greater than or equal to the ¢ coordinate of
F(y2)-

TeeoREM. Let u be a function defined on T. Assume that, for some
point P of T', the mamimum or minimum of u in the set § (P) is attained at P.
If u 1s o temperature on 8 (P), then u is identically equal to u(P) in S(P).

COROLLARY. If u is a temperature in T and is continuous on the closu-
re of T, then, for amy point P of T, the mazimum of win the closure of S(P)
18 atiained at a point on the boundary of T. Similarly, the minimum is taken
on the boundary.

We are now ready to prove theorem 1.

TrmorEM 1. Let u(x,t) be a temperature on Bl If u is paraboli-
cally bounded on a set B < B, then u has parabolic limits almost everywhere
wn 1.

Proof. For each wel, there exist « > 0, h > 0 such that |u(z, t)]
< M for (2,1)eP(z; ¢, h), M, a,h depending on w. Changing the bounds,
if necessary, we can choose i = 2 for all z<X. By considering only rational
bounds and apertures, we can break F up into a countable number of
subsets, each of which corresponds to a uniform aperture and bound.
We can further split each of these into a countable number of sets, each
of which is contained in a hypercube with side of length 1. Thus, it suffices
to show that we have parabolic limits a. e. in each of these sets. Multi-
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plying % by a constant, if necessary, we need only consic.ler lu(z, )| <1
for (2,1)<P(w; a, 2), a fixed, for x<F, and I contained in a hypercube

with side of length 1.

Let A = | P(w; a,2), D=4 ~ {(#,1):0 <t <1}; B, the boundary

ZeE . )

of D; Dy, the translation of D by —(1/n), i e., (#,%)eD, if and only if
(@, 14+ (1/n)) eD; Gy = Do~ By tn(w,8) = ufw, ¢4+ (1/n)), and g, the
characteristic function of G,.

Let ¢,(x,t) be the Weierstrass transform of x,(x)u, (@, 0) = f,(»),
and v, (2, 1) = U, (3, 1) — . (2, t). Since @, i3 contained in & hypercube ¢
of side at most 1--2aq,

”JCn”ﬂ. <{f12dw}1/2 == (1,‘_2“)7%/2'
g

Therefore, ||fa[, < (1+2a)"" since |f,(@)] < [zn(®)]|un(®, 0)] < 1. Be-
cause the elements of the sequence {f,}, » =1,2,..., are uniformly
bounded in Z,(#,) norm, there exits a subsequence {f,} of {f,} which
converges weakly to a function feL,(H,), i. ., a subsequence such that,
if kb is a continuous function which vanishes at infinity, then

[fu@b)dw > [fO)h(@)d0 as &> oco.
Ey

Eip,

It we let h(v) = W(w—w,1), (v,i)eHS,,, we have

Py (@, 1) > 9(@,8) = [ W(g—n, 1)f(v)do.
By,
Since u, (x, t) - (2, t) a8 n — oo by the continuity of u, we see that
p(@, 1) = llimV"nk(w’ 1) =Iﬁ1n[unk(m7 t)"”‘Pm.(‘”) 01 = u(z, t)—pw, 1)
—00 00

exigts for every (z, 1) e B;f,,. As @ is the Weierstrass trangform of a function
in L, (H,), it suftices to show that y hag parabolic limits almost everywhere
in B. (We will show that the limit is zero.)

We note that, for each n, (a) |y,(z,1)| < 2 for (m,t)eD, and (b)
lyu(®, 8)] — 0 as (@,1) > 2¢H, (z,1)eD.

Let us suppose that we have a temperature w on By, with the fol-
lowing properties: (a') w(@,1) >0 on Hy,,; (b') w(z,t) >2 on B—1I;
(¢’) w has parabolic limit zero almost everywhere in ¥. Then, we claim
that we are finished. We see immediately that w(@, t) Ly, (2,8) 20
for (#,?)«B—H and, by property (b) of Yny

Lmint[w (s, 1) & w, (2, )] > Hminf w(z, ) > 0.
(@ })->8eE (mé)z(»zBE
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But these two statements imply that w(@, )Ly, (2, 1) = 0 for all
(z,?)eD. For, if not, then for some point (@5 %) €D, w( @y, Ty) L (20, 1)
<@, & <<0. Consider the sequence of domains D* = D ~ {(z,8): 1]E)
< t<1}. For all k¥ greater than some sufficiently large N, (,,1,) will
be in the domain D*. Applying the minimum principle due to Nirenberg
to that component of D* which containg (205 ), We see that a minimum
not greater than ¢ must oceur on the boundary of D¥. Sinee this cannot
occur on B—F, this minimum must be taken at a point of the form
(%, 1[k). As & tends to infinity, this gives us an infinite set of points at
which w (@, §) 44, (2, t) is less than or equal to a. This set of points must
hayve a point of B ag a limit point, but this contradicts the statement that

Limint [w(w, ¢) 2y (2, 1)] > 0.

t)—s2eEl
(a'i’ath)ﬁ)

Thus, as claimed, w (2, )y, (2, t) > 0 for all (@, 1) eD, i. e., |y, (2, 1)]
< w(w, t) for all (z, t)eD and for all n. Letting n — oo, we obtain |y (, 1|
< w(w, t) for (z, t)eD. Property (¢’) then shows that (2, t) has parabolic
limit zero almost everywhere in Z.

All that remains to be done is to find a function w with the desired
properties.

Let x(2) be the characteristic function of C,—E, where C, c B,
is a hypercube with the same center as the hypercube O and sides of length
14-6a; geE, be a point exterior to Cy; and w(z,t) = KEW(z—gq, )+
+MEfz(w)W(m—z, 1) de.

]E:.fcoperties (2') and (c¢') are obvious for this function. To show (p")
for (z,1) in the upper part of B—E, we need only make K large enough
to make w(x,1) > 2. On the other hand, if (», tyeB—H, t < 1, consider
the inverted paraboloid of aperture o and vertex (z,t). Let § be the
intersection of this paraboloid with H,. If v is interior to § , then » is not
in B, since, if it were, (x, t) would be interior to D, and, thus, not in B.

Therefore, "
at

w(z,t) = M fW(m——z, tde > ch (4nt)="2 g~ b1 g
§ ¢
a2 af2 . N
=M f e lds =2 for M > 2[7:‘"’20 f e~® s"“‘ds]_ )
0 o

where ¢ is the surface area of the unit sphere in E,.
This completes the proof of the theorem.

Section 2. An integral representation for temperatures

In this section we will obtain an integral representation of a tempera-
ture in the following sense: For a certain domain R < Ej,, with boun-
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dary K, we will show that if u is a temperature on K and continuons on
R ~ K, then
u(p) = [H(p,u(@)dy, pek.
K

We will also indicate some of the properties of the kernel H which will

be of use to us later.
Our procedure will be to obtain the results in one dimension, and then

extend them to » dimensions. The technique will be similar in both cases,
i.e., we will show that if a kernel H has certain properties we obtain
the desired representation and then we will exhibit a kernel which has
these properties. ‘

a. One-dimensional results. This material is essentially due to
Hartman and Wintner [7] with notational changes made to facilitate
extension to higher dimension.

Throughout this discussion, # will denote a real number, i. e., zeH,.
Let R={p=(z,1:0<m<1, t>0} Then K = {g=(v,8):0=0,
§>0 v {g=,8:0<v<1, s=0}v{g=(v,8):v=1,8>0} Let
dg be the Liebesgue measure on K oriented so that the positive direction
is downward on the left hand side and upward on the right.

Let us suppose that we have a kernel with the following properties
for peR:

(a) Kf Hdg = 1;

(b) [|H|dg < oo (in our case, it is bounded independently of p);

K
(¢) For a given a >0, (i) [ |H|dg —> 0 as & — 0, independently of ¢ >0,
Ty
where T, = K—{(0,8): 0 <t—s < a}; (ﬁ)J]H]dg - 0 ag t— 0, indepen-
dently of 0< @ < 1, where U, = K— {(v, 0): [o—0| <a}; (i) [ |Hdg 0

as @ — 1, independently of ¢ > 0, where V, = K—{(1,s:0 a{.at—s < a};
(d) H(p,g) =0 when s >1, where p = (z,1), ¢ = (v, 8);
(e) For each geXK, H is a temperature as a function of p eR;
) Kf |6*H |0x¥|dg < 4, < oo, where A, iz independent of p when
p = (x,t) satisfies 0 <e<<o<l—e<l, t2e>0.
We note that properties (a)-(c) are the ones of a quasi-positive ker-

nel, see [15]. This guarantees that H is a function of p, g so that u(p)
defined by

u(p) = Kf Hp, 0)f(9)dq

will approach f(g) (in some sense to be defined presently) as p ~» g along
a path orthogonal to K at ¢. More precisely:

* ©
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LeMMA 2. Let f(g) be a continuous function of ¢ = (v, 8)eK. Then,
w(p) = [H(p,9f(g)dg
e

is a temperature on R, and (i) a. lm wu(z,t) = f(0,1) and B. lLm u(z,t)
20+ Lyl—
=f(1,t), t>0; (i) Um u(x,?) =f(s,0) for 0 <o <1.
10+

