

368

[3] S. Knapowski, Mean-value estimations for the Möbius function II, Acta Arithm. 7 (1962), pp. 337-343.

[4] — On oscillations of certain means formed from the Möbius series I, Acta Arithm. 8 (1963), pp. 311-320.

[5] E. Landau, Vorlesungen über Zahlentheorie, Bd. II, Leipzig 1927.

[6] N. Nielsen, Handbuch der Theorie der Gammafunction, Leipzig 1906.

[7] W. Staś, Zur Theorie der Möbiusschen μ -Funktion, Acta Arithm. 7 (1962), pp. 409-416.

[8] - Über eine Reihe von Ramanujan, Acta Arithm. 8 (1963), pp. 216-271.

[9] E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford 1951.

[10] - The theory of functions, Oxford 1932.

[11] P. Turán, Eine neue Methode in der Analysis und deren Anwendungen, Budapest 1953.

INSTITUTE OF MATHEMATICS OF THE ADAM MICKIEWICZ UNIVERSITY, POZNAŃ

Recu par la Rédaction le 8. 2. 1964

ACTA ARITHMETICA X (1965)

Lattice points in a sphere

b;

M. N. Bleicher and M. I. Knopp* (Madison, Wis.)

1. Introduction. In this paper we consider the classical lattice point problem for the three-dimensional sphere. The problem can be described as follows. Let x be a positive real number and let k be a positive integer. Consider a k-dimensional sphere of radius \sqrt{x} and center $(0, \ldots, 0)$. Following the notation of Walfisz ([4]), we let $A_k(x)$ be the number of integer lattice points in this sphere. A simple geometric argument shows that as $x \to +\infty$, $A_k(x) \sim V_k(x)$, where $V_k(x)$ is the volume of the sphere in question. The problem then is to get an asymptotic estimate of the difference $R_k(x) = A_k(x) - V_k(x)$.

Here we are considering only $R_3(x)=A_3(x)-\frac{4}{3}\pi x^{3/2}.$ We obtain the following results:

(1)
$$R_3(x) = O(x^{3/4}\log x), \quad x \to +\infty,$$

(2)
$$R_3(x) = \Omega(x^{1/2} \log \log x), \quad x \to +\infty.$$

Of course (1) is not new. Vinogradov ([3]) has in fact shown that $R_3(x) = O(x^{\frac{19}{23}+\epsilon})$, $\varepsilon > 0$, an upper estimate better than (1)(1). However this result depends upon his difficult theory of exponential sums. Our estimate (1), on the other hand, is better than the elementary result $A_3(x) = O(x)$ and depends only upon a fairly standard application of the circle method.

As far as we can ascertain (2) is new. It is based upon the Ω -estimate for $R_4(x)$ ([4], p. 95)

(3)
$$R_4(x) = \Omega(x \log \log x), \quad x \to +\infty.$$

Acta Arithmetica X. 4

^{*}The authors would like to thank the National Science Foundation for financial assistance.

⁽¹⁾Added in proof. Chen Ting-run (Chinese Mathematics 4(1963), pp. 322-339) claims the result $R_3(x) = O(x^{2/3})$.

Walfisz ([4], p. 94) gives only $R_3(x) = \Omega(x^{1/2})$, $x \to +\infty$. In [1] it is shown that $\lim_{x\to\infty} R_3(x)x^{-1/2} = \lim_{x\to\infty} (-R_3(x)x^{-1/2}) = +\infty$, but this of course yields a weaker Ω -result than (3).

2. Preliminaries. Landau's formula for $A_k(x)$ $(k \ge 4)$ is ([4], p. 29)

$$(4) \qquad A_k(x) = \frac{\pi^{k/2}}{\Gamma(k/2)} \sum_{1 \leqslant q \leqslant x^{1/2}} \sum_{h \pmod{q}} \left(\frac{S(h, q)}{q} \right)^k \sum_{1 \leqslant n \leqslant x} n^{k/2 - 1} e^{-2\pi i n h/q} + \\ + O(x^{k/4} \log x), \qquad x \to +\infty.$$

Here $S(h,q)=\sum_{a({\rm mod}\,q)}e^{2\pi iha^2/q}$ is the famous Gaussian sum about which we need only the fact that

$$|S(h,q)| \leqslant Kq^{1/2},$$

where K is independent of h and q ([4], p. 10). The notation Σ' indicates that we are to sum over only those h such that (h, q) = 1.

