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Lattice points in a sphere
by

M. N. Brerouer and M. I. KNopp* (Madison, Wis.)

1. Introduction. In this paper we consider the eclassical lattice
point problem for the three-dimensional sphere. The problem can be
described as follows. Let  be a positive real number and let % be a positive
integer. Consider a k-dimensional sphere of radins ¥z and center (0,...,0).
Following the notation of Walfisz ([4]), we let Ay(2) be the number of
integer lattice points in this sphere. A simple geometric argument shows
that as # - o0, Ax(5) ~ Vi(2), where Vi(z) is the volume of the sphere
in question. The problem then is to get an asymptotic estimate of the
difference Ry (%) = Ay (2)—Vy(x).

Here we are considering only Ry(w) = A;(w)—ins’. We obtain
the following results:

(1) By(o) = 0(¢*loga), @ > +oo,

(2) By(z) = Q(2*loglogs), @ — +oo.

Of course (1) is not new. Vinogradov ([3]) has in fact shown that Ry ()

19
= 0(#% "), & > 0, an upper estimate better than (1) (). However this result
depends upon his difficult theory of exponential sums. Our estimate (1),
on the other hand, is better than the elementary result 4;(z) = O(x)
and depends only upon a fairly standard application of the circle method.
As far as we can ascertain (2) is new. It is based upon the Q-estimate
for R,(2) ([4], p. 95)

(3) R,(z) = Q(zlogloge), - +oo.

*The authors would like to thank the National Science Foundation for financial
assigtance.

(MAdded in proof. Chen Ting-run (Chinese Mathematics 4(1963), pp. 322-339)
claims the result Rg(w) =~ O(w%/3).
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370 M. N. Bleicher and M. I. Knopp
Waltisz ([4], D.94) gives only Ry(a) = Q(@ #'?), @ » +oo. In [1] it ig
ghown that hm Ry(x)a™* = hm (—Rq(w)a™ ) = 4 oo, but this of course

yields & Weaker Q-result thzm (3).
2. Preliminaries. Landauw’s formula for A,(®) (& = 4) is ([4], p. 29)

4) Ay (@) = ' ! (S(ha Q))h A 2= tg=2mintia |
F(k/Z) 1<qca}/? 7(mod @) 1 l<nse
+0(a"logr), @ > -oo.
Here S(h,q) = 5 ¢ is the famous Gaussian sum about which
a(mod g)
we need only the fact that
(8) 18 (hy @) < K,

where K is independent of & and g ([4], p. 10). The notation X" indicates
that we are to sum over only those h such that (h,q) = 1.

If (4) held for k¥ = 3 we could apply it to derive (1) without much
difficulty. However, since the proof of (4) given in [4] fails for % < 4,
we replace it for & = 3 with the following formula obtainable by the same
general method
(6) Ay(@) = 2= D n'*4-0(@*loga), @ > +oo.

n<a
Once we have (6), (1) is easily obtainable.

We will also need the following standard result ([4], p.25).

Levma 1. (Buler Summation Formula). Let V() = t— [t]— 4. If £(t)
has a continuous derivative in the interval a <t <b (@ < b), then

b

b
(7) D flm) = f FO@+¥(a)f(a)—FD)F (0)+ [P O)f (1de.

a<m<h a
This is proved by integrating f P ft)dt by parts.

3. Proof of (6) and (1). Many of the calculations done in the proof
of (4) ([4], pp. 29-35) are valid for & = 3. In particular we have ([4],
p. 33, formula (21))

(8)
.\ 2 Sk, 9)\* _ 2‘"1 ™ ) b
B ‘Z (T) B(J,;)w " P {—W— —Emn (y " E) } Wt

g<zl/2 Wmodga) nLL
+0(s**loge), - +oo.
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e 1 l
In (8), w=u ”—;‘IZyz, and 0(h,q) is an interval described as follows.
Let »'/q" and h"[q"" be the two Farey fractions of order ¥ closest to hlg

with say h'/q" <hlg <h"[q", and consider the interval[ +k B +h"]
g+q’ ¢+q

Then 6 (h, q) is obtained from this interval by translating /g to the origin
el

that is,
M4+h B "
oy g = [ B2 e -2
+e ¢ g+q" g
For our purpose here the essential fact about 6(h, q) is ([4], p. 30)

for  yeb(h,q)),
for ye0(h, q),

for any Farey fraction h/q of order zY?
By (8) we have

(9)