Moreover, for t, >0 fived, u(p) is uniformly continuous on {peR:
0<t<t0}=Rt0. )
Proof. We will prove the lemma under the assumption that H
satisfies (a)-(f). We will later exhibit an H having these properties.
Since, for ¢ > 0 fixed, f(g) is bounded on the set where s <1, [ |H|dg
K

< oo, and H is non-zero ouly for s < f, u(p) exists. From (e) and (f) we
see that « is a temperature.
Let £, >0, M = sup |f(v,s). On the set {geK:0 <s <1}, [ is

ocs<ly
uniformly continuous, i.e., given &> 0, there exists o, >0 such that

If(g)—f(g)] < e/(GKf |H|dg) for d(qy, ¢s) < ap, Where d{g:, g») is the dis-

tance from ¢, to g, along K. To show (i) «, using (a), we have

(@, ) —F(0, 0] =| [H{o,1,0,8)f(®,8)—f(0,1)]da]
K

t—aq A
<| [ H,t,0,9)0(0,5)—f0, 0]ds| +| [ H(p,)f(a)—F(0,1)]dg
t Ta,
= |Li+ L.
COlearly, || <2M [ |H(p, q)|dg — 0 as # — 0 independently of ¢ >0;
T,

“p
t—a,

Ll <[el6 [IHlag)] [ 1H(@;1,0,5)ds < o/6.
K i

Note that the proof shows the existence of a 6, > 0 depending only
on t, such that |u(m, t)—F(0, )| < &/3 for || < 8,0 <? <. We simil-
arly obtain a 8, > 0 and 6; > 0 depending only on %, such that |u(z,t)
—f(1,%)] < &3 for |z—1] <dy 0 <t and ju(z, 1) —f(z, 0)] < &f3
for 0<t<é;, 0 <zl Hence, lotting ¢ = min (ae/4, 61y 05y 03),
we have: if the distance from p to X is less than &', peR;, and geK such
that |p—q| = distance (p, K), then |u(p)—f(g)| < ¢/3, and, further, if
D1 PreBy, 1pr—pa| < &, distance (ps, K) < &', ¢ =1,2, then fu(p)—
—u(p)| < 1w (p)—F@)| + 17(@) —F(ga) |+ 1F(g) — w(@a)] < (e/3)+(e/6)+
(¢/3) < . Consider the set S of points peRy such that distance (p,XK)
> 8'/2. u is clearly continuous on S and, hence, uniformly continuous
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there, i. e., there exists a 8" > 0 such that, if |p,—ps| < 6", p1, Py,
then |u(p,)—u(p,)| < e Let &= min(é”, 6'/3). Then, p,,pyeRy and
[p1—ms| < 8, then |u(py)—u(p,)| << e. This is obvious if both are in §.
If one point is not in S, then the distances of both from I are less than
&’y and we are done.

An immediate consequence of this lemma is the desired repregenta-
tion, i.e.,

COROLLARY. If u(p) is a temperature on B and continuwous on R v K,
then u(p) =I{H(p, Qu(gdg.

Prooi. Since the integral and « are both temperatures on R and have
the same boundary values on K, the corollary follows from the maximum
principle stated earlier.

To eomplete the one dimensional results, we need only to show that
there exists an H(p, ¢) which satisfies conditions (a)-(£).

We will define H in terms of the following periodization of the Weier-
strass kernel: Let

6y (z, 1)

0

D) (4ntyPexp(— (o-+2k)?/41)

k=—00

A) =

B) =142 2 exp (—n*r’t) cosnma

n=1
€ = Z exp (—n’n’) "™
®) =[] a—e* [T @+en-a [ ] {1+ [cosmz/cosh (2n —1)=%))
n=1 n=1 =1
for ¢ > 0.

The second and third representations of 6, are just the Tourier sories
of the first with respect to an interval of length two. The fourth represen-
tation may be found in Magnus and Oberhettinger [10] and a proof of
its validity is given in Whittaker and Watson [14]. Tn both of these re-
ferences, our 6,(z,%) corresponds to their 03(2, @), # = /2, ¢ =™,
T =4nt, t > 0. Let

for t>0,

0
6(z, 1) = 1(#, 3) .
0 otherwise;

(2, 9) = 3[0(r~v,1—5)—0(w+v,1—s3)]

icm°®
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for p = (2,t)eR, ¢ = (v, 8)eXK,
7}

f
7 or

Gi(p,9) v=0,1
Gi(p,q) = e ’

0 otherwise;

and H(p, q) = G:(p, 9)+G:(p, @), for peR, geK.
Straightforward computations from representation (0) show:

oo

0
[ Gy(,1,0,8)ds = (1/z) D) (1—e ™" in
13

n=—oco

(1)
=f@)—[A()*0:(, )](@), (z,0)R,

where f;(#) = 1—azfor 0 < z < 2, fi(2) = fi(e— 2k) for 2k < @ < 2(k+1),

k an integer, and

1
() #0:(,D)(@) = [ fi(2) 61 (0—=, B)d2
-1
is the convolution of f, with 6;, since, for 0 << # < 1, ¢ > 0, the Fourier
series involved converge to the respective functions. Hence, using (A)

and the fact that 6; is just the periodization of the Weierstrass kernel to
evaluate the I, norm of 6,

| [ @@,1, 0, 9)8] < ilko+ I Ol
t

<1+ filleollbolh < 14+1 = 2.
Similarly,

Ne= 00

i ©
@ [, 5,1, 8)ds = (1/r) D (1" A—e ) in
(]

=f2(”)‘“[f2('):*91(‘7 1)1(=),

where f, (1) = afor —1 < & < 1,f,(#) = f5(z—2k) for 2k—1 < & < 2k+1,
L an integer. As above,

i
\faz(m,t,l,s)ds| <2 for (z,1)eR.
0
In the same way,

37 T (D i)

o

(¢ [ (@, 0,900 = (1/r)
0

= [fi()* 0:(-5 t—8)1(@) + [ () # Oa(+, 2—8)1(2)
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for 0 <s <t 0 <z<<1, and

lfGl(m,t,v,s)dv| <2, (2, 1)e<R.
0

Thus, for peR,

0 1 4
[H(p,)dq = [ Gulp, 0,5)ds+ [ Gi(p,o,0)dv+ [Gu(p,1,8)ds
K t 0 0

= fi(@)+f(0) =1,

which gshows that H satisfies (a).
For 0 <o <1, 0<v<1, co8n(x—0)—cosn (@) = 2sinnwsin o
> 0. Thus, by using representation (D) of 0,(w,?), we see that G((p, q)
>0 for p,geR o K. This, together with the fact that G (p,0,s) =
& (p,1,8) = 0 for peR, shows that Gy(p,0,s) <0 and Gy(p,1,s)=0.
From this we have:

[1H(p, g)ldg
K
0 1 t
= [ Gup, 0,9)ds+ [ Gi(p, v, 0)do+ [Ga(p,1,8)ds <6 < oo
i 0 0
by (1), (2), and (), for peR. This shows (b).
Using (B), we see

0
f Gy(z, 1, 0,8)ds =

t—a

(/=) ; {(Sill 'n,-n:m/n) (g“"‘z"z“ — 0—7121-:2!) } ,

fle t,, Odo_(l/-c)Z{[l—l—

N==1

1) (sinnme fn) e~ "},

and
11

fG‘z(w,t,l,s)ds
0

bl 00

= D (=1 [sinnzofn]— (1fm) X (~1)"* (sinnms/n)e~™.

o= (=}

et

Hence,

0 1 '
T{H(p,.q)dq=th‘z(w:t,0,8>d8+ [ @i, t,0, 0)d0+ [Go(w, 1,1, 5)ds
—a ) I

o0

= (1/r) 2 (sinnnz n)e‘“2"2“+(1/n) Z (—1)* (sinnnw/n)

n=1 Tl
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which tends to zero as # —.0, independently of ¢ > 0, since the first series
is uniformly convergent in a neighborhood of # = 0, and the second is
the Fourier series of f,(»), and thus converges to « in a neighborhood of
2 = 0. This shows (e i).

(cii) is shown in a similar manner.

Since the L, norm on K of @, is; bounded independently of peR,

1]
‘we have that both lsz(p,O,s)ds and [@G(p,1, s)ds tend to zero as ¢ 0
0

independently of #. To obtain (ciii), we thus need only show that for
1>z>a,

T—a

) f Gi(p,v,0)dv tends to zero as t—0 independently of

and, for 1——a x>0,

f G(p, v, 0)dv tends to zero as t— 0, independently of .
a:+a
Let

—e ST (@ 2R/2E)exp [ (o-+ 20411}

k=—oc0

i)
Oz{, 1) = 'ag 0:(z, 1) =

(we use (A)). This converges uniformly for 0 <& <o <& < 2, 0 <t
<1, < oo. Since each term tends to zero as ¢ — 0, we have 6,(z,t) — 0
a8 t— 0, 0 <@ <o < <2 By the mean value theorem, for o> 0,
we have Gy(2,t,0,8)/v = O,(z+hv,1—8), b = k(w,1,0,8), |hl <1. Let-
ting &, = ¢ > 0, ®, = 2—a < 2, we have, given & > 0, lGl xz,t,0,8)|v<e
for t—s small enough, 0 < s < t. Thus,

1—a

f |Gi(z, t, v, s)[dq;<ef vdw.

