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On Fourier transforms of distributions with one-sided
bounded carriers

by
7. ZIRLEZNY (Wroctaw)

Threnpreis [2], [3], Gelfand and Silov [4] have defined Fourier trans-
forms of all distributions as functionals on a space of entire functions.
The space D’ of these functionals is provided with a topology to make the
Fourier transformation a topological isomorphism. By a generalization
of the Paley-Wiener theorem (see [4]), Fourier transforms of distributions
with compact carriers are entire functions of exponential type, slowly
increasing for real values of the arguments. Moreover, the convolution
T+8 of an arbitrary distribution T and a distribution § with compact
carrier is transformed into a product F@, which is defined in D’ in a na-
tural way. .

However, if 7' and § ave distxibutions of one variable and both have,
for example, left-gided bounded carriers, the convolution T *§ (in. 2')
still exists. The problem now arrises to define the corresponding operation
between elements of D’ and to characterize all those elements, which are
Tourier transforms of distributions with left-sided bounded carriers.

In the cage of square integrable functions, Fourier transforms of
functions with left-sided bounded carriers are extendable analytically to
the upper half-plane (see [9]). A similar result was proved (by Bogolubov
and Parasiuk [1], Lions [5], Mikusiski [6]) for tempered distributions.

The purpose of this paper iz to characterize Fourier transforms of
distributions and infinitely differentiable functions with left-sided bounded
carriers in the general case by means of a semi-regularity property, and
to introduce in the corresponding sets D', and D & multiplication, which
we prove corresponds to the convolution of the original distributions or
functions.

I am grateful to J. E. Gilbert for useful discussion.

§ 1. Preliminary notions. We denote by C the plane of complex
numbers and by R its real line. For any «<C we write w = &+, where &
and 5 are the real and imaginary parts of u.

All functions under consideration are complex valued. A function f
on R ig slowly increasing, it f(£) = 0(£) as |£| - oo, for some k; fis
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rapidly decreasing, if |5]""f(5) = 0(1) a8 || — oo, for every k. Tho carrier
of a continuous function f on R is the closure of the set of points, where f
is different from zero.

Throughout the paper we take as known the general notions and
fundamental theorems of the theory of distributions [7]. We denote by &
the space of all infinitely differentiable functions on &, by 2, 2_ and 2, its
subspaces formed of functions with compact, right-sided bounded and
left-sided bounded carriers respectively. The topology in each case is
that introduced in [7]. £ is the striet inductive limit of (F)-spaces 2y,
congisting of infinitely differentiable functions, whose carriers are con-
tained in the interval (-, ). Similarly, 2 _ is the strict induetive limit
of spaces &, of infinitely differentiable functions vanishing for @ < 1.

The corresponding strong dual spaces are &', 2, ete.; &’ is the space
of distributions of compact carriers, 2’ the space of all distributions
and 9 the space of distributions with left-sided bounded carriers. The
carrier of a distribution T' is the complement of the largest open set £,
guch that T'(p) = 0 for every function gpe 9 with carrier = Q. By d’('a’b)
we denote the space of distributions, whose carriers are contained in (a, b).
We write e. g. 9 or &, when considering spaces of distributions of the
“variable” w.

The value of the functional T on ¢ is often denoted by 7:¢ instead
of T(p). We also adopt the notation T(g) = T(p), where ¢ () = @(—a)-

For any function pe 2, the Fourier transform @ = & {p} is defined by

D) = [ (@)™ .
®(u) is an entire function of exponential type, rapidly decreasing
on R. Conversely, if @ (u) has the latter properties, then it is the Fourier
transform of a function pe 2, given by Fourier’s inversion formula

f (p<5) e-ZW'ISBGdE;

we write briefly ¢ = #~'{®).

. In order_ to define Fourier tranforms of all distributions we proceed.
in the fc_)llowmg way. Let ug denote by D the space of Fourier transforms
of functions pe @, provided with a topology making the Fourier transfor-

mat.ion & topological isomorphism (see [2] and [3]). Then, for any distri-
bution T, the Parseval equation

@) P0 =15,

where pe 9 and @ = F {p}, determines ' as a continuous linear functional
on D. We call F' the Fourier transform of T and we write F = & {T}.

4 P(®) =
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Conversely, given the functional F, one can use equation (1) to define
the distribution 7' = #~*{F}. Thus the strong dual D’ of D is the space
of Fourier trangforms of distributions.

A continuous function. f on R, slowly increasing at infinity, determines
an clement f «2' by equation

fro= [feoeag;

we identify 7 with f.

Fourier transforms of distributions with compact carriers are entire
functions of exponential type, slowly increasing on R. The space of these
functions, with the topology introduced in [3], will be denoted by E'.

We algo use infinitely differentiable functions and distributions of
two variables together with their Fourier transforms. The corresponding
spaces are Dyyy Diy, Dup and Di,.