If (4) held for k=3 we could apply it to derive (1) without much difficulty. However, since the proof of (4) given in [4] fails for k<4, we replace it for k=3 with the following formula obtainable by the same general method

(6)
$$A_3(x) = 2\pi \sum_{n \le x} n^{1/2} + O(x^{3/4} \log x), \quad x \to +\infty.$$

Once we have (6), (1) is easily obtainable.

We will also need the following standard result ([4], p. 25).

LEMMA 1. (Euler Summation Formula). Let $\Psi(t) = t - [t] - \frac{1}{2}$. If f(t) has a continuous derivative in the interval $a \le t \le b$ (a < b), then

(7)
$$\sum_{a < m \leq b} f(m) = \int_a^b f(t) dt + \Psi(a) f(a) - \Psi(b) f(b) + \int_a^b \Psi(t) f'(t) dt.$$

This is proved by integrating $\int_a^b \Psi(t)f'(t) dt$ by parts.

3. Proof of (6) and (1). Many of the calculations done in the proof of (4) ([4], pp. 29-35) are valid for k=3. In particular we have ([4], p. 33, formula (21))

(8)

$$\begin{split} A_3(x) &= \sum_{q \leqslant x^{1/2}} \ \sum_{h \pmod q}^{'} \left(\frac{S(h,q)}{q}\right)^3 \int\limits_{\theta(h,q)} w^{-3/2} \sum_{n \leqslant x} \exp\left\{\frac{\pi n}{x} - 2\pi i n \left(y + \frac{h}{q}\right)\right\} dy + \\ &+ O(x^{3/4} \log x) \,, \quad x \to +\infty \,. \end{split}$$

In (8), $w=x^{-1}-2yi$, and $\theta(h,q)$ is an interval described as follows. Let h'/q' and h''/q'' be the two Farey fractions of order $x^{1/2}$ closest to h/q with say h'/q' < h/q < h''/q'', and consider the interval $\left[\frac{h'+h}{q'+q}, \frac{h+h''}{q+q''}\right]$. Then $\theta(h,q)$ is obtained from this interval by translating h/q to the origin, that is,

$$heta(h,q) = iggl[rac{h'+h}{q'+q} - rac{h}{q}, rac{h+h''}{q+q''} - rac{h}{q} iggr].$$

For our purpose here the essential fact about $\theta(h, q)$ is ([4], p. 30)

(9)
$$|y| \leqslant q^{-1}x^{-1/2}, \quad \text{for} \quad y \in \theta(h, q), \\ |y| \geqslant 2^{-1}q^{-1}x^{-1/2}, \quad \text{for} \quad y \notin \theta(h, q),$$

for any Farey fraction h/q of order $x^{1/2}$. By (8) we have

$$\begin{split} , \quad & (10) \qquad A_3(x) = \int\limits_{\theta(0,1)} w^{-3/2} \sum_{n \leqslant x} \exp\left\{\frac{\pi n}{x} - 2\pi i n y\right\} dy + \\ & + \sum_{2 \leqslant q \leqslant x^{1/2}} \sum_{h (\text{mod } q)} \left(\frac{S(h,\,q)}{q}\right)^3 \int\limits_{\theta(h,q)} w^{-3/2} \sum_{n \leqslant x} \exp\left\{\frac{\pi n}{x} - 2\pi i n \left(y + \frac{h}{q}\right)\right\} dy + \\ & + O(x^{3/4} \log x), \quad x \to +\infty. \end{split}$$

Again we observe that the calculations of [4] (pp. 33-34) are valid for k=3. These yield

$$\begin{split} \int\limits_{\theta(0,1)} w^{-3/2} \sum_{n \leqslant x} \exp\left\{\frac{\pi n}{x} - 2\pi i n y\right\} dy \\ &= \int\limits_{-\infty}^{\infty} w^{-3/2} \sum_{n \leqslant x} \exp\left\{\frac{\pi n}{x} - 2\pi i n y\right\} dy + O\left(x^{3/4}\right), \quad x \to +\infty. \end{split}$$