‘We have made this integral small independently of 1 > % = a, whieh
shows () if we let s =0. Similarly, for » <1, Gi(z, 1, v, 8)/(L—2)
= 0,(@w+1—h(1—0), t—s), and letting m, @, be as above, for a given
&> 0, we obtain

1
e [ 1—v)dv

Letting ¢ = 0, this shows () and completes (¢ iii).

(e) is just a matter of direct computation.

Tn the proof of (f), we will make use of the following observation:

Imvma 3. Let Wi{w,t) be the one dimensional Weiersirass kernel.
Then,

[ 1@, b0, 8)dv <

za

M
(1) »—aaa;m-W(m, t) has at most m reros;
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(2) these zeros oocur at points of the form Ki'*, where IC depends only
on m;

(3) f —g-—W(a" ) ldo < MT™, £ >0, M not depending on t.
— 7™

Proof.
o Wiw. 1 (') (M 1D)P (o 1) 6=, m odd,
a0 () (U ap @ e, m oven,

where P is a polynomial of degree m/2 and (m—1/2), respectively, and
M is independent of @, ¢. It is obvious that thiz holds for m == 0 or 1.
Assume that it holds for an even m, i.e.,

m
5 W (@, 8) = (ML TP (a2 t) o
Differentiating, we have
M1
WW(m, ) = (M) (2w )P (4 1) — (20/48) P mz/t)]g*”z/‘”

= (M0 [ 9P (o 1) — 4 P(a? f1)Je~ 14

which is (”) for m-+1. Assume Jhis representation holds for m odd,

m
o™
Differentiating, we see

Wi, t) = (M [E™D4) 4P (o 1) g="188

6m+l

W W(”; 1)

= e_wz’“(M/t(m“)/z))[P(-’ﬂzlt)—}—(2502/t)P'(a72/t)—(2002/41)1’(562/5)],

which is (') for m-+1. Thus, the representation holds for all m by in-
duction.

(1) and (2) follow immediately from this representation, gince the

zeros of §"W/d2™ will be the zeros of P(x*/i), with one at z == 0 it m
is odd.

Suppose —oo =@, < @) < ... < @, < D41 = oo, where @, .

.y @ AP0
the distinet zeros of "W /da™, 7f < m. Then, *

b k :
. 6mW LR amW
—— |z = TR
—-!o aw v %7 i amm dm
E ]
— 6m“1W “i+1 6m" m-..
- ;‘ O™t ]“?i <§anm_ w“'l’t)) + o M 1| W(ww )U
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Now #; = At"”, where 4 depends only on m. Thus,
m—1
St W (905 8) = (M("P)P (A% o=,
whence ®
amw
|8 < Mo,

M, depending only on m.
Property (f) is contained in the following
LemvaA 4.

(I fl %Gl(m,t,v,s) dv < M(t—38)™"™2, where M is independent
ofscmdt and 0 < s <.

(11) f i —— Gal@,1,8,8)|ds < oo for §=0,1, 1>0, 0<s<w
<1—8<1

m
“s)—klﬂ G (2,1, 8, 8)

2
Ty
[}
<z <KLl—e< 1.

Proof. (IT) and (ILT) are obvious if we realize that, for z restricted
in the indicated way, the integrands are finite. For (I) we have

f]&m z—0,{—8)

ds < oo for 6§ =0,1,1>0,0<e

U

f—_Gl(m t,v,8)
m 1Y
J ’607

dv+f1—~0 z+v,t—s)|dv

1
w3 a?n
<0f —0(a—0,t—s) dq;—of }B—w—ﬂ;@(m——v,t—s) o
1 m bl Vi3
F;
< f’g;—,,;@(m—w,t—s) dv < IIWW(w,t—s) de < M(t—s)™™?,
-1 —D0

by part 3 of lemma 3. This completes the one dimensional discussion.

b. n~dimensional results. Throughout this discussion we shall use

the following notation: given # = (x, .. mn)eE,,,,We put 2’ = (@3, ..., 2h),

where @y = a, k& %4, and zf =0, @' = (@1,...,2), With o} = 2z,

E#ti, mp=1; C={wel,0<m<l, i=1,...,n}; B={p=(z,1):
n

we0, t > 0}; K = boundary of B = U{q—_—(v 8):8>0,veH,, v,=0,1,

0y <L, k#1}vig=(v,s8):s —0 o< <L i=1,...,n}% Letd.q
be the Lebesgue measure on K onented so that the positive direction is
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“downward” on the surfaces {v; = 0} and “upward” on the surfaces
{or =1} (*). We also define 78 = K —{(v,8): 0, =0, i—8 < a, |v,—am
<a,k #i}, Ve = K— {(v,8):0, =1, t—s8 <o, o, — @] << a, k ’5}7
Uo=K—{(v,0): [o;—ay] <@, ¢=1,...,n} for a>0.

We will define on EX K a kernel H(p, ¢), peR, q<XK, such that the
following properties are satisfied:

(a') KfH(PyQ)dq =1, pek;

(b") f [H(p, q)ldg < oo (as in one dimension, it is bounded indepen-

K

dently of p);
(¢') For a given a >0, (i) [|H|dg->0 as @ >0 independently
()

0f1>0,0 <, <1,k 4, (i) [|H|dg~>0ast — 0 independently of wel,
U,

(i) |
rl®
(d) H(_’p, q) =0 for s =t,p = (=, t), g = (v, 3);
(¢') H is a temperature as a function of pek;
() [10°H(92"|dg < oo independently of p = (w,1) for 0 < ¢ <

E

|H|dg -0 ag o, —~1 in&ependently of 10, 0 <y <1, ki

S1—e<1, ¢t >&>0, k a multi-index, i. ey I = (ky, ..., k), %; & non-
negative integer, and
6k"

r
0zt

ak 6k1 akz
9z* ol ol
Then, in precisely the same way as in part a, we have

Levwa 2'. Let f(q) be a continuous Junction on K. Then w(p) =
JHp, 9)f(q)dq is a temperature on R, and
K

(i) e lil‘gru(p)=f(p°), t>0, p=(2,1), p’=(2°,1) and p. Lim u(p)
L mi.—,i_
(mly )3

=.f(p1): >0, P = (%,i), pl
(i) iﬁﬁ%(ﬁ) =f(@,0), p = (2,1), @eC.

Moreover, for t,> 0
= {peR: 0 <t <th

COROLLARY. If u(p) is o temperature on R and continuous on R o K,
then u(p) =1{H(p, Q)u(g)dg, for peR.

To find an H with the desired properties and to demonstrate those
properties, we make the following definitions.

Jimed, w(p) is wniformly comtinuous on Iy,

(*) By this we mean that on the surface v = 0, dg = —dpdf, while on the
surface v; = 1, dg = dudi,
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Let @4(w, 2, v;, s), G (@i, t, v;, 8) be as in part a;

9* 0
Gy (@i, t, 0, 8) = — ng(mia 1,05, 8) = 791(%, t, Vs, 8);
T 8
Hi(2, t, Uiy 8) = Gl(miy by Uiy 8)+ Gy (wi, t, v,8), l<i< 3]

and n
H(z,t,0,8) = H-Hi(m’iy t,v;,8),

i=1

= (B1y .0y Tn)y V= (vy,..
‘We note that

Gta)y 0 <y < 1L

sz(w,-,t, Uiy $)dv; =0 for B < {o;:0 <o <1},
B

and that due to this, the only terms in H which contribute to the integral
over a subset of K are those containing at most one factor of the form.
Gz (wi, t, Uiy 8).

We will now show explicitly that properties (a")-(f') are satisfied
by this H in the case » = 2. This case will serve to make the ideas clear
since the arguments are virtually the same for general n and the nota-
tion is much more cumbersome.

Here H = H,\H, = Gy(z),1, vy, 8)Gy(m, ¢, 0, 8)+Gy (21, T, 01, 8)Gy(y,
Ty Vgy 8) Gy (21, b, V1, 8)G1 (2, 8, ¥y, 8)+Ga(my, 8, 2y, 8)Gy (@, £y va, 8). A3 We
previously noted, the fourth term contributes nothing to our integrals.

Direct differentiation shows that if g, (2, ¢) and 92(@,, 1) are tempera-
tures for (1, ?) and (a,, ) respectively, then g, (%1, 2) g (s, 1) is & tempera-
ture in (w;, @y, ). Thus, (e') follows from (e). .

