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On non-equivalent bases and conditional bases
in Banach spaces

by

A. PEECZYNSKI (Warszawa) and I. SINGER (Bucharest)

Introduction
A basis {z,} of a Banach space ¥ ig called eqm‘wlent (ef. Banach
[4]) to a bagis {y,} of a Bana,ch space F provided that 2 a;@; i con-
vergent in ¥ if and only if Za'l?h is convergent in F. Thls happens if

and only if there exists an 1somorphlsm A of B onto F such that A4 (x,)
=1y, for n =1,2,... ([2], [7]). A bagis {z,} is said to be conditiona,l

(wnconditional) if there exists (if there does not exist) a series Zalaa
i=1

which is convergent but not unconditionally convergent. A basis {®,}
is said to be normalized if |m,] =1 (n =1,2,...).

In finite-dimensional spaces all normalized bases are equivalent and
unconditional. In the present paper we shall show that each of these
properties characterizes finite-dimensional spaces among Banach spaces
with & basis, by proving the following

THEOREM. In every infinite-dimensional Banach space with a basis there
ewist two non-equivalent normalized bases, one of which is conditional (*).

In the usual concrete infinite-dimensional separable Banach spaces,
excepting Hilbert spaces, it is easy to give examples of non-equivalent
normalized bases and conditional bases (see e. g. [24], [14]). In the case
of Hilbert spaces the problem becomes congiderably more difficult. The
first example of a normalized conditional basis (and hence non-equi-
valent to an orthogonal basis) in a separable Hilbert space has been given
by Babenko [3] (see also [15], [1], [13]).

Since every infinite-dimensional Banach space contains a basic se-
quence (2), i. e. a sequence {2,} which is a basis of its closed linear hull

(1) Added in proof This theorem substantiates a conjecture of Bonnice and
Klee [31], p. 26.

(%) 'This result has been given without proof by Banach [5], p. 238; for various
proofs see [7], [16], [8].


GUEST


8 A. Pelezynski and I. Singer

[24], it follows from the above theorem as an immediate consequence
that every Banach space containg a conditional basic sequence and two
non-equivalent normalized basic sequences. The first of these results
has been obtained by Gurarii [19] with the aid of a profound result of
Dvoretzky [10], and, as has been remarked by C. Bessaga, tho second
result may be obtained by a similar method.

We prove our theorem by the following method: we reduce the prob-
lem to symmetric spaces (see definition 1 below) and then from symmetric
gpaces to Hilbert spaces, where we apply the result of Babenko [3]. For
the second step, in symmetric spaces we introduce analogues of the clas-
gical function systems of Haar and Rademacher [22] and prove o cortain
abstract analogue of the Khinchin inequality ([22], p.181-132) which
may also be of some interest for other applications.

In the lagt part of the paper we make some remarks and formulate
some ungolved problems.

We wish to express here our gratitude to Dr C. Bessaga for valuable
digscussions and critical remarks.

§ 1. Symmetric Banach spaces

A basis {2;} of a Banach space F is called [27] (*) symmetrio, if

n
(1) =l = sup sup .'251‘”3(9”)%(1)”< 4 o0 for all  wel,
o), Ity<t Tisy

where P (N) denotes the set of all permutations of the set N = {1,2,...}
and {#f} is the sequence of continuous linear functionals biorthogonal
to {z;}. For a symmetric bagis {z;}, formula (1) defines & new norm on I,
equivalent to the original norm and ‘“‘symmetric with respect to {w}”,
i. e. such that

(2) H\f;ew:@(w)w,m

PR

for all w¢B, ¢, veP(N) and [g) =1, ¢ =1,2,... (see [27], theorem L1).
Definition 1. We shall call a symmetric space any couple (H, {m}),
where I is a Banach space with a symmetric basis and {®} a symme-
tric{baisis of H, such that the original norm of ¥ is symmetrie with respect
to {2}.
In the sequel we shall denote by = an arbitrary positive
integer.

(®) See also [28], [23].

icm

Bases in Banach spaces 7

Definition 2. Let (H,,, {#;}) be a 2"-dimengional symmetric space.
We shall call the Haar sysiem the sequence {yj}fil defined by (*)

an an
7 QL)
(3) o= Dlw Y, = B
T=1 g

=1
(1=1,2,...,2%5 k=0,1,...,n—1),

where
(4)
1 for  (20—-2)2"F 41 < < (21—-1)2
BN =1 —1  for (A—1)2"P4l iAot
0 for 1<i<(20—2)2" " and 20-2" 141 < 2"

Detinition 8. Let (H,., {#;}) be a 2"-dimensional symmetric space.
We shall call the Rademacher system the sequence {r;)i., defined by
oki—1

() me= D Ypery  (E=1,2,..,m),
1==1

where {y;} is the Haar system in (B, {#}).

