On Fourier transforms of distributions with one-sided bounded carriers

bу

Z. ZIELEŹNY (Wrocław)

Ehrenpreis [2], [3], Gelfand and Silov [4] have defined Fourier transforms of all distributions as functionals on a space of entire functions. The space D' of these functionals is provided with a topology to make the Fourier transformation a topological isomorphism. By a generalization of the Paley-Wiener theorem (see [4]), Fourier transforms of distributions with compact carriers are entire functions of exponential type, slowly increasing for real values of the arguments. Moreover, the convolution T*S of an arbitrary distribution T and a distribution S with compact carrier is transformed into a product FG, which is defined in D' in a natural way.

However, if T and S are distributions of one variable and both have, for example, left-sided bounded carriers, the convolution T*S (in \mathscr{D}') still exists. The problem now arrises to define the corresponding operation between elements of D' and to characterize all those elements, which are Fourier transforms of distributions with left-sided bounded carriers.

In the case of square integrable functions, Fourier transforms of functions with left-sided bounded carriers are extendable analytically to the upper half-plane (see [9]). A similar result was proved (by Bogolubov and Parasiuk [1], Lions [5], Mikusiński [6]) for tempered distributions.

The purpose of this paper is to characterize Fourier transforms of distributions and infinitely differentiable functions with left-sided bounded carriers in the general case by means of a semi-regularity property, and to introduce in the corresponding sets D_+' and D_+ a multiplication, which we prove corresponds to the convolution of the original distributions or functions.

I am grateful to J. E. Gilbert for useful discussion.

§ 1. Preliminary notions. We denote by C the plane of complex numbers and by R its real line. For any $u \in C$ we write $u = \xi + i\eta$, where ξ and η are the real and imaginary parts of u.

All functions under consideration are complex valued. A function f on R is slowly increasing, if $f(\xi) = O(|\xi|^k)$ as $|\xi| \to \infty$, for some k; f is

rapidly decreasing, if $|\xi|^k f(\xi) = o(1)$ as $|\xi| \to \infty$, for every k. The carrier of a continuous function f on R is the closure of the set of points, where f is different from zero.

Throughout the paper we take as known the general notions and fundamental theorems of the theory of distributions [7]. We denote by \mathscr{E} the space of all infinitely differentiable functions on R, by \mathscr{D} , \mathscr{D}_{-} and \mathscr{D}_{+} its subspaces formed of functions with compact, right-sided bounded and left-sided bounded carriers respectively. The topology in each case is that introduced in [7]. \mathscr{D} is the strict inductive limit of (F)-spaces $\mathscr{D}_{(-l,l)}$, consisting of infinitely differentiable functions, whose carriers are contained in the interval (-l,l). Similarly, \mathscr{D}_{-} is the strict inductive limit of spaces $\mathscr{E}_{(-\infty,l)}$ of infinitely differentiable functions vanishing for x < l.

The corresponding strong dual spaces are \mathscr{E}' , \mathscr{D}' , etc.; \mathscr{E}' is the space of distributions of compact carriers, \mathscr{D}' the space of all distributions and \mathscr{D}'_+ the space of distributions with left-sided bounded carriers. The carrier of a distribution T is the complement of the largest open set Ω , such that $T(\varphi) = 0$ for every function $\varphi \in \mathscr{D}$ with carrier $\subset \Omega$. By $\mathscr{E}'_{(a,b)}$ we denote the space of distributions, whose carriers are contained in (a,b). We write e. g. \mathscr{D}'_x or \mathscr{E}'_x , when considering spaces of distributions of the "variable" x.

The value of the functional T on φ is often denoted by $T \cdot \varphi$ instead of $T(\varphi)$. We also adopt the notation $T(\varphi) = T(\check{\varphi})$, where $\check{\varphi}(x) = \varphi(-x)$. For any function $\varphi \in \mathscr{D}$, the Fourier transform $\Phi = \mathscr{F}\{\varphi\}$ is defined by

$$\Phi(u) = \int_{-\infty}^{\infty} \varphi(x) e^{2\pi i x u} dx.$$

 $\Phi(u)$ is an entire function of exponential type, rapidly decreasing on R. Conversely, if $\Phi(u)$ has the latter properties, then it is the Fourier transform of a function $\varphi \in \mathcal{D}$, given by Fourier's inversion formula

$$\varphi(x) = \int_{-\infty}^{\infty} \Phi(\xi) e^{-2\pi i x \xi} d\xi;$$

we write briefly $\varphi = \mathcal{F}^{-1}\{\Phi\}$.