1
From the estimates on [ G,(x, 1, v, s)dv and [|G,(x,1, 8,8)|ds, 6 = 0,1,
[] [

in the proof of (a), part a, and from estimates (I)-(III), we obtain (£).
Let us observe the following:

1 o1 .
H(p, @dqg = {f Gi(@y, 8y 0y, O)d")l}{f G (@51, 0y, O)d?fz}§
o ¢

(1)
Knfs=0}

0 1

(2) J Ho,0ds= [ [ Gafe,1,0,5)6 (@3, 1, v, 8)dvyds;
Knfvy=0} [
i1

(3) I B0 = [ [ Guen,t,1,8)G (@, 1,0, 8) dvads.
Enfvy=1} 00

Studia Mathematica XXV 9
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Reversing the order of integration in (2), we combine (2) and (3)
to obtain:

(4) [ H,0dk
Kn[{vl ﬂ)u{‘ul_l}]

= ff01 (@25 1y Doy 8)[Ga(@1, 1, 1, 8)—Gh(@r, T, 0, 8)dvy ds
oiol 1
= ffGl(mz,t,vz,s){f Ga(wl,t,'vl,s)dfvl}dvzds
oto 1 ’ 9 1
= JUJ Gt tyony @05 [ 6@ty a)dsfs.
; :

Similarly,

(5) f H{p, q)aq

En[fog=0yufvg=1}]

11 1 N
= f[f Gi(@, b, v, S)d,vl] [% f G (@, 8y 01y S)d’llz]d-?.
0 0 ¢

Hence,

i 1 1
0
(o, 0dg = f[—fel(wl,t,m,s)dvl][fGl<w2,t,v2,s>dvz]ds

__hm[fGl(wl,t vl,'r)dvlfal (@q, t, vz,r)dvg]

Enfes>0}

—“fGl(wn t, 01, 0)d171fG1(5027 8y 02y 0) du,.
0
Oombining with (1), we have: 0
. .
ifH(p, 9)dq =1;50f 61(21, 1, 91, 7)d, Oflal(mz, 800, 7)oy = 1
Y (*), part a. This shows (a’).

1
[ Hip,gqdg= fG1 (@, 1, ’01,0)d1)1fGl(wz,t,vz,O)dfvz <4

Kn{s=0} .
H(p, g ff G2(@1, ¢, 0, 8)||G1 (@, ¢, vy, 8)| Ay ds
En{vy =0}
t

f (21,2, 0, )| [fGl(m2,t Vg )d’uz]ds

[

i
sz (1,1, 0,8)]ds <
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Similar arguments on the remaining sides give us (b’).
Fix a t, > 0. Then

fGlmt'oO f{Hp,q)Jdg
which tends to zero as z — 0 mdependenﬂy of 0 <t < %, », veE;. Hence,
flGl(w,t,'v,s)dv = flG,(w, t—s, v, 0)dv
0 0
tends to zero as # — 0 independently of 0 <i—s <ifg,i e, 0 <s<¢

<y, @0ek.
Slmﬂarly, given ¢ > 0, we can choose a > 7 >0 so that

fGl(as,t,v,s)dv<e/2 for t—s<7q.

j@-3|>a )
[1Hldg < [ |Hy(@,t, 0, 8)l{ [ Gilms, £, 02, 8)dva} dau+
Tgl) Ty 0
t
+ [ Heoag+ [ [ (6@t 0,86 @, 1,0, s)dnds
Kn[{vg=0}{vg=1]] i—7 jxy—vg|>a
= I4-TI4-III.
<2 [[Hi(®,1, v1,8)|dg <0 as @, — 0 independently of 2.
T'l
i

1 t 1
I Sof]Gz(mz’ta 0, 3)1{!6‘1(“‘155:771;3)01”1}‘18‘)‘!]‘}2(502:’71:8)‘ {JGl(wu

t, vy, s)dvl} ds which tends t0 zero as z, — 0 independently of ¢ by Le-
besgue’s dominated convergence theorem and the first remark made

above.
10T f[Gz 21,1, 0:3)|{ f Gl(wi,t Vg, 8 )d”z}d5‘<(5/2) sz 21,1, 0,
129—

s)ds < g, mdependently of ¢ by the second remark above
Similar arguments gwe the remainder of (e )i and (e')iii.

[1E (@, 9ldg < 2 fle Baiyt, 6,)] f(}1 @y, 5, 8) dvsds +
Uq 'J

d=
i=

1
+ 3 Gl<xz_i,t,v2~i,0>duz_i [ @ity 0, 0)do,

1=1,20 lzi—vi|>a
1
2 > [ 16wty 8,9)ds+2 ) G (@iy By 03, 0) iy
3= g;o i=1,2 |z;—vj|>e
=

which tends to zero as ¢ -> 0 independently of z¢C. This completes (c')
and this part.
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¢. A mean value type result. Here we will obtain a special modi-
fication of the kernel in the preceding part, and obtain from it a bound
on the value of & temperature at a point in terms of the integral of itg
gquare over a related solid body.

Definition. Let H.(w, %, #,t) = B, 1, (0—2e+drI)fr, (1—1,
+9%)/r?), where @, @yeBn, t,—t >0, I =(1,1,...,1)elln, and (2,1)
satisfies 7 = ({—t)* if 4lm—au <th—t for all i=1,2,..,n,

7 = 2 |oy— o] otherwise, where |&;— @] = max |z;— byl
1<ign

We see intuitively that the points with a fixed value of » lie on the
gurfaces other than the top of a rectangular prism of width » and height +*
with the point (%, %) located at the center of the top of the prism.

Let R, = {(z,1): [5—mul < 0/2,0 <fy—t < o’} be a rectangular
prism, K, its boundary other than the top, and dg the measure induced
on K by dg on K under the natural mapping of B ~ { <1} onto R with
(3I,1) mapping onto (z,, ;). Then, if » is a temperature on the closure
of B,,

u(@oyto) = [ Hy(@s, to, @, t)u (@, £)dg,.
K,

This is obvious from the definition and the corollary to lemma 2.
Let 8, = Ry~ {Ryyy  Kpppp}- Lot I = {(2, 1) 8,1 7 = 2(%14—:0,0)},
I = {(@,t) €8, 7 = 2(@—gs)}, TIL = {(#,¢) eBppi ¥ = (ta-—~t)1’2}, =1,
.., n. Intuitively, III is the set of bottoms, I the set of left hand sides in
the different directions, and IT; the set of right hand sides in the different

n n
directions of K, 0,/2 < ¢ < go- Obviously, 8, = U I, U XI; w IIL
k=l kel

LemmA 5. If u(w,t) i a temperature on the closure of R,, then

(o, to)* < (M /g5 [ lulw, 1) dwdt,
o
where M is independent of w, o, %, .
Proof. We have
(@ b)) =

0<p<

fHa(wo:to:Wat)“(mﬂ)d%: oy

K,

from which we have

U(@y, 1)

[
= @le) [ { [H(@, b, 0, yu(o, t)dg,} de

eol2 KO

= (2/0,) fH (@oy oy @, ) (m, 1) dg,dg.

90
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Applying Schwartz’s inequality, we have

[u(@o, 1)]* < {(4/03) J Helon, to, 0, ) g dol{ [ lu(a, 0Pdg,de}.
S,
We will show: B °
S’f {H (@4, oy @, t)! dquQ Moy,
Qo
2) [lu(e, t)’dg,de < (M/ai™) [ |u(e, ) dxdt,
(1) (1]

which will prove the lemma.

[
f 1, (%, b, @, 1)|*dg,do = f"{ J 1By, to, @, 1) dg,} de

Say o2 K,

= f { [1EGI,1, g)tdg)de
e/ K
since H(}I,1,¢) is bounded. This shows 1).
Let dXy = dw,...dwg_1dwpy;. .. A0y, i e., do with du, deleted. Then,
on I; or IIy, dg, = dXi(dt|e""), do = —dm, on I, do = dx, on Il

< Mo,

on III, dg, = (dz/¢"), do = —%(d¢/p).. Thus,
Zox—(20/4) zoi+e/2) & i
[ @, ofdgde = [ @™ [ [ i, yrdtdx)ds,
1k zox—(e0/2) o0 ty—?
< (2/00)™ [ |u(w, t)/'dwds.
Tx
Similarly,
[ lu(e, ) *dg,de < (2/e)™ [ |u(@, ?)fdods.
11 I
tg—(eg/4) T+ (ef2)
[wi@, vfagae =3 [ @ [ Iu,0lda
III to—ga “gi;‘(ﬂi)

<1@/e)™? [ lu(z, t)Pdwdr.
IIT
This completes 2), the lemma, and the section.

Section 3. A condition on certain integrals

In this section, we will derive a necessary and sufficient condition

" for the existence of parabolic limits almost everywhere on a set B < B,

of a temperature « defined on E7,;. In parts a and b, we will dexive a re-
gularization of a pertinent domain and prove some preliminary lemmas.
Then, in part ¢, we will state and prove the main theorem.
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a. A regularization of a given domain. In this paragraph, we will
obtain a regularization of a class of domains we will use. The technique
was suggested by the previously mentioned paper by Stein [13].

If E < B, is closed and bounded, o, h positive, let & = U P (25 h).

The boundary B of R is B' v B?, where B' = {aa Bt = [a 1ol(aa ny,
0<t<h} and B* = {(z,1): t—-h [e'd(w, B)] < h}, where d(w, B) ig
the distance from z to E.