Now

$$\int\limits_{-\infty}^{\infty} w^{-3/2} \sum_{n \leqslant x} \exp\left\{\frac{\pi n}{x} - 2\pi i n y\right\} dy = \sum_{n \leqslant x} e^{\pi n/x} \int\limits_{-\infty}^{\infty} w^{-3/2} e^{-2\pi i n y} dy,$$

and by [4], p. 35 (again valid for k=3),

$$\int\limits_{-\infty}^{\infty} w^{-3/2} e^{-2\pi i n y} dy = \frac{\pi^{3/2}}{\Gamma(3/2)} \, e^{-\pi n/x} n^{1/2} = 2\pi e^{-\pi n/x} n^{1/2}.$$

372

Thus, we have

$$\int\limits_{-\infty}^{\infty}w^{-3/2}\sum_{n\leqslant x}\,\exp\left\{\frac{\pi n}{x}-2\pi iny\right\}dy\,=\,2\pi\sum_{n\leqslant x}n^{1/2},$$

and (10) becomes

(11)
$$A_3(x) = 2\pi \sum_{n \leqslant x} n^{1/2} +$$

$$+ \sum_{2 \leqslant q \leqslant x^{1/2} \ h(\text{mod } q)} \left(\frac{S(h, q)}{q} \right)^3 \int_{\theta(h, q)} w^{-3/2} \sum_{n \leqslant x} \exp\left\{ \frac{\pi n}{x} - 2\pi i n \left(y + \frac{h}{q} \right) \right\} dy +$$

$$+ O(x^{3/4} \log x), \quad x \to +\infty.$$

Let Σ denote the multiple sum on the right hand side of (11); to prove (6) it is sufficient to show that $\Sigma = O(x^{3/4} \log x)$, as $x \to +\infty$. By (5) and (9),

(12)
$$\left| \sum \right| \\ \leqslant K \sum_{2 \le q \le x^{1/2}} q^{-3/2} \sum_{h \pmod{q}} \int_{|y| \le q^{-1}x^{-1/2}} |w|^{-3/2} \left| \sum_{n \le x} \exp\left\{ \frac{\pi n}{x} - 2\pi i n \left(y + \frac{h}{q} \right) \right\} \right| dy.$$

We apply the familiar method of partial summation to estimate the inner sum. Let

$$T(n) = \sum_{1 \le k \le n} e^{-2\pi i k(y+h/q)}.$$

Then since T(n) is a geometric series

$$|T(n)|\leqslant 2\,|e^{\pi i(y+h/q)}-e^{-\pi i(y+h/q)}|^{-1}=\left|\sin\pi\left(y+\frac{h}{q}\right)\right|^{-1}.$$

Since $|y| \leqslant q^{-1}x^{-1/2}$, $q^{-1}(h-x^{-1/2}) \leqslant y+h/q \leqslant q^{-1}(h+x^{-1/2})$, while $q \geqslant 2$ implies that $1 \leqslant h \leqslant q-1$; thus if $x \geqslant 1$ (say), $0 \leqslant y+h/q \leqslant 1$. Therefore

$$\left|\sin\pi\left(y+\frac{h}{q}\right)\right|^{-1}\leqslant \max\left\{\frac{1}{2\left(y+h/q\right)},\frac{1}{2\left(1-y-h/q\right)}\right\}.$$

Also, $qy + h \ge h - x^{-1/2} \ge h - \frac{1}{2}$, and $q - qy - h \ge q - h - x^{-1/2} \ge q - h - \frac{1}{2}$ if $x \ge 4$. We conclude that

$$|T(n)| \leqslant q \left\{ \frac{1}{2h-1} + \frac{1}{2q-2h-1} \right\} \leqslant q \left\{ \frac{1}{h} + \frac{1}{q-h} \right\}.$$

Now.