PROPOSITION 1. Let (B, {%;}) be a 2"-dimensional symmetric space.
Then the Haar system {y;} is a monotone basis (°) of Byp.

Proof. Let m be an arbitrary integer such that 1 <m < 2"—1,
and let a;, ¢y ..., G,y b arbitrary scalars. Then, sinece {z} is a basis
of W, there exists a sequence of scalars {b,}?:l such that

m an
(G) 2 ;Y = 2 by,
7=1 i=t

Let (k, 1) be the cotiple of non-negative integers determined by the
following properties: 1 <1 < 2%, 2°4-1 = m+-1. Then, by (6), (3) and (4),

m4-1 om an
(R
13 o] = | St onss Soom
P =1 =1

(21-1)2n—F--1

(2~ Q)Zn—k~1
= “ Z bywy+
=1 tm(alg)2—R— 14
of.oM—l—1 on

+ Z (b= Qo) s Z‘ bya;

ea(@l-Tpi—k-1py imglal—k—~141

(bi+ ”«m-f-l) @yt

() A similar construction of Haar system for certain function spaces has been
made by Ellis and Halperin [12]. More general definition than our Definition 3,
see Rutovitz [32].

(5) A basis {#;} in a Banach space F is said to be monotone (cf. [9], p. 67) pro-
vided that |{tyo1--fawe-t.. .+ okl < |[f1@1+tema- ...+ thop+ tpr12p1]l for every
sealars t;, fa, ..., fppy (h=1,2,..0).
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Since (Byn, {z;}) is a symmetric space, this number is equal to

" (el —F-1 (2l—1)2n —k~1
I > wet Y (i—ewnat
i=1 tes(al-2)an k=111

rH‘Zn-.lc-- 1 o
1
+ Z (bi + Uy 1) &yl ‘}4 b, il -
ia(2le1)2=k 1 Leoglgi=T1 g

Adding these equalities and multiplying by 4, we obtain

an
ol

D) | =

Tl

>

Mol 1 m
HE % Y; HZ“/?//H;
F=1 Jisl
which completes the proof.

COROLLARY. Let (Em, {x;}) be a 2"-dimensional symmelric spaw’
Then the Rademacher system {1}y, zs a monotone block basic sequfmce( )
with respect to the Haar system {y,}, 1

‘We shall now prove the following abstract analogue of the Khinchin
inequality:

' ProrostTION 2. Let (B, {2;}) be a 2™-dimensional symmetric space
and et {r/lrel|Yia1 be the normalized Rademacher system in this space.
Then for any scalars ay, g, ..., &, we have

Z %] ]/ et

s
Proof. Since {z;} is a basis of Hy, there exists for each integer k
(1 <%k <n) a unique sequence of scalars {r,ﬁf}}:'l such that

(7

an
(8) mzmei (b =1,2,...,n).

=l

Moreover, it is easy to compute that

® Lo |1t (@A-2)2L < (2 1) 20
T =1 for (21—1)2F1 < o7k
2Nk =1,2,...,0).

(1=1,2,...

(*) Let us recall that if ;]| is a hasis of a Banach space 7, sy sequenco {zy} <l
m.
of the form 2 = @iy, 2 =0 (f=1,2,...
ri=mj_1+1

sequence of positive integers, mg = 0, and where {o7} i8 a sequence of soalars, is called
[7] a block basic sequence with resapect to {wy}; it is necessaxily [7] a basic sequence.

) where {m;} is an increasing
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Let 7(-), ¥ =1,2,...,n, be the usnal Rademacher funetions on
[0,1]. We claim that for any scalars Gy Gy ...y @y, 'We have

n 1 an n
%
a7y (1) ‘ dt = 5 } , E Wi |+
1 =1 k=1

In fact, let us denote by (4, {g}) the 2" dimensional symmetric

(10)

space in which the norm is defined by ||Z‘b 9@” = Z’]b | and by g( ) the
characteristic funetion of the 1nterva1 (2~ ( 2“%) fori=1,2,...,2"

Then. the mapping ¢, with (p(Zam) =2~" 2%% i§ obviously a linear

isometry of tho 2”-(11m0n51ona.1 subspa.ce of L‘([O 1]) spanned by the
chara,ctemtm functions y;() (4 =1,2,...,2") onto the space hn. Since

75(t me%(l it follows that
" w n ot
1 ~ a
® [2_/ %"’/a(')] = Z a1 (1)] = 2’"27);2%:'%
e Tows1 k=1 i=1

whence, since ¢ is an isometry, we infer (10).
By (10) and the usual Khinchin inequality ([22], p.131-132) we
have, for any sealars a,, ay, ..., .y