Levma 6. There exists a sequence of regions Ry such that 1) R, < R,

2) Ry « Byif k<1, 3)kU Ry, = R, 4) The boundary By, of Ry, 48 at a positive
=1

distance from H,, and 5) By By~ {(w, 8): t == B},

and By is o portion of {(z,1): t = [a™ 6, ()]}, where 8, < 0™, and ”;)——(S,c(w)‘
0y

= B v B}, where Bi =

1,j=1,...,n
Proof. Let

d(z, B),

P2

d(w, B) < k',

otherwise.

q)(w) =0forz>1,and [ &(z)de
“n

and  f, () = f&ac 2)®,(2)dz. Then,

fo{@)«C* and f,(2) - 5() uniformly as n — 0. Let 7m bo chosen so that

d(x) =

Let @ (x) «C* be such that @ (z) > 0

=1 Let &,(x)=n"D(xfy),

[fo (@)= 8(®)| <1/m and set &,(x) fnm(” +(2/m). It m; > 3m,, we
see that 6, < dy,, since O, (@) = f,,m +(2/my) <[8(2) -+ (L [my)]+(2m,)
< 8(@)+( 1/m2 (8(2)— (1/my))+ 2/m2 <f,,m (@) + (2/my) = 8y, (). Hen-

ce, we can take a subsequence &;(w) of 6m(w) so that: a) (@) > 8(w),
:oé) (6;3(Ia;) < (@) it k>4, ¢) dy(z) = S(2) a8 k ~> co. Define I?; = {(x,1):
w(@)* < %, 0 < t < h}. Then, a a), b), and ¢) give us 1), 2), 3 3
We need only show that T ¢ b2 3 and )

0 s,
6a¢,~ ()| =

to complete the proof. f(a,)— E}' L6 (1 —2)— 8(w,— 2)]B, (2) de implies
[Fa@y) — f, ()] < [#1—®,|, which gives the desired result,

b. Preliminary lemmas. Tmyya 7. Let u be a bounded temperature

on Pay; 6, 1), i. (o, )1 < or (5, )eP(ay; f, 1), 4
Then
P(zgsa, k), 0 < a</9, we have JeP(20; 8, en, for (w,t)e

a
_"_frl (m)

<1

a) Vsu(, 1)
b)

< (MNP,

0u
Vs—at—u(m, 1) \< (M [y,

icm°®
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and

u(x, 1)

0 |2 vto | < ey,

where, in each case, M- depends only on o and §.

Proof. We will write out the proof of a). The proofs of b) and ¢) are
virtually identical.

1) If u is a temperature on. B ~ {(z,): ¢ < 1}, continuous on the clo-
sure, and || < N there, then |V, 4 (31, 1)| < M'N, where M’ is independent
of %. This follows immediately from the representation of % given in sec-
tion. 2b, since 0H(w,?, v, s)/0»; is integrable for (z,?) bounded away
from K.

2) If w is a temperature on the paraboloid P(0; 8, %) and |u| < N
there, then |[V,u(0,7%)| < M"N, where M depends only on S. Let
% = min(2™", 27"/8). Then, the rectangular prism {(z,?): (—k/2) < a;
< (k[2), A[FH—1 <t < (1/p1)} = P(0;8,B%). Consider the mapping
@ — 5 = (2;/k)-+%, t =1 = (¢/k?). Then u(e’,t') satisfies the conditions
of 1) in o, #'. Thus, |V,u(3I',1)] < M'N, whence |V, (0, 72 < (M'N/k)
= M"N, Where M’ depends only on % and, hence, only on f.

3)Ifuis atempemture onP(0; 8, y) and |u| < IV there, then [V, 4 (0, y)
< M" N|[y**, where M, depends only on f. If we make the change of
variable, z; - z; = (mi/ﬁy”z), t -1 = (£/f%), we find that u(z’, ') satis-
fies the conditions of 2). Thus, we have 3).

4) Let us note that along the hyperplane ¢ = {;, the distance between
the boundaries of the paraboloids P(zo; a, k) and P(xe; #, k) is [(1/a)
—(1/B)1t*. Consider the paraboloid with aperture f§, diameter [(1/a)

—(1/8)1#* in the hyperplane ¢ = t,, and vertex at the point (z, (1—b)t,),
(@, t,)eP(wp; a, h) and b = 1— {[(1/a— (1/)]/46°}. This parabolmd satis-
fies the condmons of 3) up to a translation with y = bt, since it is con-
tained in P(a; B, h). Hence, we have |V,u(z,t) < (M "N/({t)")
= (MN[t¥*), where M depends only on g and b, and, thus, only on a
and B.

‘We shall also require the following

Luvva 8. If u(z,) is a temperature on P(my; B,h) satisfying

ou l?
- {}Vsu(m, t)z—l—t‘—%h } dwdt,
P

then a) 2|V u(z, 1)| and b) t|du(z, 1)/0t| are bounded for (x,t) P (o} a, h)
where the bound depends only on o and §.
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Proof. We will use the notation of lemma 5. For (z,, #;) e (23 a ) by,
there exists a k > 0, depending only on « and 8, such that, for g, = k",
R (@1, 1) < P(a; f,h ). Since t < t; in 8gs We have, by lemma 5,

19 2 ou |
Foul@ ) < e [| | dods
Om; 5, 5%;
0
| Ou [ .| Ou |
(n-2)/2) o it < UL i ¥
< (M )flﬁmi dedt < (M/t,) ft o | Qi
'gﬂo sﬂo
t=1,2,...,n Adding, we have
Wou(ey, )* < (M) [ 477, ufdwdt
S‘?o
S(Mfy) [ PP uldeds < (M),
P(zg:8,0)
Similarly,
| : ol
— oy, t)| < (ML) f a2 g
| ot at
. Sﬂa
2 1~y | O r 2
< (M f5) e ¥ dudt < (M/[8),
P(aco;ﬁ,h) '

which completes the proof of the lemma.

c. The main theorem. We may state the theorem as follows:
THEOREM 2. Let 4 be a temperature on B, . Then,
a) if u has parabolic limits on a set B < B,,

/ t"“"z{leuP,H
P(zg) }

s finite for almost every wyel;
b) if, for exery z,eB < B, ,
ou |
tnlz{V’,2——“——~{ o dit
f Pauf' 41| 5o | | dad

P(z)

Ou |?
—%“dmdt

is finite, u has parabolic imits almost everywhere in K.

.Proof. By theorem 1, and by arguments similar to thoge used at the
beginning of the proot of theorem 1, we may reduce the hypotheses of
part a) to the following: w(%, 1) is uniformly bounded on the region

R‘ = UP(mO;ﬂ: h)y
Toel

where 8, h are fixed, and E is a clbsed and bounded set.

@ ©
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‘We will show that

(M) Ay(wg) = [ TR uldwdt,
Pzgiah)
6 2
(i) Ayfm) = [ #o0m)\ 22 g
P(zgiak) t

are finite for almost every x,eH, where a < 8 is fixed. It is clearly suffi-
cient to show that

[ Aimg)doy < 0o, i=1,0.
B

Let B = (J P(®; a, k). Then B c R, and « is uniformly bounded
Kokl

on R. Let x(w‘:,, x,1) be the characteristic function of P(zy; a, h).
Then, to show (i), it suffices to show that

| { [ %(@0, =, t)dwo} 7 udn dt < oo
R H

gince then Fubini’s theorem will give the desired result. Further, since

f%(wm @, ) dy < f dwy = ot"",
#

[wg—22<a®

it is enough to show 1! |V ul’dawdt < co. To show this, we will prove
(*) f Vouldedt < ¢ < oo,
Ry

where ¢ is independent of %, and Ry is as in part a, lemma 6.
Similarly, to show (ii), we need only prove

(%) ft
b7

7

ou
1

dzndt < ¢ < oo,

here K, and ¢ are as above. . )
" er\(;Ve ];Vﬂl denote by s(f;,) the intersection of Ry with the hyperplane

t =1, and by I%(t,) the boundary of 8;(t;) in the hyperplane. Then

h

[ 17eultdads = [ { | Wm‘-’dm} .
Ry

0 sx()

Let us apply Green’s formula on s(t), i e,

[ @@ F ) —F .G m)lin = [[64,F—F4,61d0,

It x(t)
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where #;, is the outwardly directed uormal tio I%(t) in the hyperplane,

Agg = faﬁg/amz, and dr; is the element of area of I'(l). Letting I =u?,
i=1

@ =1, we obtain

[ Vo) mddne =2 [ [IVyul*+-udyu]de.
Tt aplty

It then suffices to show that
h

T [ 2uVou-ndn @t—2 fh { [ ududa}a

0 Iy 0 st

is finite independently of k.

fh[fudgudm] dt‘z’ fu%f”’tidmdt’
Ry,

0 s
h o
={ f[fw, o dt] dw <X 2 MPm (I,
Fy o, ’

@

where M i3 the bound on w over R, (&, 7,)eBj, 4y, and I, the regpective
projections of Ry, and R on B, and m(F), the area of F. Thus, the second
integral is bounded independently of %.
To prove (*), we need only show that
3 .
[fzu(v,,u-n,,)dzk] dt
0 Tp(l)
is bounded independently of .
By lemma 7, |V < |Voul < Nt7", and u is bounded on B by
assumption. So, it suffices to show that

fh [ [ i~y |t

0 Tyl
is bounded independently of k. To show this we make the following obser-
vations:
The angle 0 between the normal to the gurface B}, and the positive ¢

axis satisties cosf = 1/D, where
D = [1+(4a") 8 (2)" |7, 0 (@) P17 = [L+ (41/a) [V, 83 P2
< [1+ (dntfo?) ]V ‘
by property 5 of lemma 6, the regularization of R.