(10)  Ay(z) = fw‘3’22 exp {l;ﬁ ~27cmy} dy+

0(0,1) NEL

. \Y Sw' ( h,q)

p —3/92 exp {— —2Tcm(y+ )} ay+

g2 h(moa a) o(h,a) n<x

+0(@**logw), » > +oo.
Again we observe that the caleulations of [4] (pp. 33-34) are valid for
k = 3. These yield

o 3 oxpl ™ e
ZGXP " 2miny | dy

0(8,1) e
o0
_ ~32 \ ~n . 3/a
= | w exp \— — 2miny; dy+0 (@), 2 - +oo.
~e n<w @

Now

f w2 \ exp {__ —2117'1’&(!/} dy = Zenn/x fw"alze"z"i"”dy,

7l<w nE<T

and by [4], p. 35 (again valid for &k = 3),

32

(=]
w—s/ze-— zm'm/d — . T
/ YT TER)

—rnfx, 1/2

¢ n? = Qme~ ™12,

-0


GUEST


372 M. N. Bleicher and M. I. Knopp

Thus, we have

o0
f w‘mE exp {ﬂ —2-rc'my} dy = 27:2%”2
@
—00

< n<e

and (10) becomes

(11)  Ag(e) = znznl/q

n<e
+ (8(h, q) )3 f _ap { ™ ( h)}
LI A = e D N
+ 2 2 ( p . w 2 exp p win | y - dy -+
2ecgecs /2 H(mod q) 0(h,a) =<

+0(z*oge), ©-> +oo. .-

Let X denote the multiple sum on the right hand side of (11); to prove
(6) it is sufficient to show that £ = O(z**loga), a8 @ - +co.
By (5) and (9),

2
<K Z g 2' j o]0 Z exp {l‘;_:_? — Oein, (y 4 i_(;‘)}

2ascel/? {mod a) jy|<g=lz—1/2 new

dy.

We apply the familiar method of partial summation to estimate the inner

sum. Let
T(%) o 6—-21:121:(y+h/q)_

1<hksn

Then since T'(n) is a geometric series

-1
[T(’}’b)] é 9 le-r:‘i(y—g-h/q)__ 6——1’:'1:(1I+7L/q)‘—1

sin (y 4 h)
o g —
)

Sinee |y| <q o7, ¢ Hh—a ) <J+h/q < ¢ N h42~"?), while ¢ =2
implies that 1 < h < ¢—1; thus if » > 1 (say), 0 < y+h/g < 1. Therefore

| ) k)—-l _ { ] 1 }
1smw(y+g S b 20—y —hjg)

Also, qy-++h = h—a P 2 h—4}, and q—q@y—h = qg—h—-a"* 2 qg—h—1},
if 2 > 4. We conclude that

1 1 1 1
o0 < ey + gmsir) <2t

Lattice points in a sphere 373

Now,
™ h
exp {——— — 2min (y+ —)} = T () —T (n—1)}
IS’V'AZ;W ® q ls‘nzgx

= 2 T(n) {enn/z____eﬂ(ﬂ-l~1)lf0}+ GN([WIH)IET([x]),

l€nge

and we have

{TC'”, / ( h)}t
E exp \— — 2min |y -+ —
% q

lgnsy

1 1 1 1
< R T, T(n+1)fe __ mnjz el b (x4 L)/
\q{h‘{ q——h} 2{6 ¢ }+q{h+q~h}e

l<<n<e

1 1) e , 1
<aufy+ Agfoe < ),

where K’ is independent of h, ¢, and . This, with (12), leads to

2=0( D) o 2{ } J |w|—3'~dy) @ > +oo.

aggaal/t h(mod q)
But
ol = 0™ (14 4oty < min o, (2)7,
80 that
1 1 z—1 g~1z—12
S-o( 3,00 S el e T vl
2<q<'51/2 a ) q— ] i
=()( g / l'l' 1 }mm)
h ' q—h
2&4@‘/2 h(modq) )

= ( 12 y q‘””logq) O(«**logz), as - 4-oco,
.z.,,q-’xlﬁ
and (6) is proved.
To obtain (1) we simply apply (7) to Y ='%. This gives

ISnsw

£ T
B = [ g —¥(2)e" 4} [wayas
0 0

o<

= 3’402, &> +oo.
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Together with (6), this implies
Ay(7) = $ma®P4-0(2%*loga),

% - -}-oo,

and the proof of (1) is complete.