(11) i’l > > %]/Z il
k=1

On the other hand, since (Hyn, {x;}) is a symmetric space, we have,
by (8) and (9),

i ]
[

2
=lrall = Y ]

Faal

(12) firalh == Il == ...
Lot us denote this common value by 4, and let
an
i
B, == ” Z oy H7
Tl
where {w}} = B}, of(m) = & (4,§ =1,2,...,2"). Then we have (see

lemma 1 below)

(13) A,B, = o
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N

Now let ay, ay,..., 4, be arbitrary scalars and leb & = signz Vet

., 2"). Then, taking into account that (Tin, {xf})is a symmemc

(11), (12), (13), we obtain

(i=1,2,.
space and (8

n 1_&1 B, _1!,7
T
ay E Z‘ Z Ay || == 2n Z s
% Il &
n
1 \7
= 3 D] S /m ) 3 e
o " . i
11\ 1\ .
== 271, Z & ApTrg| == 2’,‘“ “hrlcl ]alal
[ k=1 doal  Jomm

which is nothing else but (7). Thus, in order to complete the proof of pro-
position 2, we have only to present the proof of the following lemma:

LemmA 1. Let (B, {a;}) be o 2"-dimensional symmetric space, and let
o n

Ay = || D@, Bu=|3ak|, where {&f} = Bin, a}(w) = dy. Then we
1=1 fmal

have (13).
Proof. We have, obviously,

gt P
4 AnBy > (D) (Y o) =2
(2] faal
P N
On the other hand, let #* = Y and let o = JZa,w,e]ﬂ be such
de=1 33
that #*(#) = B, |[#}| = 1. Then
: o 2’" o
(18) =a*@) = () m)( a,w,) .
G 1 Jual

Now, let 17, denote the set of all permutations of the set {1, 2, ..., 2"}
and leb

ot

(16) o = D oy

f=1

1
(17) Ly = (2‘,&)“! Zw,.

"ot Ly,

(oelly),

Then, since (E,,, {2;}) is a symmetric space, we have |w,| == |w|| = 1
for all ¢ell,, whence

(18) lloool] << 2.
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On the other hand, by (16) and (17) we have
of
1
By = 3 o
;

(vince the coefficient of m; iy

1
( ) oelly,
and since for any couple of integers ¢, § with 1 < i, <
(2"--1)! permutations oell, such that «(s)

definition of 4,,

< 2" there are exactly
= j), whence, by (15) and the

B, 4,

(19) loall = =25

Comparing (14), (18) and (19), we obtain (13), which completes the
proof.

§ 2. Block perturbations of bases

Definition 4. Let {z;} be a normalized basis of a Banach space B.
We shall call block-perturbation (') of {z,} any sequence {v;} = E of the

form

@y, for & # p,
(20) oy =" P n=1,9,..,

@y, +Un for Tk =p,
where

Py—1 Ny,
(21)  uy = Z o2y Z @y | <K M < Foo (n= 1,2,..),
Ly, q 1 imPp+1

and where {m,}, {p,} are increasing sequences of positive integers such
that my = 0, My +1 <P, <My, (0 =1,2,...).

Limmwma. 2. Let {w;} be a normalized basis of a Banach space B. Then
every block perturbation {v,} of {x;} is a basis of H.

Proof. Let {v,} be of the form (20) with {u,} satisfying (21). Then
{vg} admity a biorthogonal sequence {m}';} = B* given by

o ® n
B Uy, for T o Py My -HL LT < my,

(m=1,2,...),
k= Dy,

*
o
w;‘}". for

() Let us wention that V. G. Vinokurov has considered perturbations of the
form 2.y == wyy..1, Ry = dpj-1¥ej-1-+ agy®ey (§ = 1, 2,...), where S'l;p]azj_ﬂ < oo,

iuj.f|a2/] > 0, and has established that they constitute a basis of B ([30], theorem 4).
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where o (%) = on (n, m =1,2,...). Hence, for all wel,

1 1
ﬁac}‘(a")'u, — iy, (@) g, for my, -1 <D pp--1,
1 j=1 bes My, o1+ 1
Z’UL(-’”)'UA = ! o L
= Em}‘(m)mﬁ—mﬁn(w) N aa for p, <1l =lmy,
fe=1 el H
(n==1,2,...).

Since {m,} is a basis of ¥, there exists a constant I -1 such thab

1

N wa|| < Kl < KM (myy LS g L= 1, 2,00,
ety — 31
I Z 050 | <l I ] S QUHIOM (ST magn =1, 2,.00).
i=l+

Since the basiy {z,} is normalized, we also have

lim o (¢) =0 for all wel.