§2. The tensor product and semi-regularity. The tensor product

F.®G, of elements FeDj and GeD, is an element of Dy, defined by
equation '

@)

where @ ¢D, and WeD,. Its existence and unicity can be proved similarly
ag for distributions (see [7], vol. I).

We denote by F,..®G, the element of D}, obtained from the tensor
product F,®@, by means of the substitution v — «-+v, v 2. In other
words,

3)

for every @eD,,. The definition (3) ig consistent, because the subsbitu-
tion % —»u—wv, v -0 i3 a continuous operation in Dyy. o
Similatly, for Te¢ 2, and Se Dy, T,®8,., denotes .the. distribu-
tion obtained from the tensor product T,®8, by the substitution » — m,
Y > Y — . .
T 7, and G, are Fourier transforms of the distributions T, and 8,

respectively, then
(4)

where the Fourier transformation # iy understood in two dimensions,
Luvma 1. If P, and G, are Fourier transforms of distributions Ty
and 8y respectively, then

(8)

Fu@Gy B (u)¥ (v) = F(P)G(¥),

Fyuyo®Gy 0 (1, ) = Fu@Gy O (u—0, ),

F.@Gy, = ‘g{fl‘w@&/%

.Fu+1,® Gq, =F {Tn® Sy-ct} '
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Proof. Let #(z,y) be any function of Z,, and O(u, v) its Fourier
transform. Then

O(u—v,v) = [ [ (@, y)e™ < Magay

- f_jﬁ('“ v m)gzni(um»\—m/)dw(ly == F{O(a, Y 1)},
—00

Hence, in view of (3) and (4), wo obtain

Fuw®Gy O, v) = Iy, @(u-—wv, )

= To@ 8y (@, y-1-0) = 2@ 8, D2, ),

and so the correspondence (5).
In what follows the elements of D.Qw are called kernels. If K is a ker-
nel and ¥eD,, then

I=KY
is an element of D, defined by equation

& =K -¢F
where @eD,,.

Definition. A kernel K is said to be semi-regular in u, if

(6) V> K-¥
i3 a continuous mapping of D, into B,. If (6) transforms continuously
D, into Dy, then K is called strongly semi-regular in w (*).

In this paper we are concerned solely with kernels of the form Koy
=F, uto® Gv .

§ 3. Fourier transforms of distributions and infinitely ditferen-
tiable functions with left-sided bounded carriers. We donote by D,
and D, the subsets of D’ formed of those elemonts, which are Fourier
trangforms of distributions and infinitely ditferentiable functions with
left-sided bounded carriers respectively.

For the characterization we need tho oloment /[ eD’ dofined by
equation
pet

He(p = — 7 D(u)

(1)

(*) The notion of semi-regularity is gimilar to that introducad 7
for distributions (see [7] and iy introdused by L. Schwartz
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where @D and ¢ > 0. It is an easy matter to verify that H is the Fourier

transform. of Heaviside unit function
0 for
1 for

r <0,
© =0,
and therefore HeD) .

Tumorum 1. For any two clements ¥, GeD.., the kernel Fyn®Gy, is
semi-regular in w; moreover, if FeD,, I\, @G, is strongly semi-reqular
m u.

Conversely, if MDD’ and the kernel ¥y, o®H,, with the element H defined
by (7), s semi-regular or strongly semi-regular in w, then FeD), or FeD,
respectively.

Proof. We prove the part of theorem 1, which relates to the semi-
regularity of the kernels in question; the proof of the remaining part is
similar,

Let I and G be Fourier transforms of the distributions 7' and § res-
pectively. Then, by virtue of lemma 1,

(8) Fuyo® Gy V() = F{T.08, 0 9(¥)},

where WeD and y = F~' {¥}. This correspondence shows that the kernel
Ty w® G is gemi-regular in u if and only if

(9) 9 > Ly @8y o p(y)
is a continuous mapping of 2, into &,. .
The distribution. on the right-hand side of (9) may be represented

a8 a product of 7' with the infinitely differentiable function §*v. If now
T=8=0 for # <a <0, then

(10) p > Sxp

transforms continuously 2y into €. i-q, and also
(11) & — 9T

transforms continnously & .e1-q) into é'('a,z_a)- Therefore the map-
ping (9), being compound of (10) and (11), transforms continuously
@(.‘.1,1) into 6‘{“‘;".“) for every positive I. Hence it follows that (9) is a con-
tinnous linear mapping of 2 into &'

Conversely, let » be a function of 2 such that yp(w) =0 for z < a

and [ y(x)de = 1. Then

d(@) = (h*p)(2) =
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is a function of 2_ and equals 1 for o << a. Consequently, for any distri-
bution T, condition 9T ¢&’ implies that 1% , which is the desired resuls.
We use the notation

T(F, G, ;) = By @G ¥(v),

where F', G <D/. and WeD. For fixed ¥, ¢ and ¥, ['(u) = I'(F, G, ¥; u)
is a function of By.