In order to define Fourier transforms of all distributions we proceed in the following way. Let us denote by D the space of Fourier transforms of functions $\varphi \in \mathcal{D}$, provided with a topology making the Fourier transformation a topological isomorphism (see [2] and [3]). Then, for any distribution T, the Parseval equation

$$F \cdot \Phi = T \cdot \dot{\varphi},$$

where $\varphi \in \mathcal{D}$ and $\Phi = \mathcal{F}\{\varphi\}$, determines F as a continuous linear functional on D. We call F the Fourier transform of T and we write $F = \mathcal{F}\{T\}$.

Conversely, given the functional F, one can use equation (1) to define the distribution $T = \mathscr{F}^{-1}\{F\}$. Thus the strong dual D' of D is the space of Fourier transforms of distributions.

A continuous function f on R, slowly increasing at infinity, determines an element $\hat{f} \in \mathscr{D}'$ by equation

$$\hat{f}\cdot\Phi = \int\limits_{-\infty}^{\infty} f(\xi)\Phi(\xi)\,d\xi;$$

we identify \hat{f} with f.

Fourier transforms of distributions with compact carriers are entire functions of exponential type, slowly increasing on R. The space of these functions, with the topology introduced in [3], will be denoted by E'.

We also use infinitely differentiable functions and distributions of two variables together with their Fourier transforms. The corresponding spaces are \mathcal{D}_{xy} , \mathcal{D}'_{xy} , \mathbf{D}_{uv} and \mathbf{D}'_{uv} .

§ 2. The tensor product and semi-regularity. The tensor product $F_u \otimes G_v$ of elements $F \in \mathcal{D}'_u$ and $G \in \mathcal{D}'_v$ is an element of $\mathcal{D}'_{u,v}$ defined by equation

(2)
$$F_u \otimes G_v \cdot \Phi(u) \Psi(v) = F(\Phi) G(\Psi),$$

where $\phi \in D_u$ and $\Psi \in D_v$. Its existence and unicity can be proved similarly as for distributions (see [7], vol. I).

We denote by $F_{u+v} \otimes G_v$ the element of $D'_{u,v}$ obtained from the tensor product $F_u \otimes G_v$ by means of the substitution $u \to u+v$, $v \to v$. In other words,

(3)
$$F_{u+v} \otimes G_v \cdot \Theta(u,v) = F_u \otimes G_v \cdot \Theta(u-v,v),$$

for every $\Theta \in D_{u,v}$. The definition (3) is consistent, because the substitution $u \to u - v$, $v \to v$ is a continuous operation in $D_{u,v}$.

Similarly, for $T \in \mathcal{D}_x$ and $S \in \mathcal{D}_y$, $T_x \otimes S_{y-x}$ denotes the distribution obtained from the tensor product $T_x \otimes S_y$ by the substitution $x \to x$, $y \to y - x$.

If F_u and G_v are Fourier transforms of the distributions T_x and S_v respectively, then

$$(4) F_u \otimes G_v = \mathscr{F}\{T_x \otimes S_y\},$$

where the Fourier transformation \mathscr{F} is understood in two dimensions. LEMMA 1. If F_u and G_v are Fourier transforms of distributions T_x and S_y respectively, then

(5)
$$F_{u+v} \otimes G_v = \mathscr{F} \{ T_x \otimes S_{y-x} \}.$$

Proof. Let $\vartheta(x,y)$ be any function of $\mathscr{D}_{x,y}$ and $\varTheta(u,v)$ its Fourier transform. Then

$$\begin{split} \Theta(u-v,v) &= \int\limits_{-\infty}^{\infty} \vartheta(x,y) e^{2\pi i (ux-vx+vy)} dx dy \\ &= \int\limits_{-\infty}^{\infty} \vartheta(x,y+x) e^{2\pi i (ux+vy)} dx dy = \mathscr{F} \{\vartheta(x,y+x)\}. \end{split}$$

Hence, in view of (3) and (4), we obtain

$$F_{u+v} \otimes G_v \cdot \Theta(u, v) = F_u \otimes G_v \cdot \Theta(u-v, v)$$

$$= T_x \otimes S_y \cdot \check{\vartheta}(x, y+x) = T_x \otimes S_{y-x} \cdot \check{\vartheta}(x, y),$$

and so the correspondence (5).