N=r00
Consequently, for every & >0 and ae<H, there exists an integor
N(e,2) > 0 suech that

1 1
H Dni@m- D af@a| <o for 1> N(e,0),
Je=1 Je=1

whence z = ka(w yop for all wel, which completes the proof.

=1

ProPOSITION 3. Let {wn} be a normalized non-symmetric uncondi-
tional basis of a Banach space T. Then there exists a block perturbation of
a switable permutation of {x,}, which is a conditional basis of K.

Proof. We claim that there exists a permutation of the basic se-
quence {2,;} which is not equivalent to the basic sequence {wy . ,}. In fact,
assume that all permutations of {y} are equivalent to {w, ..}. Then,
by [28]; {wy} is a symmetric basic sequence, whence, again by [287], {my}
is equivalent to its subsequences {z,._,} and {m,}. We ghall show that the
mapping @y;_y — 4_q, By —> By defines an equivalence of the basis
{2a} with its subsequence {wy}, which is a contradic‘bion gince {a,} iz non-

-symmetric. In fact, since {a:n} i§ unconditional, 2, a2y 38 convoergent if
and only if Z’am_lwm 1 and Zazimu are convorgcnt Since {wy..1}, {wy}

are equlva.lent to {zy_s} rmd {#4} respectively, this happens if and

icm
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oo o
only if @ 124, and ) ayw,; ave convergent, i, e. (since {wy} is un-
Feml faal

conditional) if and only if 3 a;m,; is convergent.
=1

Thus, let {,)} be a permutation of {2y} such that {my ,} and
{25} are not equivalent. Lot {&,y)} be the permutation of {x,} defined by

(22) I L for
e Wymy  for

n=2j—1,
n o= 2j

and lot {w;}, {vx} be the following two block perturbations of the basis
{wa(%)}:

/ Doty for &k =2n—1,
(23) Py = n=1,2,..),
Lo(ry -+ La(l—1) for k= 2n,
, Dol for & =2n
@24) oy =] @ ' (n=1,2,..).
Doy + oy TOr ke =2n—1

By lemma 2, {v;} and {v;} are bases of the space H. We shall com-
plete the proof by showing that at least one of these bases must be con-
ditional.

Assume that both {v;} and {v;} are unconditional bases of B. Then,
gince {v;} is unconditional, there exists a constant K; > 1 such that we
have, for any scalars d, Gy, ..., 0,

H }5 a{ma(z’i)” = H;:“Ma(zi_l)"Zn‘“i(wamr\-%(zi_x))ﬁ
= =

= “ at’”m 1 Z az’l’m I{l”zai”m— H
'L
= Ky H ij W (gt 1) H .
{1

Similarly, since {ovy } is unconditional, there exists a constant K, =1
guch that we have, for any scalars a, da, ..., ta,

0w
Z X %o(2i) | -
fa

Hence the basie sequences {.y-y} and {w,u} are equivalent,
which contradicts the construction (22) of the permutation {#,m} and
completes the proof of proposition 3.

H ‘ﬁ? W Bey(2i—1) H = Kzl
=
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§ 3. Proof of the theorem

We shall first prove the following proposition:

ProrosITION 4. Let B be a Banach space with o basis, in which all
normalized bases are equivalent, and let {x,} be o normalized basis of I,
Then

(a) {w,} 78 a symmetric basis.

(o) If {2} is @ normalized block basic sequence with respect to {m,},
then we have the following implication:

(=] o0
. Y .
E @y 18 convergent =- 2 ;2 18 convergent,
feu] fwal

(c) We have the following implication:

}:aiw,ﬁ 18 convergent = Z lai* <7 oo
i=1 i=1
(d) B is reflewive.
Proof. (a) Bvery sequence {e,u,} with |e,| =1 (n =1, 2,...) is
& normalized basis of . Hence, by our hypothesis, {,} is equivalent
to every sequence {e,@,} with {e| =1 (n=1,2,...). Uonsequently,
o 0

> ayx; is convergent if and only if 2 gy I8 convergent for all {s,}
i=1 feal

with [e,| =1 (n=1,2,...), L e. if and only if 3 a;»; is uncondition-
i

ally convergent. Thus {s,} is & normalized unconditional bagis of X,
whence every permutation {,m} of {,} is a normalized basis of J. Since
by our hypothesis the bases {,} and {@o(my} must be equivalent, it follows
by [28], that {w,} is a symmetric basis of .
(b) Let
my
Wl
& = Z @iy
ity 41

be an arbitrary normalized block bagic sequencoe with regpect to {m,}
and let

lell =1 (mg=0; j=1,2,...)