Remark. The following conditions are equivalent:

(C) F =& {I}, where T' = 0 for o < a.

(C,) Given any G'eD), and WeD, there exist constants & and M
such that

(12) IN(F, &, W5 &+in) < M(L4-]4F)e

for 9 > 0.

In fact, by a theorem on analytic continuation of tempered distri-
butions (see [1], [5], and [6]), condition (12) in the upper half-plane > 0
is necessary and sufficient for the function I'(w) = I'(¥, &, ¥; u) of B,
to be the Fourier transform of a distribution, which vanighes for a < a.
The equivalence of (C,) and (C;) can now be obtained by use of (8).

§ 4. Multiplication in D), and D,. Let f and ¢ be functions of 2,,.
Then the convolution

o

(13) (fr9)@ = [ f)g@—y)dy

also belongs to 9.
The convolution of a distribution Te 2], and a function ye 2, de-
fined as

(T*p)(@) =Ty p(@—y),
represents a function of 2, . Thus, if § is another distribution of 2,
we may write
(14) (T*8)-p = T-(Swp).

We now introduce in D/, a multiplication and we prove that, under
the _Foumer transformation, it corresponds to the convolution (14). Tn
Earmzlll;a)‘r’ the product of elements of D, corresponds to the convolu-
ion, . '

According to the results of the ion, I i
) ] preceding section, for any pair of
elements ¥, G <D, and any u,e0, ¢ , i

(15) I(F, G, ¥; u,)

d.eter_mines a continuous linear funetional on D. We find the corresponding
distribution.
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LinvMA 2. The element of D determined by (15) is the Fourier trans-
form of (aT)*8, where T =F (I}, 8 =F"{G} and a(z) =™,
Proof. For F,GeD), and ¥eD,
I(u) =I'(F, 6, ¥; u)
is a function of K', and so V = FYI'} is a distribution with compact
carrier. Moreover,

I'(ug) = V-a.
But from lerama 1 it follows that
V = 4T,

where ¢ = ém]; and o =F ' {¥}. Therefore I'(uy) =T a = ol -9
— of-(§*%) = [(aT)* 81-). The lemma is thus proved.

Definition. Let ¥ and & be elements of D’.. We define the product
Fo@ as follows:

(16) (Fo@)-¥ =TI(F, G, ¥;0)
for every ¥WeD.

From lemma 2 we obtain immediately

TuEOREM 2. For any two elements F, G <D, their product Fo @ is
an dlement of D'y and

(17) Fo@ = {I+8},

where T = F~{F} and 8 =F 1 {G}.

If either F or @ belongs to D, then so does the product Fo@. In
particular, the space D, is closed with respect to this operation.

From (17) it follows that the product (16) is commutative, associative
and distributive with respect to addition. Moreover, it satisfies the

formula
D(Fo@) =DFoG+Fo DG,

where D is the differential operator.

If the elements ¥ and @ of D), are continuous slowly increasing fune-
tions on R, then the new product coincides with the ordinary product.
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Smoothness and differentiability in L,
by

C.J. NEUGEBAUER (Lafayette, Ind.)*

1. A measurable function f:I,— R, I, =[0,1], R reals, will be
called Ly,-symmetric, Ly-smooth, if for each meId, I3 = (0,1),

13 /
(1) {%f[Azf(w,t)!@dt}lp=o(1),0(h), as h—>0,
]

respectively, where 42f(x,1) = f(w-+1t)+f(z—1)— 2f(x). Throughout this
paper p will be > 1. The well-known notions of symmetry and smoothness
given by

(2) Af(z,1) =o0(1),0(h), as h—0,

respectively, can be viewed as the p = oo versions of (1). The question
arises whether certain of the results for (2) are also true for (1) with
perhaps estimating some of the inequalities in the metric of L,.

In particular, it is known that a measurable smooth function has
a derivative on a set which is of the power of the continuum in each in-
terval [4,10]. In [2], A.P. Calderon and A. Zygmund introduced the
notion of L,-differentiability. We say that f has at x, a first L,-deriva-
tive provided there iy @ linear polynomial a,- @, such that

h )
(3) {«-zl—iwi ]f(wo—}-t)——ao——altl”dt} ” =o(h), as h-0.

The polynomial a,- a4t is unique, and we write a; = fip(mo). One
of the results that we obtain shows that L, smoothness implies L,-differ-
entiability on a set which is of the power of the continuum in each in-
terval. That this may be the case was noted by A. Zygmund as the author
learned in a conversation with B. M. Stein. We will first prove that the
theorem is true for continuous functions, and then we will show that
a measurable L,-smooth function iy continuous on a dense open set. We
will show that this is the best possible continuity property for an L,-smooth
function and that in the case p = oo a substantial improvement is possible;

* Supported by NSF Grant GP-1665.
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