In what follows the elements of $\mathbf{D}'_{u,v}$ are called *kernels*. If K is a kernel and $\Psi \in \mathbf{D}_{o}$, then

$$I = K \cdot \Psi$$

is an element of D'_u defined by equation

$$I \cdot \Phi = K \cdot \Phi \Psi$$

where $\Phi \in \mathcal{D}_u$.

Definition. A kernel K is said to be semi-regular in u, if

$$(6) \Psi \to K \cdot \Psi$$

is a continuous mapping of D_v into E'_u . If (6) transforms continuously D_v into D_u , then K is called *strongly semi-regular* in u (1).

In this paper we are concerned solely with kernels of the form $K_{u,v} = F_{u+v} \otimes G_v$.

§ 3. Fourier transforms of distributions and infinitely differentiable functions with left-sided bounded carriers. We denote by D'_{+} and D_{+} the subsets of D' formed of those elements, which are Fourier transforms of distributions and infinitely differentiable functions with left-sided bounded carriers respectively.

For the characterization we need the element $H \in \mathbf{D}'$ defined by equation

(7)
$$H \cdot \Phi = -\int_{-\infty+ct}^{\infty+ct} \frac{\Phi(u)}{2\pi i u} du$$

where $\Phi \in D$ and c > 0. It is an easy matter to verify that H is the Fourier transform of Heaviside unit function

$$h(x) = \begin{cases} 0 & \text{for } x < 0, \\ 1 & \text{for } x \geqslant 0, \end{cases}$$

and therefore $H \in \mathbf{D}'_{+}$.

THEOREM 1. For any two elements F, $G \in D'_+$, the kernel $F_{u+v} \otimes G_v$ is semi-regular in u; moreover, if $F \in D_+$, $F_{u+v} \otimes G_v$ is strongly semi-regular in u.

Conversely, if $F \in D'$ and the kernel $F_{u+v} \otimes H_v$, with the element H defined by (7), is semi-regular or strongly semi-regular in u, then $F \in D'_+$ or $F \in D_+$ respectively.

Proof. We prove the part of theorem 1, which relates to the semiregularity of the kernels in question; the proof of the remaining part is similar.

Let F and G be Fourier transforms of the distributions T and S respectively. Then, by virtue of lemma 1,

(8)
$$F_{u+v} \otimes G_v \cdot \Psi(v) = \mathscr{F} \{ T_x \otimes S_{y-x} \cdot \dot{\psi}(y) \},$$

where $\Psi \in D$ and $\psi = \mathscr{F}^{-1}\{\Psi\}$. This correspondence shows that the kernel $F_{u+v} \otimes G_v$ is semi-regular in u if and only if

$$(9) \psi \to T_x \otimes S_{y-x} \cdot \psi(y)$$

is a continuous mapping of \mathscr{D}_{y} into \mathscr{E}'_{x} .

The distribution on the right-hand side of (9) may be represented as a product of T with the infinitely differentiable function $\check{S} * \psi$. If now T = S = 0 for x < a < 0, then

$$(10) \psi \to \check{S} * \psi$$

transforms continuously $\mathscr{D}_{(-l,l)}$ into $\mathscr{E}_{(-\infty,l-a)}$, and also

$$(11) \vartheta \to \vartheta T$$

transforms continuously $\mathscr{E}_{(-\infty,l-a)}$ into $\mathscr{E}'_{(a,l-a)}$. Therefore the mapping (9), being compound of (10) and (11), transforms continuously $\mathscr{D}_{(-l,l)}$ into $\mathscr{E}'_{(a,l-a)}$ for every positive l. Hence it follows that (9) is a continuous linear mapping of \mathscr{D} into \mathscr{E}' .