4. Proof of (2). We begin with two lemmas (cf. [4], pp. 49-50).

LeMMmA 2.
Alc(m) = 2 Ak_l(m—mz), fO?’ /] > 2.
~Ve<m<ya
Proof. Clear.
LEMMA 3.
Vi
(0= = [ (2—)Pdt+0 (%), &> too.
~VE<m<YT ~Vz
Proof. By Lemma 1,
2 (x_mz)klz — 2 (m_mz)k/z
~VEEm<y —VE<msyVs

VE vz Ln”l
= [ (@—& a1 [ e o—2)? tar.
—vV& ~VE
But by the second mean value theorem of the integral calculus,

vz ,f..l I_c__l_ L ke~
(PO @~ tat =0 H=0@?), as
—Vz

—

L > 400,

VE
since [ W(t)dt is bounded, independently of a.
—Vz

To prove (2) we assume

(13) Ry(#) = o(z"*loglogm), &~ +oco,
and show that this leads to a contradiction. By Lemma 2, and the de-
finition. of R,(2),

Ao) = D Ay(o—m?) =ix D o=y S Ryw—md).
—Vasm<yz ~VBLSMSYE . Vééc;'_mlaw?a
By (13), given any ¢ > 0 there exists N > 3 guch that if # > N, then

lRa(w)l < eo'"loglogz. Also (13) implies that for any x> 3, |Ry()
< Ko'*loglogw, where K is independent of w.

icm
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Therefore, assuming that % > N, we have
LD Re-m)< 3 IRGe-mi+ Y |Ryo—m?)
| Yaem<VE VI N<m<yVa—N Va—N<m|<VZ
< 2e(m—N)"25'logloga + ——l—zivmm”zloglogw—l—
(z—2)¥
+ Ry (0)+ B (1)+Ry(2),

where we have used the fact that z'*loglogz is monotone and observed
that there are at most N/(w—N)" integers in the range Vo —N < |m|
< Va. Now holding ¥ fixed and letting £ — +oo, we have

| Z Rs(w“m2)l

fi Y <2

for o0 zloglogw =
Since & > 0 is arbitrary, we conclude that

Z Ry(z—m*) = o(zloglogw), as @ - oo,
—VEEMSYE
50 that
Ay(w) == 2 (w—m?* "+ o(zlogloge), @ -> +oco.
~Vasm<yz
Lemma 3, with % = 3, implies that
Z (2—m*)? =lrg® L O(m), &> +oo,

VMV
and we get .
Ay4(@) = Jno’+o(xloglogn), @ —> oo,

in contradiction to (3). Thus (13) is impossible, and the proof of (2) is
complete.

Remarks. 1. The method used here is the derivation of a o-estimate
for R,(x) from an assumed o-estimate for Ry(x). Thus an improved Q-esti-
mate for R,(z) would immediately give an improvement on (2), by the
same method.

2. This process can be applied to give an O-estimate for Ry(w), given
an O-estimate for R,(x). Tf we start with Vinogradov’s result ([2])

17
Byo) = 0(0® ), ¢>0, o> +oo,

we get
87

Ry(@) = 0@ ), &>0, > +oo,

an estimate which is, however, weaker than (1).
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Appendix added June 5, 1964.

Our formula (6) is actually equivalent to

L@ =2 >V (ﬂi.q)) D) g
3 L - q
1<q<m1/2 h{mod q) l<nge

+0(a™logs), @ - 4oo.
This of course is (4) for &k = 3. In order to show this we need only prove
that
(14) & ’ M 8 nl2g=tminiia
q

2 <g<zl/? Mmod g) 1<n=n

= () (2**loge), @ - “oco.
By partial summation,

n 172 o~ aninhjg

1 1 1
1 K%;m <q (ﬁ -+ —(Ij) (L [aed) .

This together with (5) shows that the left hand side of (14) is

o 3 Sl )

2cqcal/? h(mod q) q— h
- 0(561/2 2 q“”zlogq)
2<a<al/?

= 0(«"*logz), a8 @ > --oo.

This proves (14) and hence (4) for the ecase %k = 3.
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On oscillations of certain means formed from the
Méobius series II

by

8. KNAPOWSKI (Poznat)

1. As announced in paper [1], the present work contains some new
results concerning the distribution of values of x(n) in relatively short
intervals a <n <b. Briefly and roughly speaking, it will be proved
that on Riemann hypothesis there exist infinitely many intervals [U,, U,],
U0 < U, < U,, U, - oo, such that

p(n) > U0,
UynsUy

and also that there exists an infinity of similar intervals [U;, U,] with

um) < =0,
Ugsn<U,

This result is a particular case of the following Theorem 1. As a by-protli-
uct of the proof of this theorem, we will obtain the inequality (again
on Riemann hypothesis)

| (@)] -
S > TR0,
1-o0(1)

(M (@) being, as usual, 3 u(n)), which improves on my previous result ([2]).
nGT

2. In the following we will use two lemmas. Their proofs can be
found respectively in [4] (proof of Lemma II) and in [3] (proof of Theorem
4.1). We call thom Lemma 1 and Lemma 2.

Lemma 1. Let By, Bay ... be a real sequence and ay, dyy ... @ stmilar
one with the property that

(2.1) lw| =T (>0)
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