$$\begin{split} \sum_{1 \leqslant n \leqslant x} \exp\left\{ \frac{\pi n}{x} - 2\pi i n \left(y + \frac{h}{q} \right) \right\} &= \sum_{1 \leqslant n \leqslant x} e^{\pi n/x} \{ T(n) - T(n-1) \} \\ &= \sum_{1 \leqslant n \leqslant x} T(n) \left\{ e^{\pi n/x} - e^{\pi (n+1)/x} \right\} + e^{\pi ([x]+1)/x} T([x]), \end{split}$$

and we have

$$\begin{split} &\left|\sum_{1\leqslant n\leqslant x} \exp\left\{\frac{\pi n}{x} - 2\pi i n \left(y + \frac{h}{q}\right)\right\}\right| \\ &\leqslant q\left\{\frac{1}{h} + \frac{1}{q-h}\right\} \sum_{1\leqslant n\leqslant x} \{e^{\pi(n+1)/x} - e^{\pi n/x}\} + q\left\{\frac{1}{h} + \frac{1}{q-h}\right\} e^{\pi([x]+1)/x} \\ &\leqslant 2q\left\{\frac{1}{h} + \frac{1}{q-h}\right\} e^{\pi(x+1)/x} \leqslant K'q\left\{\frac{1}{h} + \frac{1}{q-h}\right\}, \end{split}$$

where K' is independent of h, q, and x. This, with (12), leads to

$$\sum = O\left(\sum_{2 \le n \le x^{1/2}} q^{-1/2} \sum_{h (\mathrm{mod} \, q)} \left\{ rac{1}{h} + rac{1}{q-h}
ight\}^{q-1 x - 1/2} |w|^{-3/2} dy
ight), \quad x o + \infty \, .$$

But

$$|w|^{-3/2} = x^{3/2} (1 + 4x^2y^2)^{-3/4} \le \min\{x^{3/2}, (2y)^{-3/2}\},$$

so that

$$\begin{split} \sum &= O\left(\sum_{2 \leqslant q \leqslant x^{1/2}} q^{-1/2} \sum_{h (\text{mod } q)}' \left\{ \frac{1}{h} + \frac{1}{q-h} \right\} \!\! \left\{ \!\! \int_{0}^{x^{-1}} x^{3/2} dy + \int_{x^{-1}}^{q^{-1}x^{-1/2}} y^{-3/2} dy \right\} \!\! \right\} \\ &= O\left(\sum_{2 \leqslant q \leqslant x^{1/2}} q^{-1/2} \sum_{h (\text{mod } q)}' \left\{ \frac{1}{h} + \frac{1}{q-h} \right\} x^{1/2} \right) \\ &= O\left(x^{1/2} \sum_{2 \leqslant q \leqslant x^{1/2}} q^{-1/2} \log q \right) = O(x^{3/4} \log x), \quad \text{as} \quad x \to +\infty, \end{split}$$

and (6) is proved.

To obtain (1) we simply apply (7) to $\sum_{n=0}^{\infty} n^{1/2}$. This gives

$$\sum_{1 \leqslant n \leqslant x} n^{1/2} = \int_{0}^{x} t^{1/2} dt - \Psi(x) x^{1/2} + \frac{1}{2} \int_{0}^{x} \Psi(t) t^{-1/2} dt$$
$$= \frac{2}{3} x^{3/2} + O(x^{1/2}), \quad x \to +\infty.$$

Together with (6), this implies

$$A_3(x) = \frac{4}{3}\pi x^{3/2} + O(x^{3/4}\log x), \quad x \to +\infty,$$

and the proof of (1) is complete.

4. Proof of (2). We begin with two lemmas (cf. [4], pp. 49-50). LEMMA 2.

$$A_k(x) = \sum_{\substack{-\sqrt{x} \leqslant m \leqslant \sqrt{x}}} A_{k-1}(x-m^2), \quad \textit{for} \quad k \geqslant 2.$$

Proof. Clear.