Conversely, let ψ be a function of $\mathscr D$ such that $\psi(x)=0$ for x<a and $\int\limits_0^\infty \psi(x)\,dx=1$. Then

$$\tilde{\vartheta}(x) = (\check{h} * \psi)(x) = \int_{x}^{\infty} \psi(y) dy$$

⁽¹⁾ The notion of semi-regularity is similar to that introduced by L. Schwartz for distributions (see [7] and [8]).

is a function of \mathscr{D}_{-} and equals 1 for x < a. Consequently, for any distribution T, condition $\widetilde{\mathscr{D}}T \in \mathscr{E}'$ implies that $T \in \mathscr{D}'_{+}$, which is the desired result. We use the notation

$$\Gamma(F, G, \Psi; u) = F_{u+v} \otimes G_v \cdot \Psi(v),$$

where $F, G \in \mathcal{D}'_+$ and $\Psi \in \mathcal{D}$. For fixed F, G and $\Psi, I'(u) = I'(F, G, \Psi; u)$ is a function of \mathcal{E}'_u .

Remark. The following conditions are equivalent:

- (C₁) $F = \mathcal{F}\{T\}$, where T = 0 for x < a.
- (C₂) Given any $G \in \mathbf{D}'_+$ and $\mathcal{Y} \in \mathbf{D}$, there exist constants k and M such that

$$|\Gamma(F,G,\Psi;\,\xi+i\eta)| \leqslant M(1+|\xi|^k)e^{-2\pi i\eta}$$

for $\eta > 0$.

In fact, by a theorem on analytic continuation of tempered distributions (see [1], [5], and [6]), condition (12) in the upper half-plane $\eta > 0$ is necessary and sufficient for the function $\Gamma(u) = \Gamma(F, G, \Psi; u)$ of E'_u to be the Fourier transform of a distribution, which vanishes for x < a. The equivalence of (C_1) and (C_2) can now be obtained by use of (8).

§ 4. Multiplication in D'_+ and D_+ . Let f and g be functions of \mathscr{D}_+ . Then the convolution

(13)
$$(f * g)(x) = \int_{-\infty}^{\infty} f(y) g(x-y) dy$$

also belongs to \mathcal{D}_{\perp} .

The convolution of a distribution $T \in \mathscr{D}'_+$ and a function $\psi \in \mathscr{D}$, defined as

$$(T * \psi)(x) = T_y \cdot \psi(x - y),$$

represents a function of \mathscr{D}_+ . Thus, if S is another distribution of \mathscr{D}_+' , we may write

$$(14) (T*S) \cdot w = T \cdot (\check{S}*w).$$

We now introduce in \mathbf{D}_{+}' a multiplication and we prove that, under the Fourier transformation, it corresponds to the convolution (14). In particular, the product of elements of \mathbf{D}_{+} corresponds to the convolution (13).

According to the results of the preceding section, for any pair of elements F, $G \in D'_+$ and any $u_0 \in C$,

(15)
$$\Gamma(F,G,\Psi;u_0)$$

determines a continuous linear functional on D. We find the corresponding distribution.

LIEMMA 2. The element of D'_{+} determined by (15) is the Fourier transform of (aT)*S, where $T = \mathscr{F}^{-1}\{F\}$, $S = \mathscr{F}^{-1}\{G\}$ and $\alpha(x) = e^{2\pi i x u_0}$. Proof. For $F, G \in D'_{+}$ and $Y \in D$,

$$\Gamma(u) = \Gamma(F, G, \Psi; u)$$

is a function of E', and so $V=\mathscr{F}^{-1}\{\varGamma\}$ is a distribution with compact carrier. Moreover,

$$\Gamma(u_0) = V \cdot \alpha$$
.

But from lemma 1 it follows that

$$V = \vartheta T$$

where $\vartheta = \check{S} * \check{\psi}$ and $\psi = \mathscr{F}^{-1} \{ \mathcal{Y} \}$. Therefore $\Gamma(u_0) = \vartheta T \cdot \alpha = \alpha T \cdot \vartheta = \alpha T \cdot (\check{S} * \check{\psi}) = [(\alpha T) * S] \cdot \check{\psi}$. The lemma is thus proved.

Definition. Let F and G be elements of D'_+ . We define the product $F \circ G$ as follows:

$$(16) (F \circ G) \cdot \Psi = \Gamma(F, G, \Psi; 0)$$

for every $\Psi \epsilon \mathbf{D}$.