Ty, for T w#m,
U = (n==1,2,..),
Xyt thy,  for ko= m,
where
My—1
Up = Oy == Ry — Gy, Lmy,
Tty — 141

Then, since {®,} is a basis, there exists a constant M = 1 such that
lnll < Ml S M (n=1,2,...), ie. {oz} 18 a Dblock perturbation

m=1,2,..).
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of {w,}, whence, by lemma 2, {v;} is a basis of the space H. Consequently,
by our hypothesis, {vy/||vs]} is equivalent to {2}, whence, by the asser-
tion (a) proved above, {v./|vi} is & symmetric basis. Since {vx} is equi-
valent to {vg/vil|} (because 1 < ||| <1+M, & =1, 2, ... and {vg/||vg]|}
is unconditional), it follows that {v,} is a symmetric basis, equivalent
to {@.}.

Now, let {a,} be a sequence of scalars such that > a;@; is convergent.
i=1

0
Then, since {vx} is equivalent to {z,}, ¥ a;v; is convergent, whence, gince
de=]

{v;} is 2 symmetric basis,

(=] ©0

~ 1
Z GVmy == Y (@, - Us)
i=1 iz

oo
is convergent. On the other hand, since {z,} is a symmetric basis, ) @i,

i=1

o
is convergent. Consequently, 3 a;u;is convergent. TFurthermore, since
q=l

[tmg] = llamy Wyl = llog—w] <14+-M (i =1,2, ces)y

o
and since {z,} is unconditional, the series Y o, a;u; is convergent. Con-
Feal

sequently, the series

QP 0 o0
Zaizi = Z U+ 2 Oy Qi g
i=

=1 faml

is convergent.
(¢) By the assertion (a) proved above, {®,} is a symmetric basis.
We may assume without loss of generality that (B, {x,}) is a symmetric
space (by introducing, if necessary, the equivalent norm |||||| defined by
(1); the basis {w,} will remain normalized in this new norm).
Asgsume now that there exists a sequence of scalars {a,} for which
o0

~
S om is convergent bub ) |ay* = ~+oo. Then there exists an increas-
Yol Al

ing sequence of positive intégers {m,} such that

(25) Sﬁ

Toatligy g4 1

lag* 221 (mg == 030 =1,2,...).
Let :
Do o= Mg~y (m=1,2,..)),
H
In = 227’1 (m=1,2,..),
Feal

Qo == 0,
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and let Hyp, denote the 2Pn-dimensional subspace of & spanned by By 13
Bg_y+2y -y By (W =1,2,...). Furthermore, let {y}r,, ., denoto
the Haar system and {#;}i%,, . the Rademacher system in the symme-
tric space (Hypn, {2}2q,_111)- N

Since {x,} is a basis of H, we have (*) B = @ Hyw,. On the other

Mo ]
hand, by proposition 1, {%}?gqn_l+1 is a monotone basis of Hyp,. Consge-
quently, by [18], theorem 5, and [19], theorem 2, the sequence

oo
wr=U {?/7}7a3'f-an-.1-|.1
s}

is a basis (°) of the space B. Since by our hypothesis the normalized Dases
{z,} and {y,/|y.ll} of B are equivalent and gince ¢§Mw'£ is convergent,
the series

Yi

L
" il
is convergent. Let us pub 2 = /()] (¢ =1,2,...). Since by the corol-
lary of lemma 1, the sequence {z;} is a normalized block basic sequence
with respect to the normalized basis {y./|ly|}, from the agsertion (b)
o0

proved above it follows that the series ' sz, is convergent, whence
=1

my
(26) lim aie; = 0.
N0 feattiyy — g1
On the other hand, by proposition 2 and by (25) we have

i, Ty -
1 2 ).
” T >l >,

Loy b 1

which contradicts (26). This proves (e).

(d) Assume that B is non-reflexive. Then, since {u,} is an wncondi-
tional basis of , there exists in X, by the results of K. 0. James ([20],
theorem 2, and [21], the proof of theorem 2) and A. Bobezyk ([20], theo-
rem 5), either a complemented subspace isomorphic to ¢, or a comple-

(®) We recall that I is called (see e. g. [18]) the direct sum of its subspaces Ky,

o0
in symbols B = @lEm it for every weX there exists a unique sequenoo wy with
Me=
oo
WneBy (n=1,2,...) such that » = Y wy.
Tl
(°) Ome can also give a simpler direot proof of this assertion.
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mented subspace isomorphic to I. Let F denote an arbitrary complemen-
tary subspace of such a subspace. Then we have either the isomorphisms
E®0y e FRey®oy =2 FDey == I or, similarly, the isomorphism B o .
Hence, taking a conditional basis of ¢,, respectively of I, we obtain a con-
ditional bagis of B, whence also a normalized conditional basis of E,
which contradicts the assumption that all normalized bases in F are
equivalent. This completes the proof of proposition 4.