Let y be the angle between the normal to the surface B}, and the hyper-
plane ¢ =1#,. Then, —siny = cogf = —1/D < —[(4nt[o*)4- 1]~ 2, Thus,

icm
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cosy = (1—sin®y)* < {1—[(4nt/e®) 4 1]-422 — [(4nt]a®) [(4mt[a®) + 17V2
< (20" [a)t™?, and secy > (a/2n2)i12,

We then see that

I

[ J i) a <cofh[ [ seeydn at.

[0 Ty(t)

The latter integral is just the surface area of Bj. By property 5,
lemma 6, and by the boundedness of B, this surface area is bounded in-
dependently of k. This completes the proof of (*).
© Lebt Ty, tn, sx(8), Iw(f), dr, be as above. Then,

du | -
ftf-——— dodt = j ft
ot
Ty T
1 h

- 6 . - 02
= m_;i—l/zw] da— | {fut—aﬁzdt} da.
Fy, g b=y Fr 7y ¢

ou |?
—a? dtd'v

Since the integrand in the first integral is bounded, (by lemma 7c
and hypothesis), this integral is bounded independently of %. It thus
suffices to show that

h
(72 2,
{fut—%dtdm: futa—udwdt<0<oo.
] ot or

Fr Ry

Let us use Green’s formula on s;() in the form:

[ (FAG+VF-V&) a0 = [ F(7Gm) .
4(0) Byx0)

Letting F = ut, G = du/0t, we have:

13
- - ou ]
o = Aol —— di
,3! wh P do dt f { fut/h,[ 6t] dm}
"

0 Cep()

A 0u . 0u
- {{fm[vﬂﬁm] d— [ Vs(ut)-Vs—a-t—dm} dt.

[ 0] sg(t)
Since
u 0u l T
Vo omp| S8 Ve—| < Mt
l“at | ST e G S



GUEST


140 J. R. Hattemer

by lemma 7b, we have

12

ffut[Vs%-nk]drkdt?<Mff

Tx® 0 It

Vg dt < M

as we saw in the proof of (x). It then is sufficient to show that

o .
ft[Vsu-Vs—a-t—] dw dt

Ry

K e < oo,

However,

f t[Vsu-Vs 3'1] dwds
o

Ry,
_ f{j f,gg[%gg] ) as

Fy “i=1 Tz
ST
% %
= i —wdt} dx
j{;{% Bwi ot 0$i
n h
1 f { ou 2]h ou |?
== Uoml | = [|om dt} dw
2 4 g 0; | Jtmry K4 Ou;

1, 1 h
=5 | tratigo—3 [ [Worad
By F vz

1 1
=§F{t178ur2]7=%dm--2- IJ \Voul*dmds.
I

The.s first in.tegra.l is bounded since its integrand is, lemma 7a. The
second integral is just (x). Hence, we have proved (%) and thus part a)
of our theorem. i
. For_thfa ‘proof of b), let us temporarily demnote the set where the
;ntegra;l is finite by B,. As in the first part, we ean reduce our hypotheses
0:

A) [ TPWPauldedt is uniformly bounded as z, ranges over

PEysi)
By, B, ¥ fixed;
B) gm0 o
Pagiph) ot Is uniformly bounded as a, ranges over
By, 8, & fixed ;

icm°®
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C) B, is a bounded set.
Given & > 0, we now choose a closed set B < E,, m(H) > 0, such
that
D) m(B,—E) <¢;
E) there exists a fixed p, such that m({y:|z—y| <o}~ B) >
Im({y: lz—y| < o}) for zeB, 0 <o < .. .
To see that this set E may be so chosen, consider a point of density =
of #,. Then
o M o=yl <@} By _
0 m({y: lz—y| < o})

Hence, there exists a g, such that
m({y: lo—y| < ¢} ~ Hy)
m({y: lo—y| <e})

for all 0 < ¢ < 0. Let g, = supg,. Let B* be the set of points of density
of B,. Then m({B,—F*) = 0. The function @ - o, is measurable on E*.
Lot By = {weB*: (1/k) << (1/k—1)}, % =2,3,..., B, = {meB*:1

< g,}. Then, B* =kL“J1 B, and the B; are disjoint. m(E*) -——-ké;fm,(Bk).

1
“9

00

ko—1
Choose k, large enough that Y m(By) < e Let ¥ = kUIBk. Then,

K=y

m(By—B) < m(B—F")+m(E*—B) < D 'm(B) <e,
(=
and, letting o, = (1/k), We have, m({y: le—y| < e}~ Ho) > tm({y:
lo—y| < o}) for well, 0 < @ < g,

We fix the set B which we have obtained. Since it is sufficient to
prove the existence of parabolic limits on a subset of positive measure,
we need only show their existence almost everywhere in E.

Tet B = UJP(w;a,h), a<p, h <k fixed, and Ry, B, Bi, Ty,

wyell!

0 .
and 7, be as in the proof of a).
i) We will first show that

f [ (%, Tw)Pdm <e< oo,
Fy
where ¢ is independent of k.

By hypothesis,
RV dedt < K < oo, mel.

P(xoi8,%)
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Let yz be the characteristic function of H, and w(w,, «, ) the charac.
teristic funcf;ion of P(xy; B, k). Then, integrating over I, we obtain:

[ am (@) v (@, @, O (o, ¥ Pdedtda, < co.
B 1xEy,
Since R=ZL])£P(z;h), (z,t)eR implies that there exists a zel

suc.h ~thau; [w‘— <ty 0 <t<h, Moreover, y(z,, ®,%) is the charac-
teristic function of the set where [o—w,|* < f% 0 < ¢ < k. Hence,

f’l’(mozwyt)dmo> f .
o By {jwg--2|2< (a2t}
Since zeB, using B) with ¢ = (62— o®)" " 4 chogen
) close enough
to 8 so th::\;g (B —a® )" < g, for 0 <t <k, we see that this integral
exceeds o™, 0 < ¥ < b, for an appropriate ¢ > 0. This gives us
[ IVeuPdnds < oo.
R
Hence,

[ 1Voufands < ¢ < oo,
Ry

where ¢ is independent of h, which implies that
h
f{ f IVsul"dm} dt <o < oo,
[/ t]
where s;(t) is as in a).
Applying Green’s formula, we have

»
f{ f2u(l78u-nh)drh—- fudsudm} at <e,

o il 5ilt)
Ti, ne, @, as in a). Thus,
h
f{ f 2ut1/2(l78u'm,)t—l/2dtkl dat < .u_aidwdt_l_c.
) ] Y
%

By lemms § s

h
‘f{ f Iult‘l’zdrk} dt

0 I

Frp 1y

h
0u
Sa f{f’“ r dt} dz+-¢;  —o, f(u(w, ) [Pz - o,
¥y

* ©
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Thus,
h
o [ @, w)Pde < [{ [ lu@, )it du) di+o < e [ @, )]do+a,
P T 10 Pl

as in the proof of (), where do is the surface area measure on Bj. By
property 5 of the regularization, lemma 6, we have that do < K dz. Thus,

[lu@, w)lte < o [lu@, wldoteo <af [lu@, w)law)" +ao,

Fr Ty Fy
by Schwartz’s inequality, and the boundedness of FE. Letting

Jp = {f'u(my Tz)lzdw}]/25
Fr

we have, J; < 6,Jr+Csy 61, ¢, independent of k. Hence, J < ¢ < oo, ¢
independent of %k, which proves i).

ii) We will next majorize u(z,?) in B by a function v(z,#) whose
boundary behavior is known.

Let fx(2) = w(w, v;) for zeFy, fu(®) =0, otherwise. Then, by i),

[Ifu@l'de <o < oo,
B,

¢ not depending on k. Let
ve(@, 1) = [ W(w—21)|fu(2)lde,
Eip,

where W (x, t) is the Weierstrass kernel of section 1. We will show that there
exist constants ¢;, ¢, independent of %, such that wu(x,?) < ¢, o(®, 1)+ ¢
for (z, t) e Ry,. By the maximum principle (11), it suffices to show this on Bj.

Since B = \J P(w,; @, b), letting g*, k* be such that a < f* < §,

@gell

B <k <k, we can find a ¢ > 0, depending only on a, 8%, h, k* such that,
for ¢ = (&, t) <R, the rectangular prism ((o), of height 26, center at o,
with hypercubic base of side ct'/?, is contained in (J P(x; 8%, ¥*).