LEMMA 3.

$$\sum_{-\sqrt{x} \leqslant m \leqslant \sqrt{x}} (x-m^2)^{k/2} = \int_{-\sqrt{x}}^{\sqrt{x}} (x-t^2)^{k/2} dt + O(x^{(k-1)/2}), \quad x \to +\infty.$$

Proof. By Lemma 1,

$$\begin{split} \sum_{-\sqrt{x} \leqslant m \leqslant \sqrt{x}} (x-m^2)^{k/2} &= \sum_{-\sqrt{x} < m \leqslant \sqrt{x}} (x-m^2)^{k/2} \\ &= \int\limits_{-\sqrt{x}}^{\sqrt{x}} (x-t^2)^{k/2} dt - k \int\limits_{-\sqrt{x}}^{\sqrt{x}} \Psi(t) (x-t^2)^{\frac{k}{2}-1} t \, dt. \end{split}$$

But by the second mean value theorem of the integral calculus,

$$\int\limits_{-\sqrt{x}}^{\sqrt{x}} \Psi(t)(x-t^2)^{\frac{k}{2}-1}t\,dt = O(x^{\frac{k}{2}-1+\frac{1}{2}}) = O(x^{\frac{k-1}{2}}), \quad \text{ as } \quad x \to +\infty,$$

since $\int_{-\sqrt{x}}^{\sqrt{x}} \Psi(t) dt$ is bounded, independently of x.

To prove (2) we assume

$$(13) R_3(x) = o(x^{1/2}\log\log x), \quad x \to +\infty.$$

and show that this leads to a contradiction. By Lemma 2, and the definition of $R_3(x)$,

$$A_4(x) = \sum_{-\sqrt{x} \leqslant m \leqslant \sqrt{x}} A_3(x-m^2) = \frac{4}{3} \pi \sum_{-\sqrt{x} \leqslant m \leqslant \sqrt{x}} (x-m^2)^{3/2} + \sum_{-\sqrt{x} \leqslant m \leqslant \sqrt{x}} R_3(x-m^2).$$

By (13), given any $\varepsilon > 0$ there exists N > 3 such that if x > N, then $|R_3(x)| < \varepsilon x^{1/2} \log \log x$. Also (13) implies that for any x > 3, $|R_3(x)| < K x^{1/2} \log \log x$, where K is independent of x.

Therefore, assuming that x > N, we have

where we have used the fact that $x^{1/2}\log\log x$ is monotone and observed that there are at most $N/(x-N)^{1/2}$ integers in the range $\sqrt{x-N} \leqslant |m| \leqslant \sqrt{x}$. Now holding N fixed and letting $x \to +\infty$, we have

$$\overline{\lim_{x \to +\infty}} \frac{\left| \sum\limits_{-\sqrt{x} < m < \sqrt{x}} R_3(x-m^2) \right|}{x \log \log x} \leq 2\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we conclude that

$$\sum_{-\sqrt{x}\leqslant m\leqslant \sqrt{x}} R_3(x-m^2) = o(x\log\log x), \quad ext{ as } \quad x o +\infty,$$

so that

$$A_4(x) = \tfrac{4}{3}\pi \sum_{-\sqrt{x} \leqslant m \leqslant \sqrt{x}} (x-m^2)^{3/2} + o(x\log\log x), \quad \ x \to +\infty.$$

Lemma 3, with k=3, implies that

$$\sum_{-\sqrt{x}\leqslant m\leqslant \sqrt{x}}(x-m^2)^{3/2}=\tfrac{3}{8}\pi x^2+O(x)\,, \quad x\to +\infty\,,$$

and we get

$$A_{A}(x) = \frac{1}{2}\pi x^{2} + o(x \log \log x), \quad x \to +\infty,$$

in contradiction to (3). Thus (13) is impossible, and the proof of (2) is complete.

Remarks. 1. The method used here is the derivation of a o-estimate for $R_4(x)$ from an assumed o-estimate for $R_3(x)$. Thus an improved Ω -estimate for $R_4(x)$ would immediately give an improvement on (2), by the same method.

2. This process can be applied to give an O-estimate for $R_3(x)$, given an O-estimate for $R_2(x)$. If we start with Vinogradov's result ([2])

$$R_2(x) = O(x^{\frac{17}{53} + \varepsilon}), \quad \varepsilon > 0, \ x \to +\infty,$$

we get

$$R_3(x) = O(x^{\frac{87}{106} + \varepsilon}), \quad \varepsilon > 0, \ x \to +\infty$$

an estimate which is, however, weaker than (1).

ACTA ARITHMETICA X (1965)

Appendix added June 5, 1964.