Proof of the theorem. 1° Let B be an infinite-dimensional Banach
space with a basis, such that all normalized bases of B are equivalent.
Then, by proposition 4 (d), B is reflexive, whence F* has a basis. Let
{¥n}, {en} be two normalized bases of B*. Since F is reflexive, there exist
bases {y.}, {#} of K such that y}(y;) = &f(s) = &l. Since 1 < |y,
ol < M < o0 (j=1,2,...) and since, by proposition 4 (a), {¥al
{#.} are unconditional bases of X, {y,}, {#.} are equivalent to Ynlllyal}
and {z,/|l.} respectively. Sinee by our hypothesis {y,/lly,/} and {z./[l2|}
are equivalent, it follows that {y,} and {2,} are equivalent, whence {y}}
and {2y} are also equivalent. Thus all normalized bases in B* are equiv-
alent.

Now, let {,} be a normalized basis of EF and let {z} < B*, o} (a;)
= 4l. Then, by the above arguments, {#y} is a basis of E*, equivalent
to the normalized basis {ay/|z4]}. Since all normalized bases in E* are
equivalent, it follows, by proposition 4 (c) applied to E* and {a}/|la}]},
that we’ have the following implication:

(27) Zb.;w;* is convergent = 2 15> < H-00.
=1

i=1

We shall now prove that {z,} is equivalent to the unit vector basis
of I'. By proposition 4 (c), it is sufficient to prove the implication

) [=+]
la;]* < oo = Zaimi is convergent.
im

718

(28) y
'

Let {a,} be a sequence of scalars such that ' |a;* < oo, and let
D=1

oo
@* = 3 b} be an arbitrary element of #*. Then, by (27), we also have
=1

[b;* < -}-o0, whence we infer by the Schwartz inequality that the limit

T

n n

lim r*( aixi) =Tlm ¥ a:b;
. )
NG pray (NS S

Studia Mathematica XXV

1


GUEST


e ©
18 A. Pelezynski and I Singer lm
exigts. Since F is reflexive, it follows that there exists an element weld
such that

n

limaz* (Z a,:m,-,) = x*(x)

P00

for all 2%l

fe=1

Hence, for * = af (j = 1,2, ...), we obtain a; = @ (&) (j == 1,2, ...).
Consequently, since {m,} is a basis, the series

o0 00

-
2‘ a;o; == Zw;’f(m)w,
dael

f==]
is convergent, which proves (28).

Now, since {x,} is equivalent to the wnit vector basis of I*, the space I
is isomorphic to i*, whence, by the theorem of Babenko [3], 7 has a nor-
malized conditional basis. However, this contradicts our hypothesis
that in B all normalized bases are equivalent.

2° Assume that all bases in & are unconditional and let {x,} be a nor-
malized basis of E. Then all bases of the subspace [»,;] of B spanned by
the sequence {z,;} are unconditional. Hence, by part 1° proved above,
there exists a normalized unconditional basis {y} of [#,] which is not
equivalent to {w}. Thus, either the basis {x,}, or the basis {(z,} of I,
defined by

Rgj1 = DLgjyy 2y =Yy (J=1,2,..,

is a normalized non-symmetric unconditional basis of F. Therefore, by
proposition 3, the space F has a conditional basis. However, this contra-
diets our hypothesis that in # all bases are unconditional. Thig completes

the proof of the theorem.

§ 4. Remarks and unsolved problems

44. Remark 1. In every infinite-dimensional Banach spaco B with
@ basis there emist @ continuum of mutually non-equivalent normalized con~
ditional bases.
. Proof. According to the theorem proved above, there exists in J/
a normalized conditional basis {x,}. Then, since {z,} is conditional, there
o0

exist a sequence of scalars {a,} and an #*<F* such that 3 a;@; 18 conver-
Tl

gent but

0

D18 ()] = oo,

=1
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Let &, = signa*(a,#,) (0 =1,2,...). Then

w
~
E; U Wy
1=1

Hence there exists an increasing sequence of positive integers {m,}
with the following properties:

1 O
= "IWZ | ()] = 400 for m - 4oo.
=i

1

1
@) || 3 ww<g (m=0im+1<l<mgn=1,2,..,
[T |
, Ny ‘
(30) ” qunll=1l m=1,2,..).
i=mn,_]+1

Now, for each increasing sequence of positive integers {p;} let us
define a normalized conditional basis {49} of B by

& %4 for mpn_1+1 <] < mpn,

(31) .
@ for other j

Y =

(n=1,2,...).

