

A Liouville algebra of non-entire functions

bу

F. T. BIRTEL* (Tulane, La) and J. A. LINDBERG, Jr. (Syracuse)

1. Introduction. The results of [2] do not answer this question: Does there exist a Liouville F-algebra A of functions on the complex plane which is strictly larger than the algebra $\operatorname{Hol}(C)$ of entire functions? The purpose of this paper is to exhibit such an algebra.

A Liouville F-algebra is a metrizable complete locally multiplicatively convex topological algebra in which the only elements with bounded spectra are the constants. Singly-generated (polynomials in a single element are dense) Liouville F-algebras of continuous functions on the plane are always topologically and algebraically isomorphic to $\operatorname{Hol}(C)$ with the compact-open topology (cf. Theorem 3.5, [2]). The example which we construct is singly-generated. This leads to the conclusion that certain discontinuous functions on the plane are in this algebra. We do not show the existence of a Liouville F-algebra (not singly-generated!) of continuous functions on the complex plane which is strictly larger than $\operatorname{Hol}(C)$. (It is an open question as to whether or not such a Liouville F-algebra exists.)

- 2. The construction. We begin by describing a sequence of subsets M_m of the plane which satisfy:
 - (i) $M_{m+1} \supset M_m$ for all m,
 - (ii) each M_m is compact and non-separating,
 - (iii) $\bigcup_{m=1}^{\infty} M_m = C$, the complex numbers,
 - (iv) for each k, $\bigcap_{m=k}^{\infty} bd\ M_m = \{(0,y)\colon 0\leqslant y\leqslant k\}.$

To this end, for each pair of positive integers m, n let

$$a_{m,n} = \left(\frac{2n+1}{2n(n+1)}, m\right)$$

^{*} Supported by NSF Grant GP 1839.

if n is odd and

$$a_{m,n} = \left(\frac{1}{n}, \frac{m}{n}\right)$$

if n is even. For each m, let B_m denote the broken line segments formed by joining $a_{m,n}$ to $a_{m,n+1}$ for every n, and let B'_m denote the reflection of B_m about the y-axis. Let M_m be the bounded closed subset of the plane bounded by: B_m , B'_m , $\{(x,m): 1 \le x \le m \text{ or } -m \le x \le -1\}$, $\{(0,y): 0 \le y \le m\}$, $\{(\pm m,y): -m \le y \le m\}$ and $\{(x,-m): -m \le x \le m\}$. It is evident that the sequence of subsets M_m so constructed satisfies properties (i)-(iv) (see figure below).

Now, for each m, let A_m be the uniform closure on M_n of the polynomials in z. By a well-known theorem of Mergelyan, each A_m is the commutative Banach algebra of all continuous functions on M_m which are analytic on the interior of M_m . Let $\pi_i^i : A_i \to A_j$ be the algebra isomorphism given by $\pi_i^i(f_i) = f_i \mid M_j$, $f \in A_i$, for $i \ge j$; $i, j = 1, 2, \ldots$ $(f \mid M_j$ denotes the restriction of f in A_i to the set M_j). The collection $\{A_i; \pi_j^i\}$ determines a dense inverse limit system; that is,

- (i) $\pi_k^i = \pi_j^i \circ \pi_k^j, \ i \geqslant j \geqslant k; \ i, j, k = 1, 2, ...,$
- (ii) $\pi_i^i(A_i)$ is dense in A_i , $i \geqslant j$; i, j = 1, 2, ...

Let A be the inverse limit of this system. Write π_i for the canonical projection of A into A_i , $i=1,2,\ldots$ In the terminology of Arens [1], A is a strongly dense inverse limit of the Banach algebras A_m . Thus A is a singly-generated F-algebra. The topology of A is determined by the norms $\|\cdot\|_m$ on A given by

$$||f||_m = ||\pi_m(f)||_{\infty}$$
 for $f \in A$.

In order to realize A as an algebra of functions on the plane, we use the usual Gelfand representation of A on its closed maximal ideal space (or space of non-zero continuous complex-valued multiplicative functionals) M. Each maximal ideal of A_m is given by point-evaluation at a point of M_m , and the closed maximal ideals of A can likewise be identified with point-evaluations ϱ_x as follows:

$$\varrho_z(f) = (\pi_k f)(z)$$
 where $z \in M_k$ and $f \in A$.

Consequently, M can be identified set-wise with C and f with the function, also denoted by f, given by

$$f(z) = \varrho_z(f)$$
 for $z \in C$.

This provides an isomorphic representation of A as an algebra of functions on C. Thus, A is isomorphic to the algebra of all complex-valued functions f such that $f \mid M_m \in A_m$ for all m.