Our formula (6) is actually equivalent to

$$egin{aligned} A_3(x) &= 2\pi \sum_{1 \leqslant q \leqslant x^{1/2}} \sum_{h (\mathrm{mod} \, q)}' \left(rac{S(h, \, q)}{q}
ight)^3 \sum_{1 \leqslant n \leqslant x} n^{1/2} e^{-2\pi i n h/q} + \ &\quad + O(x^{3/4} \mathrm{log} \, x), \quad x
ightarrow + \infty. \end{aligned}$$

This of course is (4) for k=3. In order to show this we need only prove that

(14)
$$\sum_{2 \leqslant q \leqslant x^{1/2}} \sum_{h \pmod{q}}' \left(\frac{S(h, q)}{q} \right)^3 \sum_{1 \leqslant n \leqslant x} n^{1/2} e^{-2\pi i n h/q}$$

$$= O(x^{3/4} \log x), \quad x \to +\infty.$$

By partial summation,

$$\Big|\sum_{1\leqslant n\leqslant x} n^{1/2} e^{-2\pi i nh/q}\Big|\leqslant q\left(\frac{1}{h}+\frac{1}{q-h}\right) (1+\lfloor x\rfloor)^{1/2}\,.$$

This together with (5) shows that the left hand side of (14) is

$$egin{align*} O\left(x^{1/2} \sum_{2 \leqslant q \leqslant x^{1/2}} q^{-1/2} \sum_{h (\operatorname{mod} q)}' \left(rac{1}{h} + rac{1}{q-h}
ight)
ight) \ &= O\left(x^{1/2} \sum_{2 \leqslant q \leqslant x^{1/2}} q^{-1/2} \log q
ight) \ &= O\left(x^{3/4} \log x
ight), \quad ext{as} \quad x o + \infty. \end{split}$$

This proves (14) and hence (4) for the case k=3.

References

- [1] K. Chandrasekharan and R. Narashimhan Hecke's functional equation and the average order of arithmetical functions, Acta Arithm. 6 (1961), pp. 487-503.
- [2] I. M. Vinogrodov, On the number of integral points in the interior of a circle (in Russian), Bulletin Acad. Sci. Leningrad 7 (1932), pp. 313-336.
- [3] On the number of integral points in a given domain (in Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 24 (1960), pp. 777-786.
- [4] Arnold Walfisz, Gitterpunkte in mehrdimensionalen Kugeln, Warsaw 1957.

THE UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN THE NATIONAL BUREAU OF STANDARDS, WASHINGTON, D. C.

Reçu par la Rédaction le 11, 2, 1964

On oscillations of certain means formed from the Möbius series II

by

S. Knapowski (Poznań)

1. As announced in paper [1], the present work contains some new results concerning the distribution of values of $\mu(n)$ in relatively short intervals $a \leqslant n \leqslant b$. Briefly and roughly speaking, it will be proved that on Riemann hypothesis there exist infinitely many intervals $[U_1, U_2]$, $U_2^{1-o(1)} \leqslant U_1 \leqslant U_2$, $U_2 \to \infty$, such that

$$\sum_{U_1\leqslant n\leqslant U_2}\mu(n)>\,U_2^{1/2-o(1)},$$

and also that there exists an infinity of similar intervals $[U_3, U_4]$ with

$$\sum_{U_3\leqslant n\leqslant U_4}\mu(n)<-U_4^{1/2-o(1)}.$$

This result is a particular case of the following Theorem 1. As a by-product of the proof of this theorem, we will obtain the inequality (again on Riemann hypothesis)

$$\int_{T^{1-o(1)}}^{T} \frac{|M(x)|}{x} dx > T^{1/2-o(1)},$$

 $(M(x) \text{ being, as usual}, \sum_{n \in x} \mu(n))$, which improves on my previous result ([2]).

2. In the following we will use two lemmas. Their proofs can be found respectively in [4] (proof of Lemma II) and in [3] (proof of Theorem 4.1). We call them Lemma 1 and Lemma 2.

LEMMA 1. Let β_1, β_2, \ldots be a real sequence and $\alpha_1, \alpha_2, \ldots$ a similar one with the property that

$$|a_{\nu}| \geqslant U \ (>0)$$