We claim that for {p;} and {p;} such that the set ({pi\\{p:})
o ({pYP\{pi]) is infinite (), the bases {y*?} and {y} are not equiv-
alent. In fact, assume that, say, {pi}\{pi'} = {p;,} is infinite (the treatment
of the case where {p; }\[p:} is infinite is similar) and let

B = &0y mp;;k-—l'l—l <j <mp}k;
N for other j

for

(32) (k=1,2,...).

Then, by (32) and (31) we have

DBy = 3 vimy,

=1 j=1

_ a; for mp;k_l—{—l <j< M s
where y; = .
0  for other j

F=1,2....),

and, by (29), this series is convergent. On the other hand, by (32), (31)
and the definition of {p;}, we have

> By = 3 8,

Fa=1 k=1

ga; for m,,;k_l—l—l << Moy s
0 for other j

(k=1,2,..),

where &5 = t

whence, by (30) and since {p;} is infinite, this series is divergent. Thus

(1) The symbol {p;} denotes the set of all elements of the sequence {pi}.
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the bases {y?} and {9’} are not oquivalent. Since there oxisty
a continuum of increasing sequences of positive integers {p;} such that
for {pi} = {p{} even both {pi\ipi} and {p;}\lp:} aroe infinite ("),
the corresponding collection of hases {yf"'} of B has the property re-
quired in remark 1. This completes the proof.

4.2. Tor conditional bases the usual condition of being equivalent
is too strong, since a transformation of the form g, = A2, (n ==1,2,...),
where

(33)

0 < inf|4,| << supld,| «< -}-00,

3 W
leads 10 & basis {y,}, which in general is not equivalent to the basis {m,}.
Therefore, the following less restrictive condition of “affine equivalence”
geems to be useful:
' Definition 5. We shall say that a basis {z,} of a Banach space B
is affinely equivalent to a basis {y,} of a Banach gpace F if there oxists
a sequence of scalars {A,}, 4, %40 (n =1,2,...) such that {@,} is oqui-
valent to the basis {4,¥,} of the space F in the wusnal sense, i.e. such
that

o0 o)

1 . . e s

2 a@; 18 convergent if and only if E Ayoyyy 18 convergent.
fe=l (3

ProBLEM 1. Do there exist, in every infinite-dimensional
Banach space with a basis, two bases which ave not affinely equivalent?

4.3. Bari [6] and Gelfand [17] have proved that in the space I* all
normalized unconditional bages (and hence all normalized unconditional
basic sequences) are equivalent.

Remark 2. Let B be an infinite-dimensional Banach space with
an unconditional basis, in which all normalized unconditional basic sequences
are equivalent. Then E 48 isomorphic fo 1.

Proof. Let {#,} be a normalized unconditional basis of .
Then, by a theorem of Dvoretzky [10], there exist an increasing

sequence of positive integers {m,}, a sequence {I,} of subspaces of
B with

(34) dim B, = n,

By o (20,01 (Mg = 0;m =1,2,,.)

(f‘) In fact, let ¢ be a one to one mapping of ¥ = {1, 2, 3, ...} onto the sot of

a,l}a)ra.tmna.l nunabers. Take, for each real number a a sequence of rational numbers
i o)

{g)} such that lim ¢ = o and let P5) = =g (n = 1,2, ...). Then the collection

Tir+00
of all sequences {p{®} has the required propertics.

icm
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and a normalized basis {g;}]2,, .1 of B, where p; = $(k+1)k
(k=0,1,2,...) such that we have

Dp,
&
I3 e

Gyl

T o
< ]/ DXRIZEEE1 I e
1 i 1

(EFDEEE i=Pp—1+

(35)

for any scalars ay, i1y Gy, 125
We claim that the sequence

o
&)= HLJI Ty AN

oy, (B=1,2,...).

i{s an unconditional basic sequence. In fact, let {a,}, {4,} be two sequences
of sealars, with {1,] <1 (0 =1,2,...). Leb

b
Yn == 23@:2; (n=1,2,....
b= Dk

Then, by (34), {y.} is a block basic sequence with respect to {@n},
whence, by a remark of [7], {y.} is an uneconditional basic sequence.
Hence, by our hypothesis, the basic sequence {Yn/llyall} is equivalent
to {x,}, and thus there exist two constants 4, B >0 guch that we have

1
6 Al 2:‘ ol = 4| Dl
Nl n=1

1 1
<[| Xznie <3| 3w

On the other hand, by (35) and |4 <1 (4 =1,2,...) we have

S—
[ <]/. D el

=A

I=1,2,..).

i=Dp—p+1
2 P
g]/ N jag <z 3 amH (n=1,2,...)-
t=Pp—m 11 =Py +1

Hence, since {,} is an unconditional basis, there exists a constant
0 =1 such that

] ..1.1 1 }1
N Zliaizi == H Z Yn é:‘? H Z H:’/n”wn
i=1 M=l n=1
1 Pn
g%?. ZH E a2 || %; I=1,2,...).
=l de=Dy g+l
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Thus, by (36) (applied for 4; =1, 4 ==1,2,...), we have

1] ! ty,
B0 1 \ )
H 12; Lz || < /i H Z 24 [’Wé

L S

Vi
1) S

o1

(l=1,2,..,),

which. proves that {z} is an unconditional basic sequoence.