From lemma 2 we obtain immediately

THEOREM 2. For any two elements $F, G \in D'_+$, their product $F \circ G$ is an element of D'_+ and

$$(17) F \circ G = \mathscr{F} \{T * S\},$$

where $T = \mathscr{F}^{-1}\{F\}$ and $S = \mathscr{F}^{-1}\{G\}$.

If either F or G belongs to D_+ , then so does the product $F \circ G$. In particular, the space D_+ is closed with respect to this operation.

From (17) it follows that the product (16) is commutative, associative and distributive with respect to addition. Moreover, it satisfies the formula

$$D(F \circ G) = DF \circ G + F \circ DG,$$

where D is the differential operator.

If the elements F and G of D'_{+} are continuous slowly increasing functions on R, then the new product coincides with the ordinary product.

References

[1] Н. Н. Боголюбов и О. С. Парасюк, Об аналитическом продолжении обобщенных функций, Докл. Акад. Наук СССР 109 (1956), р. 717-719.

[2] L. Ehrenpreis, Solution of some problems of division I, Amer. Journal of Math. 76 (1954), p. 883-903.

[3] — Analytic functions and the Fourier transform of distributions I, Annals of Math. 63 (1956), p. 129-159.

- [4] И. М. Гелфанд, и Г. Е. Шилов, Переобразования Фурье быстро растущих функций и вопросы единственности решения задачи Коши, Успехи Мат. Наук 8 (1953), р. 3-54.
- [5] J. L. Lions, Supports dans la transformation de Laplace, Journal d'Analyse Math. 2 (1952-53), p. 369-380.
- [6] J. Mikusiński, Analytic functions of polynomial growth, Studia Mathematica 22 (1962), p. 7-13.
 - [7] L. Schwartz, Théorie des distributions I, II, Paris 1950/51.
- [8] Distributions semi-régulières et changements de coordonnées, Journal de Math. Pures et Appl. 36 (1957), p. 109-127.
- [9] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford 1937.

Reçu par la Rédaction le 20. 2. 1964

Smoothness and differentiability in L_p

рĀ

C. J. NEUGEBAUER (Lafayette, Ind.)*

1. A measurable function $f: I_0 \to R$, $I_0 = [0, 1]$, R reals, will be called L_p -symmetric, L_p -symooth, if for each $x \in I_0^0$, $I_0^0 = (0, 1)$,

(1)
$$\left\{\frac{1}{h}\int_{a}^{h}|\Delta^{2}f(x,t)|^{p}\,dt\right\}^{1/p}=o(1),o(h), \quad \text{as} \quad h\to 0,$$

respectively, where $\Delta^2 f(x,t) = f(x+t) + f(x-t) - 2f(x)$. Throughout this paper p will be $\geqslant 1$. The well-known notions of symmetry and smoothness given by

(2)
$$\Delta^2 f(x,t) = o(1), o(h), \text{ as } h \to 0,$$

respectively, can be viewed as the $p=\infty$ versions of (1). The question arises whether certain of the results for (2) are also true for (1) with perhaps estimating some of the inequalities in the metric of L_n .

In particular, it is known that a measurable smooth function has a derivative on a set which is of the power of the continuum in each interval [4,10]. In [2], A. P. Calderon and A. Zygmund introduced the notion of L_p -differentiability. We say that f has at x_0 a first L_p -derivative provided there is a linear polynomial $a_0 + a_1 t$ such that

(3)
$$\left\{\frac{1}{2h}\int_{-h}^{h}|f(x_0+t)-a_0-a_1t|^pdt\right\}^{1/p}=o(h), \quad \text{as} \quad h\to 0.$$

The polynomial $a_0 + a_1 t$ is unique, and we write $a_1 = f'_{L_p}(x_0)$. One of the results that we obtain shows that L_p -smoothness implies L_p -differentiability on a set which is of the power of the continuum in each interval. That this may be the case was noted by A. Zygmund as the author learned in a conversation with E. M. Stein. We will first prove that the theorem is true for continuous functions, and then we will show that a measurable L_p -smooth function is continuous on a dense open set. We will show that this is the best possible continuity property for an L_p -smooth function and that in the case $p = \infty$ a substantial improvement is possible;

6

^{*} Supported by NSF Grant GP-1665.