By hypothesis, wpks

2
t‘”’2{|l73u]2+t‘%\}dmdt <KE<oo for meE.
P(xg:8,%) ot

By lemma 8, this implies ¢/*{V ul, and ¢|du/d¢| are bounded for

(2, 1)e | P(@; 5, &*). Let o = (2,%)eBi = R; C(0), the associated
Lyeld

0 .. o s
prism; o = (2, ) e0(0); o1 = (@, 11);5 S1, thels line segment joining o
and o,; s,, the line segment joining ¢; and o'. Then,

(o) —u(o")] < (o) —u(on)|+ [(o1) —w (o)}

< |o— oyl sup |V ul+ |oy— o’ | sup |du /91|

8y 8y

< MR TR, = M < oo
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Let D be the intersection of B; with C(o), |D|, its area. Since B} is «

given by F = [&(a)]*—c’t = 0, and, by part 5 of lemma 6,

6 ‘
(0F [0m] = |26 (0)=— | < 2|8 ()] = 2at™?,
0y,

a straightforward geometrical argument shows that |D| > %% for an
appropriately chosen % > 0. Letting do’ be the surface area measure
on Bj, we have

u(e) < (1/D]) [lu(o")|do’+4
D

< B f

{imy—2l<eti il

Ife(2)] de+-4,

o = (&, ).

For |o| < k'*, W(n,t) > ¥t~"* for appropriate &' > 0. Therefore,
for (,t)e B}, we have

u(z, 1) < f W(r—z,t)|fe(2)|de+4 < v (@, )¢,
Fip,

¢, ¢, independent of k.

Since we have a uniform bound on the L, norms of the [f(x)|, we can
find a subsequence |fy, ()| which converges weakly to a function [f(a)|e
L,(B,). Let

v(@,1) = [W(e—ez,1)|f()de.
Ep,

o0
Then, for (2, t)eEyf,y, vy, (w,1) - v(®, ?). Since |J By, = R, we have

=]
lu(z, ?)| < ev(®,t)+c, for all (x,1)eR. !
We know that v(w, t) is parabolically bounded a. e. in H,. Hence,
u(w,?) is parabolically bounded almost everywhere in E. By ‘theorem 1,
%(z, 1) has parabolic limits a.e. in F, which completes the theorem.

Section 4, An application of the Main Theorem

The primary result of this chapter will be to show that if two vector
valued functions whose components are temperatures are related in & par-
ticular way, then parabolic limits on a set B < B, for the one will imply
parabolic limits almost everywhere in Z for the other.

This result (theorem 4) will follow easily from a lemma and theorem
relating the boundedness of certain integrals.

‘We will first develop certain results which will be needed, in the proof
of these theorems.

icm°®
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a. Preliminary results. Let us consider the equation

o

0t Ld O
i=1

(¥) (1/27) 0, (z,7)eBi.,.

This equation is obtained from the heat equation by the change of
variable ¢* = t. Hence, we see that, for solutions to (+) in the upper half
space, we have maximal and uniqueness results similar to those for so-
lutions to the heat equation.

In particular, if @, @, are as in section 2, part a, and we define

Hi (@, 7, 8, 1) = Gi(@, T°5 Sk, 772)+277G’2(mk7 Tzs Sk "72)
and
n

H*(m, T8, M) = HH:(Q'I” Ty Sy 1),
k=1

we obtain the integral representation
u(@,v) = [H*@,7, 8, n)uls, n)do(s,n)
g

which gives us solutions to (*) on R in terms of their boundary values
u(s,n) on K.

By the properties of G, G5, we know that, for (z, r) bounded away
from K, this integral, as well as the integrals of [P (D)H*(, 7, s, )]-u (s, ),
converge absolutely, where P(D) is a differential polynomial with respect
to the variables @, @5, ..., Zn.

We proceed as in section 2, part c.

Definition. Let H} (s, 1y, 2, 7) = H*(3I, 1, (s~ +3I)[r, (1 — 7+
+7)[r), where @, myeBy, v,—7 >0, I is as before, and (x,t) satisfies
r=1—7if 2|@— x| <Tp—tforalli=1,2,...,n, and r = 2|z— el

otherwise, where |z;,— | = max |z; — ®y;|.
1<ign

Intuitively, as in 2, part ¢, the set of points with a fixed r are the
points lying on the surfaces other than the top of a rectangular prism
of width and height » with the point (=, v,) at the center of the top
of the prism.

Analogously to section 2, part ¢, let Rf = {(#, 7): |;—aul < 0/2,
0 < 7,—7 < o}, K, the boundary other than the top of R}, do} the mea-
sure induced on K} by Lebesgue measure on K under the natural mapping
of B onto R* with (3I, 1) mapping onto (#,, 7,). Then, if % is a solution
to (+) on R} v K},

w(ig, 7o) = [ Hy (@, 7y 7, 7)u (@, 7) 40}
5

Studia Mathematica XXV 10
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Let S:O — R* {Rao/" 2012}’ Ik = {.I; 7) eS"‘ = 2{By— L) }7 Iﬂ:

= {(=, T)ESQ.) 7 = 2 (@~ Zor) b I = {7 eS(’o 7 = 73—7}. Then

[

un U 0w 1.

=1

S:’:D
The sets I, IIf, IIT* have the same intuitive meanings as T, II;,

II1, respectively.

Similar to lemma 5, we have

Levma 9. If u(w, 7) satisfies (x) on Rj v Ky, and P(D) i8 a homo-
geneous differential polynomial of order m m Tyy.ney By, With constant coef-
ficients, then

B(DYu(o0, w)f* < Mgs® ™ [ ju(a, o) dodr,

g*
20

where M is independent of u, 04, %y, o,
Proof. We have

(P(D)%) (930, Tn) = f{[P(D)H: (‘L‘oa Toy by T)]u'(ma T)}dﬂz

x*
14

for all 0 < o << gy. Hence,

[P(D)u](2, 7) = (2 ff{[P VH3 (0, 70, @, 7)]0(®, 7) }dog de

eg/2 EI*

= [ (2o [P(D)E; (@, 0, ¥, )]0 (@, v)doy de.

s*
2

By Schwartz’s inequality,
(P (D)) (g, 7o) *

<{4/ed) [ IPDIE (0, 70, m, D) A} de}| [ Iuw, 7)Pdo} dof.
5% \*
e 2
To complete the proof, we need only show:

1) f[—P( H*(mm Toy & r)]zda do < Moy™™,
s*

)
2) f [u(e, 1)[2(10'ng < (M/e0) f ju (2, T)l2dmdr1
g o
Qo 2o
where in each case M is independent of u, gy, %y, To.

Boundary behavior of temperatures I 147
To show 1):
[1PD)E (2, 76, 9, ©)do} do
S*

2q
= [{ [ 1PD)E} (o, 70, 7, ©) Aot de

op/2 K*

<M fg-””{fu) (D)YE*($1,1, v, 5)[*do} dg < Mo}~",
eg/2
since the integral over K is bounded.
To show 2): Let dX;, be as in section 2, part ¢. Then on I} and Iz,
doy = dX;dv/[o", dp = —dumy, on If, dg = day, on II%, on IIT*, do} = dx[o",
do = —dr. Hence,

f lu(w, )/*doy do < (2"/a}) f lu(@, v)Fdedr,

Ik Ik
J e, )t acde < 2"/eh) [ lu(@, fdds,
I I

| lu(@, o)Padiae < (2*fey [ lu(@, v)ldadr,
o

I+
which completes the proof.
Lemma 10. Let T = (1/7)(8/d%). Assume that, for 0 <k <m. T'u

exists and is continuous in Ej, ;. Then,
B

w(@,y) = (=1)(m—1)12"7) [ (y*— 2V ™ (3, ) vdr+Am, -

where A, is a polynomial in T'u, & =0,1,..., m—1, evaluated af t = h.
Proof. By the fundamental theorem of calculus,
h

u(z,y) = —f(Tu)rdr—}-A“ A, =u(x,h).
Integrating by parts, :ve obtain:
wle,9) = — {2y rut,~ f @i +a,
h
—wp|am G|+ [@m T arr s

¥

I

h
0T
—(¥*/2) do+ | (2/2)[Tw]rde+A4,
J or J.

I

1
1 2
—5 [ =4,
v
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Where Al = u(m, h)—(h*[2)Tu, and 4, = w(w, h)— (B*[2)Tu(z, h)+
+ (9*/2)Tu (@, k). This shows the lemma for m = 2.
Assume that the lemma holds for m =¥, i. e.,

h

= (—1/(k—1)12"7) [ (y*—7*

v

(2, ) YT Tz dv Ay

Again integrating by parts, we have:
A

. - (:’/2_”_1‘.‘.)In
(@, y) = (—1/(k—1)12" 1){[~1’u ok ] A

k

+f2m [ -

v

I"”u(h} A

Since the integrated term vanishes at the lower limit, and can be
incorporated into Ay, at the upper limit, we have;

(—1/2%K1) f(J Errt ] v dr - A

w{x,y)

Thus, we have shown the lemma for m = k--1. By mathematical

indunetion, we are finished.
We shall also use the following

LeMMA 11. Let 0 < ap < a < oo, and

b
P(s) = [fl)ds
Then

b b
[17(s)Psds < 4a3® [ |F)PEds.
[} 0

Proof. An inequality due to Hardy [6] states that if

B(s) = [ p(t)ftdt,
then '

[ @)
0 .