Since by our hypothesis all normalized unconditional basie sequences
in B are equivalent, it follows that the basic sequence {2} is symmetrie,
whence there exists & constant K > 1 such that

m mn

\ - Y
HZ W2y, || < K“Z My,

=1 i

for any couple of increasing sequences of positive integers {g}, {r;} and
any scalars a, &y, ..., an (m =1,2,...). This, together with (35) and

Pn—Pna=n (n=1,2,...) gives
'n'1 '
< /(]/_SJl lag*

n "
. N
H 2 @i H S‘KH 24 ®ifpy .y
=l Y]
I N
. hl
oo o
Foal

(3
. Y
< 2K “ E @i 2y, ,“4‘
Bl
for any scalars ay, ay, ..., 4, (v =1,2,...), and thus the basic sequence
{#a} is equivalent to the unit vector basis of I*. Since by our hypothesis
{z,} is equivalent to {z,}, it follows that {m,} is equivalent to the unit
vector basis of ¥, which completes the proof.
ProBrEM 2. Let B be an infinite-dimensional Banach space with an

unconditional basis, in which all normalized unconditional basic BOqUenceN
are c-equivalent. Is B isomorphic to 1*?

We recall that two basic sequences {y,}, {2,} are said to be o-equi-
valent [26] if there exists a permutation ¢ of N == {1,2,38,...} such that
the basic sequences {y;}, {#,m} are equivalent.

PIT,OBLEM 3. Let B be an infinite-dimensional Banach §Pace, Non-iso-
morphie to I and having an unconditional basis. Do there exiat in ¥ any
two non-equivalent normalized unconditional bases?

In [26] it h.as been proved that the angwer is affirmative for I == I
?.nd B=1I° withl<p = 2, and it has been remarked that the answer
is not known for B = ¢, and B = I. From the proof of proposition 4 (d)

(87)

icm
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above it follows that an affirmative answer for ¥ = ¢, and ¥ = would
imply an affirmative answer for all non-reflexive Banach spaces having
an unconditional basis.

4.4. The following extension of some definitions of Bari [6] seems
to be useful:

Definition 6. We shall say that a basic sequence {z,} in a Banach
space J is Besselian if

00 . 0“)1 N .
2 w2 18 convergent = Z [as|* < o0
Fal deml

we shall say that the basic sequence {z,} is Hilbertion if

o o
2 (o) < 400 = Zaiz., is convergent,
T ), sl

Remark 3. In every infinite-dimensional Banach space B there e@ist
o normalized basic sequences {yn}, {#n} such that {yn} is non-Besselian
and {z,} ts non-Hilbertian.

In fact, this can be proved by a method similar to that used by
V. I, Guraril in [19].

ProBuEM 4. Does there exist in every infinite-dimensional Ba'.nagh
space with a basis, a normalized non-Besselian basi_s"# Does there exist in
every such space a normalized non-Hilbertian basis? .

4.5. ProBrEM 5. Let (H, {«;}) be an i.nﬁnite-dimensionﬁl J.Symm'etrlc
space which admits a constant 0 =1 such tha,tnfor any 2"-dimensional
subspace By, of B spanned by 2" elements {mjk}%d,:l c {z} (n =1, ; y - ...)
the symmetric constant of the correspondn':l.g Haa:r system {94, i1 0
(B, {@,Hm) 18 <C. Is E then isomorphic to I*? . .

Wo call the symmetric constant of a symmetric basie sequence
{#) in a Banach space I the least constant K >1 for which (37)
is satisfied.

4.6. Dynin and Mitiagin [11], [26] have proved th_a,t m an F—spa.clei
(i. e. a complete metrizable locally convex space) le}mh is nuclear 2
bases (and hence all basic sequences) are unconditional.

ProsraM 6. Let F be an F-space in which all basic sequences are
unconditional. Ts B nuclear? '

An affirmative answer to the following problem would constitute
a natural extension to F-spaces of the second assertion of our theorem:

ProrrEM 7. Let B be an F-space with a basis, in which all bases
are unconditional. Is ¥ nuclear?
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