M=C is topologized with the weak* topology determined by A, the weakest topology rendering all functions in A continuous. Since each M_m is compact, the relative weak* topology on M_m agrees with the usual Euclidean topology on M_n as a subset of the complex plane.

It will be convenient to consider another topology on M=C, which we call the δ -topology of C. A set $U\subset C$ is δ -open if and only if $U\subset M_m$ is relatively weak* open for each $m=1,2,\ldots$ Trivially, the δ -topology is stronger than the weak* topology.

3. Main results. The following lemmas will be established:

LEMMA 1. The δ -topology on C is strictly stronger than the Euclidean topology on C.

LEMMA 2. There exist functions in A which are discontinuous when C is topologized with the Euclidean topology.

LEMMA 3. Every non-constant function in A is unbounded.

From these lemma and our preliminary remarks we have

THEOREM. A is a singly generated Liouville F-algebra strictly larger than the algebra $\operatorname{Hol}(C)$ of entire functions on the complex plane.

- 4. Proofs of the lemmas. Proof of lemma 1 (1). Let z_0 be any point on the positive y-axis and let S be an open Euclidean neighborhood of z_0 . Choose a sequence $\{z_m\}$ such that
 - (i) $z_m \to z_0$ as $m \to \infty$,
 - (ii) $z_m \in M_m M_{m-1}$ for each m = 1, 2, ...

From our construction, this choice is clearly possible. Let $S^* = S - \{z_m : m = 1, 2, ...\}$. Then $S^* \cap M_m = (S - \{z_k : k = 1, 2, ..., m\}) \cap M_m$ is

⁽¹⁾ We wish to thank Professor L. B. Treybig for this concise version of the proof.

relatively weak* open in each M_m . Hence z_m does not converge to z_0 in the δ -topology. Therefore, the δ -topology on C is strictly stronger than the Euclidean topology on C.

Proof of lemma 2. Suppose every function in A is continuous when C is given the Euclidean topology. Then, since basic weak* neighborhoods are of the form:

$$V_{z_0} = \{z \in C : |f_i(z) - f_i(z_0)| < \varepsilon, \, \varepsilon > 0, \, f_i \in A, \, 1 \leqslant i \leqslant n\},\,$$

every weak* neighborhood of z_0 is a Euclidean neighborhood. Conversely, every Euclidean neighborhood is a weak* neighborhood, since the identity function $(z \to z)$ is in A. Thus the weak* topology and Euclidean topology agree on C. It is well-known that the topology of a locally compact space is determined by the family of compact sets in the sense that a set is open if and only if its intersection with every compact set is relatively open. Even better, C is hemi-compact in the weak* topology: the sequence of weak* compact sets M_m has the property that any compact set is contained in some M_m . See Michael [3], p. 22. These facts combine to establish the equivalence of the weak* and δ -topologies of C, thereby producing a contradiction of Lemma 1.

Proof of lemma 3. Suppose there exists a bounded non-constant function f in A. Under this assumption we show f must be continuous at each point of the positive y-axis. But by construction f is analytic everywhere off the positive y-axis. So f is analytic and bounded in the entire plane and therefore constant.

Choose a closed sphere S centered at the origin of radius r. Let S_1 and S_2 denote, respectively, the intersection of S with the closed right and left half planes. $f \mid S_k$ is bounded and analytic on the interior of S_k , k=1,2. Consequently, $f \mid \operatorname{int}(S_k)$ has almost everywhere boundary values $F_k(z)$. Now $f \mid M_m$ is continuous and every point on the positive y-axis can be approached from within M_m for any fixed m, so $F_1(iy) = F_2(iy)$ for almost every y such that $0 \leq y < r$. Furthermore, $f \mid bd(S_k)$ is continuous with the possible exception of the point ir and agrees almost everywhere with F_k . Therefore $f \mid \operatorname{int} S_k$ can be recovered from $f \mid BdS_k$. Finally, the fact that $f \mid \{iy \colon 0 \leq y < r\}$ is continuous implies the continuity of f at all points iy with $0 \leq y < r$. (More precisely, the argument can be carried through first by mapping S_k conformally onto the unit disc.)

5. Concluding remarks. Our theorem strengthens the results of [2] by showing that, in the absence of condition Φ of that paper, Liouville algebras strictly larger than $\operatorname{Hol}(C)$ can be constructed. It would be interesting to have explicitly constructed a function in A which is not entire.

References

- [1] R. Arens, Dense inverse limit rings, Mich. Math. J. 5 (1958), p. 169-182.
- [2] F. T. Birtel, Singly-generated Liouville F-algebras, ibidem, 11 (1964),p. 89-94.
- [3] E. A. Michael, Locally m-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952),

THE TULANE UNIVERSITY OF LOUISIANA SYRACUSE UNIVERSITY

Reçu par la Rédaction le 16. 1. 1964