A change of variables shows that
("} it

*ds < 4 f oo (8)1*dlt .
0

Y]

®(s) = [ p(t)tdt,

icm
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then

00

[ 19(s)Pds <407 [ Jp(t)dt.
Now, ° ’

b b b
2B (s)] = | [ f(t)dt'ga“"z [irip@la < a™ [2Rf@)|ai.

Applying ('), we have the lemma.

b. The theorems.

Definitions. Let I'(m; a,h) = {(#,7): |o—@%] <ar, 0 <7 <h}
Throughout this section, unless otherwise stated, u(z,?), v(z,?) wil
denote vector valued solutions to the heat equation, i.e., u(z,t) =
= (uy(@, 1), us(m, 1), ...p up(m, 8), (@, ) = (v3(2, 1), 0a(2, 8), ..., Vs(w, D)),
and w,(z,t), v(z,t), ¢t =1,2,...,r, j=1,2,...,8 are temperatures
in the usual sense. We will refer to « and v as temperatures. We will de-

note by
[waﬂT‘ [meMW

Lrvwa 12. Let u(w, t), v(x, t) be temperatures in P(xy; 8, k); let P(D)
be a rXs matriz, each of whose eniries is a homogeneous differential poly-
nomial of degree q in @y, Xy, ..., Ty With constant coefficients.

1) If ¢ =2m+1, m=0,1,...,

|u(ax, t)] v(z, )| =

™
a) o P(D)v,
b) f TP dodt < oo,
P(xg;B.k)
then, for 0 <a < B, 0 <h <k,
4! [ ¢ "Pufdsd < oo.
P(ag;a,h)
2y If gq=2m—1, m=1,2,...,
a’m
a) —m = P(D
) pYD (D),
b) [ #CPfdrdt < oo,
P(zg:B,k)
then, for 0 <a<f, 0 <h <k,
G f =2 drdt < co.
P(mg;a,h)

Proof. Without loss of generality, we will consider z, to be the origin
throughout the proof.
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We will do the case m = 0 of part 1) separabely.
Under the change of variable ¢ — 7%, » and v become vector solutions
of (*) and satisfy:
a*) u(z, 7") = P(D)o(z, 7'),
and . 4
b*) 7" (@, ) dede < oo, T'(B, %) = I'(0; §, &),
(812 . .
Algo, P(a, h) = P(0; a, h) maps into ['(a, ).
By lemma 9, -
P(D)o(0)] < Mo+ [ o dwdn)”,
8 (@
2

‘where S;‘o(o-) is situated so that ¢ = (#y, 7;) is the center of the upper
face.
For (z,7) eI (a, B**), there exists a ¢ >0 such that 8, (x,7) = I'(8, K'7).
Hence,
u(e, ) < BePedf o f (ol*dadn}™,

*
8o ()

B a congtant independent of u, v, @, T.
Let L. be the layer through the cone I'(8, k') between v and v-—e,
i e, L, = {(z,n)<l(f, ¥7):(1—e)r < 5 < 7}. Then,

[ [ wlawan)™ <{ [ oPdodn}™ = 2*,
Ly

S;r(z,-z)

for (z, v)el'(a, h'?), and |u(@, o) < By~ 20+HI7L2,

Let u,(s) be the restriction of « to the ray ¢ coming from the origin
with the distance from the origin given by s. If ¢ is the angle made by ¢
with the positive v axis, v = scosf, 13> cosb > a, = (1-+a’)""* > 0.
Then,

nl/2 nlf2

f Slug(s)’ds < B [ v dx.
[} o

Now,
#l/2 w2
[ordae = [ o [oPasdnfas [ oP{[ +(x; 0, m)de} dodn,
0 [ L, (BN
where y(v; @, n) is the characteristic function of L.

n/(1—c)

[z 8m)dr = TS [ v = oy
(1—e)<n<z n
o<n<kl/2

icm
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Hence,
U2

[ Slug(s)Pds < B [ 2 eldedy < oo.
0 I‘(ﬁ,kllz)
Let I' be the intersection of I'(a, h**) with the sphere of radius h*?
about the origin. Then, integrating across the rays ¢ in f, we have

f‘ra“"}ufd:adr < oco.
F

Since the remainder of the cone is at a positive distance from = = 0,
and u is continuous, we have

f 7 udedr < oco.

I(a,nt?)
By the change of variable ¢ = 7%, we have,
1

9
“ PEy

S

Dy A dt < oo,

which completes the proof of this case.

For the remainder, the change of variables ¢ = z* gives us u(z, 7°),
v(z, 7") as solutions to (*), and

a*) T™u = P(D)v, T as in lemma 10.

In part 1), b) gives us

by [ PTefdwdr < oo
I(g,kH?)
By lemma 10,
#lf2
u(@, y*) = (—1/(m—1)12"") [ {(@*—)" [T™u (2, 7*)]vde}+An
v
B2

= (=1/m—1)12"7) [ (’— )" [P(D)v(w, 7*)]vdr+Apm.

By lemma 9,
[P(D)o(a)| < Moz =3 [ jandy)”,
)
85,(0) is as in the above case. For (v, 7)eI'(a, h*¥), there exists a ¢ >0
such that 8% (x,7) < I'(8, k). Hence,
Rli2
W(m,?/z)l < Bf sz_lr—llﬁ(n—4m+3){ J ledwdn}lﬂ dr+-A.
v »S"(a:-r)
i
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Letting J, be as before, we have,

R/2

[u(z, y*)| < Bf e A L TR
1]

Letting o and u,(s) be as before, we have

nl2
ly(s)| < B [ v Pdr A,
so080
whence,
nli2
slug(s)) < B [ v A AL
scos0
By lemma 11,

nl/2 Bi?

[ s*u,(s)'ds < Bf 7 A
0

Proceeding as in the case m = 0, we obtain part 1).
Upon the usual change of variables, 2b) gives us

“"o|Pdedr < oo.
(g%

Using the same representation as in part 1) and the estimate

P(D)o(0)] < Mo+ [ pol*dan)"*
&)
Q
from lemma 9, we obtain,
nl2

(@, y")| < B [ v 0Tp g 4
v

and thus,

ni2

() < B [ v YA 4

scosl

By lemma 11,

nli2 nl/2

J slug(s)Pds < B [ <" dr+A.
0 0
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Similar to before,

alf2e al2
[ #d.de = | [ pldzdn}ar [ P{f @2 w,n)dr}dmdn,
0 0 L, (B2

x(t; z, n) as before.
nj(1—c)

[ ™memde= [ ?Tr< [ Fldv ="
7

(1—¢jr<n<s
o<n<hll2

Thus,
nli2
f slu,(s)*ds < B f P "olldwdn + 4 < oo.
0 T(ﬂ,kllzj
This implies that
f T Mufdzedr < oo,
I(a,hM?)
and by the change of variables t = 1",
&) [ " uldedt < co.
P(a,l)
Utilizing this lemma, we can now show that the two terms in the
integral in theorem 2 are essentially equivalent in their finiteness, i.e.,
TamorEM 3. Let u, be a solution to the heat equation on P(%y; f, k).

1) If
o] 99 200 < oo,
Pagipk) e
then
e u, 2olacdt < oo
Plagah) T4

for 0<a<B, 0<h<k,i=1,2,...,m.
2) If each of the integrals
2
Ak Gt dedt < co
Ly

P(x0:8,k)

for i=1,2,...,n, then

f A O

P(xg;a,k)

dmdt < oo,

0<a<B, 0<h<k.
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Proof. 1) In part 2 of lemma 12, m =1, let

a 7} . d
(%, 1) =”£“1(mi 1), o, 1) = -0;'“1('7"7 1, P(D) :(;m“

2) In part 1 of lemma 12, m = 0, let

0
u (e, 1) = —(,;tuul(w, t),

a d
72%1(93, 1)y eey '5@;““1(“’: B},

and

0 0 d
P(D) :(—0*9;;,*8—6;;, .,*é’:r"“)

Making use of both lemma 12 and theorem 3, we have the following
application of theorem 2:

TuEOREM 4. Let u, v be solutions to the heat equation in M\, , of res-
pective dimension r and s; let P (D) be as in lemma 12 with q = 2m, m > 1.
Suppose that they satisfy 0™u[0i™ = P(D)v. Then, if v(x,t) has parabolic
limits on a set B < B, u(x, t) has parabolic limits almost everywhere on H,

Prooi. By theorem 2, and part 1 of theorem 3, it is enough to show
that

tl_(ﬂ 12)
Pleo;a,n)

a 2
——“t dwdt < oo
3

for almost every wz,el.
By theorem 2,

T 0P dadt < oo
P (2g;0,k)
for almost every x,em.
We let U =oufot, V ="V, and 13(1)) be the rxsn maftrix

~ a o 0
P(D) = |P|— _ —
(P) ( (;awl D)P(awz D) P( O, D))

Then .6”‘U/6t’" =P(D)V, and the differential polynomial entries
of P(D) will be homogeneous of order 2m+-1.
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v

By part 1 of lemma 12, the finiteness of
[ ovra = [ o oPdwd

Ply;8,k) Plrg:i k)
implies the finiteness of
" t‘—("/”—dwdmdt,

O UPdedt =
[Ude 7

Plag;ah) Pmg;oh)

which completes the proof.'
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